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Abstract. In this paper, we study asymptotically hyperbolic manifolds
given as graphs of asymptotically constant functions over hyperbolic space
H

n. The graphs are considered as unbounded hypersurfaces of H
n+1 which

carry the induced metric and have an interior boundary. For such mani-
folds, the scalar curvature appears in the divergence of a 1-form involving
the integrand for the asymptotically hyperbolic mass. Integrating this
divergence, we estimate the mass by an integral over the inner boundary.
In case the inner boundary satisfies a convexity condition, this can in turn
be estimated in terms of the area of the inner boundary. The resulting esti-
mates are similar to the conjectured Penrose inequality for asymptotically
hyperbolic manifolds. The work presented here is inspired by Lam’s article
(The graph cases of the Riemannian positive mass and Penrose inequali-
ties in all dimensions. http://arxiv.org/abs/1010.4256, 2010) concerning
the asymptotically Euclidean case. Using ideas developed by Huang and
Wu (The equality case of the penrose inequality for asymptotically flat
graphs. http://arxiv.org/abs/1205.2061, 2012), we can in certain cases
prove that equality is only attained for the anti-de Sitter Schwarzschild
metric.

1. Introduction

In 1973, R. Penrose conjectured that the total mass of a space–time containing
black holes cannot be less than a certain function of the sum of the areas of
the event horizons. Black holes are objects whose definition requires knowledge
of the global space–time. Hence, given Cauchy data (which are the only data
needed to define the total mass of a space–time), finding event horizons would
require solving the Einstein equations. As a consequence, in the current for-
mulation of the Penrose conjecture, event horizons are usually replaced by the
weaker notion of apparent horizons. We refer the reader to [9, Chapter XIII]
for further details.

http://arxiv.org/abs/1010.4256
http://arxiv.org/abs/1205.2061
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The classical Penrose conjecture takes the following form: Let (M, g, k)
be Cauchy data for the Einstein equations, that is a triple where (M, g) is
a Riemannian 3-manifold and k is a symmetric 2-tensor on M . Assume that
(M, g, k) satisfies the dominant energy condition

μ ≥ |J |,
where μ and J are defined through{

μ := 1
2

(
Scalg − |k|2g + (trg k)2

)
,

J := div(k) − d(trg k).

Assume further that (M, g, k) is asymptotically Euclidean. A compact oriented
surface Σ ⊂ M is called an apparent horizon if Σ satisfies

Hg + trΣ k = 0,

where Hg is the trace of the second fundamental form S of Σ computed with
respect to the outgoing normal ν of Σ, that is S(X,Y ) = 〈∇Xν, Y 〉 for any
vectors X and Y tangent to Σ, and trΣ k is the trace of k restricted to the
tangent space of Σ for the metric induced by g. Hence viewing (M, g, k) as
immersed in a space–time, the expansion of Σ in the future outgoing light-like
direction vanishes. We assume that Σ is outermost, that is Σ contains all other
apparent horizons in its interior. Note that Σ may be disconnected. See [2] for
further details. Then, the Penrose conjecture takes the form

m ≥
√

|Σ|
16π

,

where |Σ| denotes the area of Σ and m is the mass of the manifold (M, g).
Further, equality should hold only if the exterior of Σ is isometric to a hyper-
surface in the exterior region of a Schwarzschild black hole with k equal to the
second fundamental form of this hypersurface.

This conjecture can be generalized to higher dimensional manifolds. All
the statements are the same except for the inequality which in n dimensions
reads

m ≥ 1
2

( |Σ|
ωn−1

)n−2
n−1

,

where ωn−1 is the volume of the unit (n− 1)-sphere.
Two major breakthroughs in the proof of this inequality were obtained

almost simultaneously by Huisken and Ilmanen [21] and Bray [4] for 3-man-
ifolds. They both deal with the time-symmetric case, i.e. when k = 0. The
result of Bray was extended to higher dimensions in [6]. We refer the reader to
the excellent reviews [23] and [5] for further details. Recently, Lam [22] gave a
simple proof of the time-symmetric Penrose inequality for a manifold which is
a graph of a smooth function over R

n. His proof was extended by Huang and
Wu [20] to give a proof of the positive mass theorem (including the rigidity
statement) for asymptotically Euclidean manifolds which are submanifolds of
R

n+1. More general ambient spaces were considered by de Lima and Girão [11].
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The Penrose conjecture can be generalized to spacetimes with negative
cosmological constant. Up to rescaling, we can assume that the cosmological
constant Λ equals −n(n−1)

2 . Restricting ourselves to the time-symmetric case,
the dominant energy condition then reads

Scalg ≥ −n(n− 1).

The lower bound for the mass (defined in Sect. 2.1) is then conjectured to be
given by the mass of the anti-de Sitter Schwarzschild space–time (see Sect. 2.3),

m ≥ 1
2

[( |Σ|
ωn−1

)n−2
n−1

+
( |Σ|
ωn−1

) n
n−1

]
. (1)

In this paper, we prove weaker forms of this inequality for manifolds
which are graphs over the hyperbolic space H

n when we endow the manifold
H

n × R with a certain hyperbolic metric. See Theorem 2.1.
After the first version of this article appeared on arXiv, de Lima and

Girão posted an article dealing with another case of the asymptotically hyper-
bolic Penrose inequality [13]. Rigidity was addressed by de Lima and Girão
[14] and by Huang and Wu [19]. The approach used in [19] does not require
any further assumption and we shall extend it to our context in Sect. 5.

The outline of this paper is as follows. In Sect. 2.1, we define the mass
of a general asymptotically hyperbolic manifold. We explicit the anti-de Sitter
Schwarzschild metric in Sect. 2.3. In Sect. 3, we prove that the scalar curvature
of a graph has divergence form (Eq. (7)) and that its integral is related to the
mass (Lemma 3.2). In Sect. 4, we prove the first part of Theorem 2.1. Rigidity
is addressed in Sect. 5.

A note

After this paper was accepted for publication the articles by de Lima and Girão
[12], and by Brendle et al. [7] appeared on arXiv. In the first of these papers,
an Alexandrov–Fenchel type inequality for hypersurfaces in hyperbolic space
is stated, which together with Proposition 4.1 implies the Penrose inequality
(1) for graphs. Note that a special case of [7, Theorem 2] follows from our
formula (13) in Sect. 4.2.

2. Preliminaries

2.1. Asymptotically Hyperbolic Manifolds and the Mass

We define the mass of an asymptotically hyperbolic manifold following
Chruściel and Herzlich, see [10] and [17]. In the special case of conformal-
ly compact manifolds, this definition coincides with the definition given by
Wang [31]. In what follows, n-dimensional hyperbolic space is denoted by H

n

and its metric is denoted by b. In polar coordinates b = dr2 + sinh2 rσ where
σ is the standard round metric on Sn−1.
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Set N := {V ∈ C∞(Hn) | Hessb V = V b}. A basis of this vector space
consists of the functions

V(0) = cosh r, V(1) = x1 sinh r, . . . , V(n) = xn sinh r,

where x1, . . . , xn are the coordinate functions on R
n restricted to Sn−1. If we

consider H
n as the upper unit hyperboloid in Minkowski space R

n,1 then the
functions V(i) are the restrictions to H

n of the coordinate functions of R
n,1.

The vector space N is equipped with a Lorentzian inner product η character-
ized by the condition that the basis above is orthonormal, η(V(0), V(0)) = 1,
and η(V(i), V(i)) = −1 for i = 1, . . . , n. We also give N a time orientation by
specifying that V(0) is future directed. The subset N+ of positive functions
then coincides with the interior of the future lightcone. Further, we denote
by N 1 the subset of N+ of functions V with η(V, V ) = 1, this is the unit
hyperboloid in the future lightcone of N . All V ∈ N 1 can be constructed as
follows. Choose an arbitrary point p0 ∈ H

n. Then, the function

V := cosh db(p0, ·)
is in N 1.

A Riemannian manifold (M, g) is said to be asymptotically hyperbolic
if there exist a compact subset K ⊂ M and a diffeomorphism at infinity
Φ : M\K → H

n\B, where B is a closed ball in H
n, for which Φ∗g and b are

uniformly equivalent on H
n\B and∫

Hn\B

(|e|2 + |∇be|2) cosh r dμb < ∞, (2a)

∫
Hn\B

|Scalg + n(n− 1)| cosh r dμb < ∞, (2b)

where e := Φ∗g − b and r is the (hyperbolic) distance from an arbitrary given
point in H

n.
The mass functional of (M, g) with respect to Φ is the functional on N

defined by

HΦ(V ) = lim
r→∞

∫
Sr

(
V (divb e− d trb e) + (trb e)dV − e(∇bV, ·)

)
(νr) dμb

Proposition 2.2 of [10] tells us that this limit exists and is finite under the
asymptotic decay conditions (2a)–(2b). If Φ is a chart at infinity as above and
A is an isometry of the hyperbolic metric b then A ◦ Φ is again such a chart
and it is not complicated to verify that

HA◦Φ(V ) = HΦ(V ◦A−1).

If Φ1,Φ2 are charts at infinity as above, then from [17, Theorem 2.3] we know
that there is an isometry A of b so that Φ2 = A◦Φ1 modulo lower order terms
which do not affect the mass functional.
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The mass functional HΦ is timelike future directed if HΦ(V ) > 0 for all
V ∈ N+. In this case, the mass of the asymptotically hyperbolic manifold
(M, g) is defined by

m :=
1

2(n− 1)ωn−1
inf
N 1

HΦ(V ).

Further if HΦ is timelike future directed, we may replace Φ by A◦Φ for a suit-
ably chosen isometry A so that m = HΦ(V(0)). Coordinates with this property
are called balanced.

The positive mass theorem for asymptotically hyperbolic manifolds
[10, Theorem 4.1] and [31, Theorem 1.1] states that the mass functional is
timelike future directed or zero for complete asymptotically hyperbolic spin
manifolds with scalar curvature Scal ≥ −n(n − 1). In [1, Theorem 1.3], the
same result is proved with the spin assumption replaced by assumptions on
the dimension and on the geometry at infinity.

2.2. Asymptotically Hyperbolic Graphs

The purpose of this paper is to prove versions of the Riemannian Penrose
inequality for an asymptotically hyperbolic graph over the hyperbolic space
H

n. We consider such a graph as a submanifold of H
n+1. In what follows we

will denote tensors associated to H
n+1 with a bar. In particular, b will denote

the hyperbolic metric on H
n+1.

To shorten notation, we now fix

V = V(0) = cosh r

for the rest of the paper. As a model of H
n+1 we take H

n × R equipped with
the metric

b := b+ V 2ds⊗ ds.

Let Ω be a relatively compact open subset and let f : H
n\Ω → R be a contin-

uous function which is smooth on H
n\Ω. We consider the graph

Σ := {(x, s) ∈ H
n × R | f(x) = s}.

Define the diffeomorphism Φ : Σ → H
n\Ω by Φ−1(p) = (p, f(p)). The push-

forward of the metric induced on Σ is

g := Φ∗b = (Φ−1)∗b = b+ V 2df ⊗ df.

We will study the situation when the graph Σ is asymptotically hyperbolic
with respect to the chart Φ, that is when

e = V 2df ⊗ df

satisfies (2a)–(2b) and

|e| = V 2|df |2 → 0 at infinity. (3)
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Note that Condition (2a) is a consequence of the following condition:∫
Hn\B

(
|df |4 + |Hess f |4

)
cosh5 r dμb < ∞,

that is to say that df belongs to a certain weighted Sobolev space.
If this holds we say that f is an asymptotically hyperbolic function and Σ

is an asymptotically hyperbolic graph. We define f to be balanced at infinity if
Φ are balanced coordinates at infinity. In this case, the mass of Σ is given by
m = HΦ(V ) with V = V(0).

In this paper, we will prove the following theorem which gives estimates
similar to the Penrose inequality for asymptotically hyperbolic graphs. In cer-
tain cases this theorem also describes the situation when equality is attained.
For exact formulations see Theorems 4.2, 4.4, and 5.13.

Theorem 2.1. Let Ω ⊂ H
n be a relatively compact open subset of H

n with
smooth boundary. Assume that Ω contains an inner ball centered at the ori-
gin of radius r0. Let f : H

n\Ω → R be an asymptotically hyperbolic function
which is balanced at infinity. Assume that f is locally constant on ∂Ω and that
|df | → ∞ at ∂Ω so that ∂Ω is a horizon (Hg = 0). Further assume that the
scalar curvature of the graph of f satisfies Scal ≥ −n(n− 1). Then, the mass
m of the graph is bounded from below as follows.

• If ∂Ω has non-negative mean curvature with respect to the metric b,H ≥ 0,
we have

m ≥ n− 2
2n(n− 1)n

n
n−1

V (r0)
( |∂Ω|
ωn−1

)n−2
n−1

and

m ≥ 1
2
V (r0)

|∂Ω|
ωn−1

.

• If Ω is an h-convex subset of H
n we have

m ≥ 1
2

[( |∂Ω|
ωn−1

)n−2
n−1

+ sinh r0
|∂Ω|
ωn−1

]
.

If equality holds and df(η)(x) → +∞ as x → ∂Ω where η is the outward
normal of the level sets of f then the graph of f is isometric to the t = 0
slice of the anti-de Sitter Schwarzschild space–time.

Note that since f is locally constant on ∂Ω, the areas of ∂Ω computed
using the metric b and using the metric induced on the graph are equal.

2.3. The Anti-de Sitter Schwarzschild Space–Time

We remind the reader that the metric outside the horizon of the anti-de
Sitter-Schwarzschild space in (spatial) dimension n ≥ 3 and of mass m ≥ 0 is
given by

γAdS-Schw = −
(

1 + ρ2 − 2m
ρn−2

)
dt2 +

dρ2

1 + ρ2 − 2m
ρn−2

+ ρ2σ,
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where σ is the standard round metric on the sphere Sn−1. See for example
[23, Section 6]. The horizon is the surface ρ = ρ0(m), where ρ0 = ρ0(m) is the
unique solution of

1 + ρ2 − 2m
ρn−2

= 0.

Its area is given by Am = ωn−1ρ
n−1
0 , hence multiplying the previous formula

by ρn−2
0 , we get

m =
1
2
[
ρn−2
0 + ρn

0

]
=

1
2

[(
Am

ωn−1

)n−2
n−1

+
(
Am

ωn−1

) n
n−1

]
.

This justifies the form of the right-hand side of (1).
Restricting to the slice t = 0, we get the following Riemannian metric:

gAdS-Schw =
dρ2

1 + ρ2 − 2m
ρn−2

+ ρ2σ. (4)

We want to express the spatial metric (4) as the induced metric of a
graph ΣAdS-Schw. By rotational symmetry, we choose the point ρ = 0 as the
origin and f = f(ρ). In this coordinate system, the reference hyperbolic metric
b is given by

b =
dρ2

1 + ρ2
+ ρ2σ.

The function V is given by V =
√

1 + ρ2. Hence we seek a function f satisfying

V 2

(
∂f

∂ρ

)2

=
1

1 + ρ2 − 2m
ρn−2

− 1
1 + ρ2

.

Note that when ρ is close to ρ0, this forces ∂f
∂ρ = O((ρ− ρ0)− 1

2 ). Hence we can
set

f(ρ) =

ρ∫
ρ0

1√
1 + s2

√
1

1 + s2 − 2m
sn−2

− 1
1 + s2

ds. (5)

Similarly, when ρ → ∞, f converges to a constant. This contrasts with the
Euclidean case where the Schwarzschild metric written as a graph is a half
parabola in any radial direction, see [22].

3. Scalar Curvature of Graphs in H
n+1

3.1. Computation of Scalar Curvature

Let f : H
n\Ω → R be a smooth function. Recall that we defined its graph as

Σ := {(x, s) ∈ H
n × R | f(x) = s} = F−1(0),
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where F (x, s) := f(x) − s. For vector fields X and Y on H
n the vector fields

X = X + ∇Xf∂0 and Y = Y + ∇Y f∂0 are tangent to Σ. We use coordinates
on H

n to parametrize Σ.
Recall that we identify H

n+1 with H
n × R with the metric b = b+ V 2ds

⊗ds. When using coordinate notation, latin indices i, j, . . . ∈ {1, . . . , n} denote
(any) coordinates on H

n while a zero index denotes the s-coordinate on R.
Greek indices go from 0 to n, hence denote coordinates on H

n+1. The Chris-
toffel symbols of b are collected in the following Lemma.

Lemma 3.1. ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Γ
0

00 = 0

Γ
i

00 = −V∇iV

Γ
0

i0 =
∇iV

V

Γ
i

j0 = 0

Γ
0

ij = 0

Γ
k

ij = Γk
ij (Christoffel symbols of H

n).

The induced metric on Σ is given by

g(X,Y ) = b(X,Y ) = b(X,Y ) + V 2∇Xf∇Y f.

The second fundamental form S of Σ is given by

S(X,Y ) =
1∣∣∇F ∣∣∇2

X,Y F

=
1∣∣∇F ∣∣

[
∇2

X,Y F + ∇Xf∇2

∂0,Y F + ∇Y f∇2

X,∂0
F

+∇Xf∇Y f∇2

∂0,∂0
F
]

=
1√

V −2 + |df |2
[
∇2

X,Y f +
∇Xf∇Y V + ∇XV∇Y f

V

+ V 〈df,dV 〉∇Xf∇Y f
]
.

Using component notation, we get

Sij =
V√

1 + V 2 |df |2
[
∇2

i,jf +
∇if∇jV + ∇iV∇jf

V
+ V 〈df,dV 〉∇if∇jf

]
.

The metric g and its inverse are given by

gij = bij + V 2∇if∇jf,

gij = bij − V 2∇if∇jf

1 + V 2|df |2 .
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We compute the mean curvature of Σ,

H = gijSij

=
1∣∣∇F ∣∣

(
bij − V 2∇if∇jf

1 + V 2|df |2
)

×
[
∇2

i,jf +
∇if∇jV + ∇iV∇jf

V
+ V 〈df,dV 〉∇if∇jf

]

=
1∣∣∇F ∣∣

[
Δf + 2

〈
df,

dV
V

〉
+ V 〈df,dV 〉|df |2

− V 2

1 + V 2|df |2
(

〈Hess f, df ⊗ df〉 + 2|df |2
〈
df,

dV
V

〉

+V 2|df |4
〈
df,

dV
V

〉)]

=
1∣∣∇F ∣∣

[
Δf − V 2〈Hess f, df ⊗ df〉

1 + V 2|df |2 +
2 + V 2|df |2
1 + V 2|df |2

〈
df,

dV
V

〉]
,

or

H =
1∣∣∇F ∣∣

[
Δf − V 2〈Hess f, df ⊗ df〉

1 + V 2|df |2 +
(

1 +
1

1 + V 2|df |2
)〈

df,
dV
V

〉]
.

The norm of the second fundamental form of Σ is given by∣∣S∣∣2
g

= gikgjlSijSkl

=
(
bik − V 2∇if∇kf

1 + V 2|df |2
)(

bjl − V 2∇jf∇lf

1 + V 2|df |2
)
SijSkl

= bikbjlSijSkl − 2
V 2bik∇jf∇lf

1 + V 2|df |2 SijSkl +
V 4∇if∇jf∇kf∇lf

(1 + V 2|df |2)2 SijSkl

=
∣∣S∣∣2

b︸︷︷︸
(A)

−2
V 2bik∇jf∇lf

1 + V 2|df |2 SijSkl︸ ︷︷ ︸
(B)

+
(
V 2S(∇f,∇f)
1 + V 2|df |2

)2

︸ ︷︷ ︸
(C)

.

We compute each term separately. First

(A) =
∣∣S∣∣2

b

=
V 2

1 + V 2|df |2
[
|Hess f |2 + 2|df |2

∣∣∣∣dVV
∣∣∣∣
2

+ 2
〈
df,

dV
V

〉2

+ V 4|df |4
〈
df,

dV
V

〉2

+ 4
〈

Hess f, df ⊗ dV
V

〉

+2V 2

〈
df,

dV
V

〉
〈Hess f, df ⊗ df〉 + 4V 2|df |2

〈
df,

dV
V

〉2
]
.
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Next,

(B) = −2
V 2bik

1 + V 2|df |2 ∇jfSij∇lfSkl

= −2
V 4

1 + V 2|df |2
∣∣S(∇f, ·)∣∣2

= −2
V 4

(1 + V 2|df |2)2

×
∣∣∣∣Hess f(∇f, ·) + (1 + V 2|df |2)

〈
df,

dV
V

〉
df + |df |2 dV

V

∣∣∣∣
2

= −2
V 4

(1 + V 2|df |2)2

×
[
|Hess f(∇f, ·)|2 + (1 + V 2|df |2)2

〈
df,

dV
V

〉2

|df |2 + |df |4
∣∣∣∣dVV

∣∣∣∣
2

+2(1 + V 2|df |2)Hess f(∇f,∇f)
〈
df,

dV
V

〉

+2|df |2
〈

Hess f,∇f ⊗ ∇V
V

〉

+ 2(1 + V 2|df |2)|df |2
〈
df,

dV
V

〉2
]
,

and finally

(C) =
(
V 2S(∇f,∇f)
1 + V 2|df |2

)2

=
V 6

(1 + V 2|df |2)3

×
[
∇if∇jf∇2

i,jf + 2|df |2
〈
df,

dV
V

〉
+ |df |4V 2

〈
df,

dV
V

〉]2

=
V 6

(1 + V 2|df |2)3
[
∇if∇jf∇2

i,jf + (2 + V 2|df |2)|df |2
〈
df,

dV
V

〉]2

=
V 2

1 + V 2|df |2
[
V 2〈Hess f, df ⊗ df〉

1 + V 2|df |2

+
(

1 +
1

1 + V 2|df |2
)
V 2|df |2

〈
df,

dV
V

〉]2

.
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Hence

H
2 − |S|2g

=
V 2

1 + V 2|df |2
([

Δf− V 2〈Hess f, df ⊗ df〉
1 + V 2|df |2 +

(
1+

1
1 + V 2|df |2

)〈
df,

dV
V

〉]2

−
[
V 2〈Hess f, df ⊗ df〉

1 + V 2|df |2 +
(

1 +
1

1 + V 2|df |2
)
V 2|df |2

〈
df,

dV
V

〉]2

− |Hess f |2 − 2|df |2
∣∣∣∣dVV

∣∣∣∣
2

− 2
〈
df,

dV
V

〉2

− V 4|df |4
〈
df,

dV
V

〉2

− 4
〈

Hess f, df ⊗ dV
V

〉
− 2V 2

〈
df,

dV
V

〉
〈Hess f, df ⊗ df〉

− 4V 2|df |2
〈
df,

dV
V

〉2

+ 2
V 2

1 + V 2|df |2
[
|Hess f(∇f, ·)|2 + (1 + V 2|df |2)2

〈
df,

dV
V

〉2

|df |2

+ |df |4
∣∣∣∣dVV

∣∣∣∣
2

+ 2(1 + V 2|df |2)Hess f(∇f,∇f)
〈
df,

dV
V

〉

+ 2|df |2
〈

Hess f,∇f ⊗ ∇V
V

〉

+ 2(1 + V 2|df |2)|df |2
〈
df,

dV
V

〉2
])

,

and

H
2 − |S|2g

=
V 2

1 + V 2|df |2
([

Δf + (2 + V 2|df |2)
〈
df,

dV
V

〉]

×
[
Δf − 2V 2

1 + V 2|df |2 〈Hess f, df ⊗ df〉

+(1 − V 2|df |2)
(

1 +
1

1 + V 2|df |2
)〈

df,
dV
V

〉]

− |Hess f |2 + 2
V 2

1 + V 2|df |2 |Hess f(∇f, ·)|2 − 2
1 + V 2|df |2 |df |2

∣∣∣∣dVV
∣∣∣∣
2

+
(−2 + 2V 2|df |2 + V 4|df |4)〈df, dV

V

〉2

− 4
1 + V 2|df |2

〈
Hess f,∇f ⊗ ∇V

V

〉
+2V 2 〈Hess f, df ⊗ df〉

〈
df,

dV
V

〉)
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=
V 2

1 + V 2|df |2
[
(Δf)2 − |Hess f |2

+ 2
V 2

1 + V 2|df |2
(
|Hess f(∇f, ·)|2 − Δf 〈Hess f, df ⊗ df〉

)

+
(

2 +
2

1 + V 2|df |2
)

Δf
〈
df,

dV
V

〉

− 2V 2

1 + V 2|df |2 〈Hess f, df ⊗ df〉
〈
df,

dV
V

〉

+
2

1 + V 2|df |2
〈
df,

dV
V

〉2

− 2
1 + V 2|df |2 |df |2

∣∣∣∣dVV
∣∣∣∣
2

− 4
1 + V 2|df |2

〈
Hess f, df ⊗ dV

V

〉]
.

By taking the trace of the Gauss equation for Σ, we finally arrive at the fol-
lowing formula for the scalar curvature Scal of Σ

Scal + n(n− 1)

= H
2 − |S|2g

=
V 2

1 + V 2|df |2
[
(Δf)2 − |Hess f |2

+2
V 2

1 + V 2|df |2
(
|Hess f(∇f, ·)|2 − Δf 〈Hess f, df ⊗ df〉

)

+
2

1 + V 2|df |2
〈
df,

dV
V

〉(
Δf − V 2 〈Hess f, df ⊗ df〉 +

〈
df,

dV
V

〉)

+2
〈
df,

dV
V

〉
Δf

− 2
1 + V 2|df |2 |df |2

∣∣∣∣dVV
∣∣∣∣
2

− 4
1 + V 2|df |2

〈
Hess f, df ⊗ dV

V

〉]
. (6)

In view of [22, Proof of Theorem 5] and [17, Definition 3.3], we compute

divb

[
1

1 + V 2|df |2
(
V divb e− V d trb e− e(∇V, ·) + (trb e)dV

)]

with e = V 2df ⊗ df . We have

V divb e− V d trb e− e(∇V, ·) + (trb e)dV

= 2V 2 〈df,dV 〉 df + V 3Δfdf + V 3〈Hess f, df ⊗ ·〉
− V d trb(V 2|df |2) − V 2 〈df,dV 〉 df + V 2|df |2dV

= V 3Δfdf − V 3〈Hess f, df ⊗ ·〉 − V 2|df |2dV + V 2 〈df,dV 〉 df
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and

divb
(
V divb e− V d trb e− e(∇V, ·) + (trb e)dV

)
= divb

(
V 3Δfdf − V 3〈Hess f, df ⊗ ·〉 − V 2|df |2dV + V 2 〈df,dV 〉 df)

= 3V 2Δf〈df,dV 〉 + V 3〈dΔf, df〉 + V 3(Δf)2

− 3V 2〈Hess f, df ⊗ dV 〉 − V 3〈divb Hess f, df〉 − V 3|Hess f |2
− 2V |df |2|dV |2 − 2V 2〈Hess f, df ⊗ dV 〉 − V 2|df |2ΔV
+ 2V 〈df,dV 〉2 + V 2〈Hess f,dV ⊗ df〉 + V 2〈df ⊗ df,HessV 〉
+ V 2〈df,dV 〉Δf

= V 3
[
(Δf)2 − |Hess f |2] − 4V 2〈Hess f, df ⊗ dV 〉 + 4V 2〈df,dV 〉Δf

+ V 3〈dΔf − divb Hess f, df〉 − (n− 1)V 3|df |2
+ 2V 〈df,dV 〉2 − 2V |df |2|dV |2

= V 3
[
(Δf)2 − |Hess f |2] − 4V 2〈Hess f, df ⊗ dV 〉 + 4V 2〈df,dV 〉Δf

+ 2V 〈df,dV 〉2 − 2V |df |2|dV |2.
Further,〈

d

(
1

1 + V 2|df |2
)
, V divb e− V d trb e− e(∇V, ·) + (trb e)dV

〉

=
〈−2V |df |2dV − 2V 2〈Hess f, df ⊗ ·〉

(1 + V 2|df |2)2 , V 3Δfdf − V 3〈Hess s, df ⊗ ·〉

− V 2|df |2dV + V 2 〈df,dV 〉 df
〉

=
−2

(1 + V 2|df |2)2
[
V 4Δf〈df,dV 〉 − 2|df |2V 4〈Hess f, df ⊗ dV 〉

− V 3|df |4|dV |2 + V 3|df |2〈df,dV 〉2
+ V 5Δf〈Hess f, df ⊗ df〉 − V 5|〈Hess f, df ⊗ ·〉|2

+ V 4〈df,dV 〉〈Hess f, df ⊗ df〉
]
,

so

divb

[
1

1 + V 2|df |2
(
V divb e− V d trb e− e(∇V, ·) + (trb e)dV

)]

=
1

1 + V 2|df |2
[
V 3

(
(Δf)2 − |Hess f |2) − 4V 2〈Hess f, df ⊗ dV 〉

+4V 2〈df,dV 〉Δf + 2V 〈df,dV 〉2 − 2V |df |2|dV |2]
− 2

(1 + V 2|df |2)2
[
V 4Δf〈df,dV 〉 − |df |2V 4〈Hess f, df ⊗ dV 〉

−V 3|df |4|dV |2 + V 3|df |2〈df,dV 〉2
+V 5Δf〈Hess f, df ⊗ df〉 − V 5|〈Hess f, df ⊗ ·〉|2
+V 4〈df,dV 〉〈Hess f, df ⊗ df〉]
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=
1

1 + V 2|df |2
[
V 3

(
(Δf)2 − |Hess f |2)

− 2
1 + V 2|df |2

(
V 5Δf〈Hess f, df ⊗ df〉 − V 5|〈Hess f, df ⊗ ·〉|2)

− 4V 2

1 + V 2|df |2 〈Hess f, df ⊗ dV 〉 +
2V

1 + V 2|df |2
(〈df,dV 〉2 − |df |2|dV |2)

− 2V 4

1 + V 2|df |2 〈df,dV 〉〈Hess f, df ⊗ df〉

+
(

2 +
1

1 + V 2|df |2
)

Δf |df |2〈df,dV 〉
]
.

Comparing this formula with Eq. (6) we get

V (Scal + n(n− 1))

= divb

[
1

1 + V 2|df |2
(
V divb e− V d trb e− e(∇V, ·) + (trb e)dV

)]
, (7)

where e = V 2df ⊗ df .

3.2. A Mass Formula

We now integrate Formula (7) from the previous section over an outer domain
under the additional condition that f is locally constant on the boundary.

Lemma 3.2. Let Ω ⊂ H
n be a relatively compact open subset of H

n with smooth
boundary. Let f : H

n\Ω → R be an asymptotically hyperbolic function which
is locally constant on ∂Ω and such that df = 0 at every point of ∂Ω. Then

HΦ(V ) =
∫

Hn\Ω

V [Scal + n(n− 1)]√
1 + V 2|df |2 dμg +

∫
∂Ω

HV
V 2|df |2

1 + V 2|df |2 dμb. (8)

Here H is the mean curvature of ∂Ω with respect to the metric b.

Proof. Let ν denote the outgoing unit normal to ∂Ω and let νr = ∂r be the
normal to the spheres of constant r. From Formula (7), we get∫

Hn\Ω

V (Scal + n(n− 1)) dμb

= lim
r→∞

∫
Br(0)\Ω

V (Scal + n(n− 1)) dμb

= lim
r→∞

∫
Sr(0)

1
1 + V 2|df |2

(
V divb e− V d trb e− e(∇V, ·) + (trb e)dV

)
(νr)dμb

−
∫

∂Ω

1
1 + V 2|df |2

(
V divb e− V d trb e− e(∇V, ·) + (trb e)dV

)
(ν)dμb
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= HΦ(V )

−
∫

∂Ω

1
1 + V 2|df |2

(
V divb e− V d trb e− e(∇V, ·) + (trb e)dV

)
(ν)dμb.

Here we used that e = V 2df ⊗ df satisfies (3) to replace the factor 1
1+V 2|df |2

by 1 in the limit of the outer boundary integral. We next compute the inte-
gral over ∂Ω. We will do the calculations assuming that ν = ∇f

|∇f | , the case

ν = − ∇f
|∇f | is similar. The last two terms are

−e(∇V, ν) + (trb e)dV (ν) = −V 2〈df,dV 〉〈df, ν〉 + V 2|df |2〈dV, ν〉 = 0,

and the first two give

V divb e(ν) − V d trb e(ν)

= 2V 2〈df,dV 〉df(ν) + V 3(Δf)df(ν) + V 3 Hess f(∇f, ν)
− 2V 2|df |2dV (ν) − 2V 3 Hess f(∇f, ν)

= V 3(Δf)df(ν) − V 3 Hess f(∇f, ν).
We next use the following formula for the Laplacian of f on ∂Ω,

Δf = Δ∂Ωf + Hess f(ν, ν) +Hdf(ν).

Since f is locally constant on ∂Ω we obtain

V divb e(ν) − V d trb e(ν) = V 3Hdf(ν)2 = V 3H|df |2.
Hence,∫

Hn\Ω

V (Scal + n(n− 1)) dμb = HΦ(V ) −
∫

∂Ω

V H
V 2|df |2

1 + V 2|df |2 dμb.

It then suffices to note that dμg =
√

1 + V 2|df |2dμb to prove Formula (8). �

4. Penrose Type Inequalities

4.1. Horizon Boundary

From now on, we assume that |df | → ∞ at ∂Ω, it then follows that the bound-
ary is a minimal hypersurface, or a horizon. This can be seen by taking the
double over the boundary of the graph of f . The double is then a C1 Rie-
mannian manifold for which the original boundary is the fixed point set of a
reflection, and thus the boundary is minimal.

From Lemma 3.2, we conclude the following proposition.

Proposition 4.1. Let Ω ⊂ H
n be a relatively compact open subset of H

n with
smooth boundary. Let f : H

n\Ω → R be an asymptotically hyperbolic function
which is locally constant on ∂Ω and such that |df | → ∞ at ∂Ω. Further assume
that Scal ≥ −n(n− 1). Then

HΦ(V ) ≥
∫

∂Ω

V H dμb. (9)
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Applying the Hoffman–Spruck inequality or the Minkowski formula we
get estimates of the boundary term in (9) and conclude the following Theorem.

Theorem 4.2. Let Ω ⊂ H
n be a relatively compact open subset of H

n with
smooth boundary. Assume that Ω contains an inner ball centered at the origin
of radius r0. Let f : H

n\Ω → R be an asymptotically hyperbolic function which
is locally constant on ∂Ω and such that |df | → ∞ at ∂Ω. Further assume that
Scal ≥ −n(n− 1) and that ∂Ω has non-negative mean curvature H ≥ 0. Then

HΦ(V ) ≥ n− 2
2n−1n

n
n−1

V (r0)ωn−1

( |∂Ω|
ωn−1

)n−2
n−1

(10)

and

HΦ(V ) ≥ (n− 1)V (r0)|∂Ω|. (11)

Proof. The Hoffman–Spruck inequality, [18,26,30], applied to a compact
hypersurface M of hyperbolic space H

n tells us that

⎛
⎝∫

M

h
n−1
n−2 dμb

⎞
⎠

n−2
n−1

≤ Cn

∫
M

(|dh| + h|H|) dμb (12)

for any smooth non-negative function h on M . Here

Cn = 2n−1 n

n− 2

(
n

ωn−1

) 1
n−1

.

Setting h ≡ 1 and M = ∂Ω in (12) yields (10).
The estimate (11) follows from the Minkowski formula in hyperbolic

space, see [24, Equation (4’)] with the point a = (1, 0, . . . , 0) (note that in the
cited article the mean curvature is defined as an average and not a sum). �

Neither of the inequalities (10) and (11) is optimal, so we do not get
a characterization of the case of equality in the corresponding Penrose type
inequalities.

4.2. Changing to the Euclidean Metric

We will now find an estimate of the boundary term in (9) by changing to the
Euclidean metric b̃ := b + dV ⊗ dV . In the hyperboloid model of hyperbolic
space, this transformation can be viewed as the vertical projection of H

n onto
R

n ⊂ R
n,1.

Lemma 4.3. Let ν be the outgoing unit normal to ∂Ω. The second fundamental
form of ∂Ω with respect to the metric b̃ is given by

S̃ij =
V√

V 2 − 〈dV, ν〉2
(
Sij − ∇kV∇kψ

V
bij

)
,
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where ψ is a defining function for ∂Ω such that ∇ψ = ν. Further, we have∫
∂Ω

HV dμ =
∫

∂Ω

H̃ dμ̃+ (n− 1)
∫

∂Ω

〈dV, ν〉dμ

+
∫

∂Ω

1
1 + |∇TV |2

(
S(∇TV,∇TV )V − |∇TV |2〈dV, ν〉) dμ, (13)

where ∇TV is the gradient of V for the metric induced by b on ∂Ω.

Proof. The second fundamental form of ∂Ω with respect to the metric b̃ is
given by

S̃ij =
1

|dψ|b̃
∇̃2

i,jψ.

We compute

∇̃2
i,jψ − ∇2

i,jψ =
(
Γk

ij − Γ̃k
ij

)
∂kψ.

At the center point p0 of normal coordinates for the metric b, the difference
between the two Christoffel symbols is given by

Γ̃k
ij − Γk

ij

=
1
2
b̃kl

(
∇ib̃lj + ∇j b̃il − ∇lb̃ij

)
=

1
2

(
bkl − ∇kV∇lV

1 + |dV |2
)

[∇i(∇lV∇jV ) + ∇j(∇iV∇lV ) − ∇l(∇iV∇jV )]

=
(
bkl − ∇kV∇lV

1 + |dV |2
)

∇lV∇2
i,jV

=
∇kV

1 + |dV |2 ∇2
i,jV

=
∇kV

V
bij ,

where we used that Hessb V = V b and 1+ |dV |2 = V 2 in the last line. Further,
we have

|dψ|b̃ =

√
1 − 〈dV, ν〉2

1 + |dV |2 =
1
V

√
V 2 − 〈dV, ν〉2.

Hence,

S̃ij =
V√

V 2 − 〈dV, ν〉2
(

∇2
i,jψ − ∇kV∇kψ

V
bij

)

=
V√

V 2 − 〈dV, ν〉2
(
Sij − ∇kV∇kψ

V
bij

)
.

We take the trace of this formula with respect to the metric b̃. For this, we
select an orthogonal basis (e1, . . . , en−1) of Tp0∂Ω for the metric b such that
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ek ∈ ker dV for k ≥ 2. An orthogonal basis for the metric b̃ is then given by

ẽ1 =
1√

1 + (∇e1V )2
e1,

ẽk = ek for k ≥ 2.

Thus, we find

H̃ =
n−1∑
k=1

S̃(ẽk, ẽk)

=
n−1∑
k=1

S̃(ek, ek) −
(

1 − 1
1 + (∇e1V )2

)
S̃(e1, e1)

=
V√

V 2 − 〈dV, ν〉2
[(
H − (n− 1)

〈dV,dψ〉
V

)

− (∇e1V )2

1 + (∇e1V )2

(
S(e1, e1) − 〈dV,dψ〉

V

)]

=
1√

V 2 − 〈dV, ν〉2
[

(HV − (n− 1)〈dV,dψ〉)

− (∇e1V )2

1 + (∇e1V )2
(S(e1, e1)V − 〈dV,dψ〉)

]
.

Next we note that (∇e1V )2 = |dV |2 − 〈dV, ν〉2 is the norm of dV restricted to
the tangent space of ∂Ω. Hence the measure dμ̃ induced on ∂Ω by b̃ is given
by

dμ̃ =
√

1 + |dV |2 − 〈dV, ν〉2 dμ =
√
V 2 − 〈dV, ν〉2 dμ

where dμ is the measure induced on ∂Ω by b. Finally, we conclude∫
∂Ω

H̃ dμ̃ =
∫

∂Ω

(HV − (n− 1)〈dV,dψ〉) dμ

−
∫

∂Ω

|∇e1V |2
1 + |∇e1V |2 (S(e1, e1)V − 〈dV,dψ〉) dμ.

�

The assumption S̃ > 0 is equivalent to

S >
∇kV∇kψ

V
b,

where this inequality is to be understood as an inequality between quadratic
forms on T∂Ω. This notion of convexity is not invariant under the action of
isometries of the hyperbolic space. Since |dV | < V , it is natural to replace this
assumption by

S ≥ b.
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This new assumption is equivalent to the definition of h-convexity (see for
example [3]). Assuming that Ω is h-convex, we get the following inequality
from (13): ∫

∂Ω

HV dμ ≥
∫

∂Ω

H̃ dμ̃+ (n− 1)
∫

∂Ω

〈dV, ν〉dμ. (14)

We estimate the first term of the right-hand side by the Aleksandrov–Fenchel
inequality, see [16, Theorem 2], [22, Lemma 12], [28] or [8].

∫
∂Ω

H̃ dμ̃ ≥ (n− 1)ωn−1

( |∂Ω|b̃
ωn−1

)n−2
n−1

≥ (n− 1)ωn−1

( |∂Ω|b
ωn−1

)n−2
n−1

.

Equality in the first inequality here implies that ∂Ω is a round sphere in the
Euclidean metric b̃, equality in the second inequality tells us that it must be
centered at the origin.

To estimate the second term of (14), we rely on [3, Theorem 2]. Assuming
that the origin is the center of an inner ball of Ω and denoting by l the distance
from the origin, we have, for any point p ∈ ∂Ω,

〈ν,∇l〉 ≥ tanh2 l
2 (p) + τ

tanh l
2 (p)(1 + τ)

,

where τ = tanh r0
2 and r0 is the radius of an inner ball of Ω. Hence, setting

t = tanh l
2 (p), we have∫

∂Ω

〈dV, ν〉dμ =
∫

∂Ω

sinh l〈∇l, ν〉dμ

≥
∫

∂Ω

sinh l
t2 + τ

t(1 + τ)
dμ

=
∫

∂Ω

2t
1 − t2

t2 + τ

t(1 + τ)
dμ

=
2

1 + τ

∫
∂Ω

t2 + τ

1 − t2
dμ

≥ 2
1 + τ

τ2 + τ

1 − τ2
|∂Ω|b

≥ sinh r0|∂Ω|b.
It is also easy to check that the equality∫

∂Ω

〈dV, ν〉dμ = sinh r0|∂Ω|b

holds if and only if Ω is the ball of radius r0 centered at the origin.
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Combining the last two estimates, we get the following inequality:∫
∂Ω

HV dμ ≥ (n− 1)ωn−1

[( |∂Ω|b
ωn−1

)n−2
n−1

+ sinh r0
|∂Ω|b
ωn−1

]
. (15)

From Proposition 4.1 and Inequality (15), we immediately get the following
theorem.

Theorem 4.4. Let Ω be a non-empty h-convex subset of H
n admitting an inner

ball centered at the origin of radius r0. Let f : H
n\Ω → R be an asymptotically

hyperbolic function such that f is locally constant on ∂Ω, |df | → ∞ at ∂Ω.
Assume that the scalar curvature Scal of its graph is greater than or equal to
−n(n− 1). Then

HΦ(V ) ≥ (n− 1)ωn−1

[( |∂Ω|
ωn−1

)n−2
n−1

+ sinh r0
|∂Ω|
ωn−1

]
. (16)

Moreover, equality holds in (16) if and only if Scal = −n(n − 1) and ∂Ω is
round sphere centered at the origin.

We make a couple of remarks concerning this theorem.

Remark 4.5. 1. If Ω is a ball of radius r then r0 = r and

|∂Ω| = ωn−1 sinhn−1 r0,

so (16) coincides with the standard Penrose inequality (1) in this case.
2. The second term of (14) can be written as follows,∫

∂Ω

〈dV, ν〉dμ =
∫
Ω

ΔV dμ = n

∫
Ω

V dμ.

Thus, this term may be thought of as a volume integral (compare with
[29]). Let Vp := cosh db(p, ·). Changing the origin p of hyperbolic space
leads to considering the function

p �→
∫
Ω

Vp dμ.

It is fairly straightforward to see that this function is proper and strictly
convex. So there exists a unique point p0 such that, choosing p0 as the
origin, this integral is minimal. Obviously, p0 ∈ Ω. From symmetry con-
siderations this point can be seen to coincide with the center of an inner
ball for many Ω’s.

3. It follows from the previous remark that it is possible to prove a Pen-
rose inequality when Ω has several (h-convex) components assuming for
example that if one component contains the origin then it is the center of
one of its inner balls. For each of the other components, note that trans-
lating them using an isometry of the hyperbolic space so that the origin
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becomes the center of one of its inner balls makes the integral
∫
HV dμ

smaller. Hence we get the following inequality:

HΦ(V ) ≥ (n− 1)ωn−1

∑
i

[( |∂Ωi|
ωn−1

)n−2
n−1

+ sinh ri
|∂Ωi|
ωn−1

]
,

where Ωi are the connected components of Ω and ri is the inner radius
of Ωi.

5. Rigidity

In this section we will prove the rigidity statement concluding Theorem 2.1.
The scheme of the proof we give differs very little from [19]. As a first step,
we prove the following proposition which is similar to [19, Theorem 3].

Proposition 5.1. Let f : H
n\Ω → R be a function satisfying the assumptions

of Theorem 2.1 and let Σ be its graph. Assume further that Ω is convex. Then,
the mean curvature H of Σ does not change sign.

The proof of this proposition requires several preliminary results. The
main observation is the fact that the assumption Scal ≥ −n(n− 1) is equiva-
lent to

∣∣S∣∣2 ≤ H
2
. This follows at once from the Gauss equation. In particular,

any point p ∈ Σ such that H(p) = 0 has S(p) = 0. We denote by Σ0 the set of
such points,

Σ0 := {p ∈ int(Σ) | H(p) = 0},
where int(Σ) = Σ\(∂Ω × R).

Lemma 5.2. Let Σ′
0 be a connected component of Σ0. Then Σ′

0 lies in a codi-
mension 1 hyperbolic subspace tangent to Σ at every point of Σ′

0.

Proof. Let V(0), . . . , V(n) be as in Sect. 2.1 and let ν be the unit normal vector
field of Σ in H

n+1. For any vector X ∈ TΣ at a point of Σ′
0, we have

∇X(dV(i)(ν)) = ∇2

X,νV(i) + dV(i)(∇Xν)

= V(i)b(X, ν) + dV(i)(S(X)) = 0,

where S(X) denotes the Weingarten operator which is zero by assumption.
From [25, Theorem 4.4], we conclude that dV(i)(ν) is constant on Σ′

0. If we
consider H

n+1 as the unit hyperboloid in Minkowski space R
n+1,1, then the

V(i) are the coordinate functions of R
n+1,1 restricted to H

n+1 so ν is a con-
stant vector in R

n+1,1. Further, ν is tangent to H
n+1 so it is orthogonal to

the position vector in R
n+1,1. This means that ν is everywhere orthogonal to

a linear subspace W ⊂ R
n+1,1. We conclude that Σ′

0 ⊂ W ∩ H
n+1 � H

n. �

The next result is taken from [20, Proposition 2.1].
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Lemma 5.3 (A matrix inequality). Let A = (aij) be a symmetric n×n matrix.
Set

σ1(A) :=
n∑

i=1

aii,

σ1(A|k) :=

(
n∑

i=1

aii

)
− akk,

σ2(A) :=
∑

1≤i<j≤n

(
aiiajj − a2

ij

)
.

Then we have

σ1(A)σ1(A|k) = σ2(A) +
n

2(n− 1)
σ1(A|k)2

+
∑

1≤i<j≤n

a2
ij +

1
2(n− 1)

∑
1≤i<j≤n
i	=k,j 	=k

(aii − ajj)2

for each 1 ≤ k ≤ n. In particular,

σ1(A)σ1(A|k) ≥ σ2(A) +
n

2(n− 1)
σ1(A|k)2,

where equality holds if and only if A is diagonal and all aii are equal for
i = 1, . . . , n, i = k.

Proposition 5.4. Let Σ and s0 be given. Assume that s0 is a regular value for
f on Σ. Set Σ(s0) = Σ ∩ f−1(s0). Let ν be the unit normal vector field of Σ
in H

n+1, let η be the unit normal vector field to Σ(s0) in H
n × {s0} and let

H(s0) be the mean curvature of Σ(s0) in H
n × {s0} computed with respect to

η. Then

〈ν, η〉HH(s0) ≥ Scal + n(n− 1)
2

+
n

2(n− 1)
〈ν, η〉2H(s0)2.

Equality holds at a point in Σ(s0) if and only if
• Σ(s0) ⊂ H

n × {s0} is umbilic with principal curvature κ, and
• 〈ν, η〉κ is a principal curvature of Σ with multiplicity at least (n− 1).

Proof. Let p be a point in Σ(s0). We compute the second fundamental form
of Σ(s0) in H

n+1 at p in two different ways. Let e1 ∈ TpΣ be a unit vector
field orthogonal to TpΣ(s0). We denote by S0 the second fundamental form of
Σ(s0) in H

n+1. This is a symmetric bilinear form on TpΣ(s0) taking values in
the normal bundle NpΣ(s0) ⊂ TpH

n+1. Further, we denote by S1 the second
fundamental form of Σ(s0) in Σ computed with respect to the vector e1. Since
H

n × {s0} is totally geodesic in H
n+1, we have

S0 = S0η.

Similarly,

S0 = Sν + S1e1.
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Hence, taking the scalar product of the last two equalities with ν, we get

〈η, ν〉S0 = S.

Let {e2, . . . , en} be an orthonormal basis of TΣ(s0), then {e1, . . . , en} is an
orthonormal basis of TpΣ. Set

Sij := S(ei, ej).

Then, using the notation of Lemma 5.3, we have

σ1(S) = H,

σ1(S|1) =
n∑

i=2

S(ei, ei)

= 〈η, ν〉
n∑

i=2

S0(ei, ei)

= 〈η, ν〉H(s0),

σ2(S) =
1
2

(
H

2 − ∣∣S∣∣2)
=

Scal + n(n− 1)
2

.

Proposition 5.4 now follows from Lemma 5.3. �

The proof of Proposition 5.1 will also require the following two lemmas,
analogous to [19, Lemma 3.3 and Lemma 3.4].

Lemma 5.5. Let W be an open subset of H
n, possibly unbounded. Let p ∈ ∂W ,

and let B(p) be a geodesic open ball in H
n centered at p. Consider f ∈ C2(W ∩

B(p)) ∩ C1(W ∩ B(p)) and let H denote the mean curvature of its graph. If
f = C and |df | = 0 on ∂W ∩ B(p), where C is a constant, and H ≥ 0 on
W ∩B(p) then either f ≡ C in W ∩B(p), or

{x ∈ W ∩B(p) | f(x) > C} = ∅.
Proof. If f ≡ C then there is nothing to prove. Suppose, therefore, that f ≡ C
and assume to get a contradiction that f(x) ≤ C everywhere in W ∩B(p).

We first note that in fact f < C everywhere in W ∩ B(p). Indeed, let
q ∈ W ∩B(p) be such that f(q) = C. Then q is an interior maximum point of
f in W ∩B(p), whereas

H =
V

1 + V 2 |df |2
(
bij − V 2∇if∇jf

1 + V 2|df |2
)

×
[
∇2

i,jf +
∇if∇jV + ∇iV∇jf

V
+ V 〈df,dV 〉∇if∇jf

]
≥ 0

in W ∩ B(p), see Sect. 3.1. By the Hopf strong maximum principle it follows
that f ≡ C in W ∩B(p), which is a contradiction.

Now suppose that B(p) = Br(p) is the ball of radius r around p. Fix
a point q ∈ Br/2(p) and define r′ := sup{r | Br(q) ⊂ W}. It is clear that
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Br′(q) ⊂ W ∩ B(p) and Br′(q) ∩ ∂W = ∅. Consequently, there is a point
s ∈ ∂W such that the interior sphere condition holds at s. Then by the Hopf
boundary lemma [15, Lemma 3.4], we have |df | > 0 at s, which is a contradic-
tion. We conclude that f > C holds somewhere in W ∩B(p). �

Definition 5.6. Let W be a bounded subset of H
n and let W be its closure.

A point p ∈ ∂W is called convex if there is a geodesic (n − 1)-sphere S in
H

n passing through p such that W\{p} is contained in the open geodesic ball
enclosed by S.

Note that every bounded set in H
n\Ω has at least one convex point. This

follows from the assumption that Ω is convex. We only sketch the proof of this
fact leaving the details to the reader. Choose a point p ∈ W and let q be the
projection of p onto ∂Ω. Then, the hyperbolic subspace passing through q and
orthogonal to the geodesic joining p to q cuts H

n in two half-spaces, a “left”
one containing Ω and a “right” one containing p. Then if O′ is located very
far on the left side of the geodesic (qp), it is clear that the smallest sphere S
centered at O′ containing Ω ∪W has a non-trivial intersection with ∂W . Any
point in S ∩ ∂W is then a convex point.

Lemma 5.7. Let W be an open bounded subset of H
n and let p ∈ ∂W be a

convex point. Suppose that f ∈ Cn(W ∩ B(p)) ∩ C1(W ∩ B(p)) is such that
f = C and |df | = 0 on ∂W ∩B(p) for some constant C. If the graph of f has
scalar curvature Scal ≥ −n(n − 1), then its mean curvature H must change
sign in W ∩B(p), unless f ≡ C in W ∩B(p).

Proof. Suppose on the contrary that H does not change sign and f ≡ 0. By
possibly reversing sign and adding a constant to f we may assume that H ≥ 0
and that C = 0.

Let Sr be a geodesic (n− 1)-sphere of radius r as in Definition 5.6, cen-
tered at a point O′ ∈ H

n, and such that Sr ∩ W = {p}. Let μ be a positive
number strictly less than the distance from W\B(p) to Sr. Then for every
sphere Sr′ of radius r′ ∈ (r − μ, r) and centered at O′ we obviously have
Sr′ ∩W ⊂ B(p). Let f0 be a continuous function on B(p) such that f0 = f on
W ∩B(p) and f0 = 0 on B(p)\W . Define the function

g(r′) := sup
q∈Sr′∩B(p)

f0(q)

for r′ ∈ [r−μ, r]. It is easy to check that g is continuous and satisfies g(r) = 0.
Next, we observe that by Lemma 5.5 the ball Bμ(p) contains a point q such
that f0(q) = ε > 0. By the Morse-Sard theorem [27, Theorem 7.2] we may
assume that each connected component of the corresponding level set

Σ(ε) = {x ∈ W ∩B(p) | f0(x) = ε}
of f0 inside W ∩B(p) is a Cn hypersurface. It is clear that g([r−μ, r]) = [0, ε′],
where ε ≤ ε′, and hence
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r0 := max
r′∈[r−μ,r]

{r′ | g(r′) = ε}

is well-defined. Then Sr0 ∩ Σε = ∅, whereas Sr′ ∩ Σε = ∅ for r0 < r′ ≤ r, thus
Sr0 is tangent to Σ(ε) at some interior point q. Let U be the open subset of
W ∩B(p) bounded by Sr0 and ∂W ,

U = {x ∈ W ∩B(p)|d(O′, x) > r0},
then q ∈ ∂U . We have f(q) = ε > f(x) for any x ∈ U,H ≥ 0 holds in U , and
the interior sphere condition is obviously satisfied at q ∈ Sr0 . Since η = − ∇f

|df |
is orthogonal to ∂U at q, it is easy to conclude by the Hopf boundary lemma
that η is the inward pointing normal to ∂U . Hence η is the outward pointing
normal for both Sr0 and Σ(ε) at q. By the comparison principle, the mean
curvature H(ε) of Σ(ε) satisfies H(ε) > 0 at q. On the other hand, since the
scalar curvature of the graph of f is greater than or equal to −n(n − 1) by
Proposition 5.4 at q we have

〈ν, η〉HH(ε) ≥ 0.

Here 〈ν, η〉 < 0 since ν = (∇f,−V −2)√
V −2+|df |2 ,H ≥ 0, and if H = 0 then H(ε) = 0.

This means that H(ε) ≤ 0 at q, which is a contradiction. Hence H must change
sign in W ∩B(p). �

Proof of Proposition 5.1. To prove that H does not change sign, we argue
by contradiction assuming that both the sets {H > 0} and {H < 0} are
nonempty. Our first observation is that each connected component of these
two sets is unbounded. Indeed, let Σ+ be a bounded connected component of
{H > 0} and let ∂0Σ+ be its outer boundary component. By Lemma 5.2, we
know that ∂0Σ+ lies in an n-dimensional hyperbolic subspace Π. We view H

n+1

as Π × R with the metric b+ V 2ds̃⊗ ds̃, and we let W be a subset of {s̃ = 0}
bounded by ∂0Σ+. Then in some neighborhood of ∂W we can write Σ+ as the
graph of a function u such that u = 0 and |du| = 0 on ∂W . Now, considering
a sufficiently small ball B(p) around p ∈ ∂W , we immediately arrive at the
contradiction, since H must change sign in W ∩B(p) by Lemma 5.7.

We have just seen that if Σ+ is a connected component of {H > 0} then
it must be unbounded, and the same is clearly true for a connected compo-
nent Σ− of {H < 0}. Moreover, it follows by Proposition A.1 in Appendix
A that one of the connected components of its boundary ∂Σ+ is unbounded,
and the same holds for ∂Σ−. Let us denote such an unbounded component by
∂0Σ+. By Lemma 5.2 we know that ∂0Σ+ lies in an n-dimensional hyperbolic
subspace Π tangent to Σ at every point of ∂0Σ+. Since Σ is asymptotically
hyperbolic, f tends to a constant value C at infinity, so the fact that ∂0Σ+ is
unbounded forces Π to coincide with the plane {s = C}.

The component Σ+ is the graph of f over some open subset W of H
n.

Moreover, there is an unbounded component ∂0W of the boundary ∂W such
that f = C and |df | = 0 on ∂0W . By Lemma 5.5, there exists q ∈ W such
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that f(q) = C + ε for some ε > 0. By the Morse–Sard theorem, we know that
there is an ε such that C + ε is a regular value of f , so that the corresponding
level set f−1(C + ε) = {p | f(p) = C + ε} is a Cn hypersurface with |df | > 0
at each point. Suppose that U is a connected component of {H ≥ 0} in H

n

which contains W . Then, using Proposition A.1 and the fact that f tends to C
at infinity, it is easy to check that if some connected component of f−1(C + ε)
intersects U , then it is contained in U . It is also obvious that f−1(C + ε) ∩ U
is nonempty and bounded, so we can find a point p in this set which is at
the largest distance d from the origin O of H

n. Let Σ(C + ε) be the connected
component of f−1(C+ε) which contains p. Then, the geodesic sphere of radius
d centered at O touches Σ(C + ε) at p, and there are no points x such that
f(x) ≥ C + ε in {r > d} ∩ U . Arguing as in the proof of Lemma 5.7, we can
show that η := − ∇f

|df | = ∂r at p, that is, ν is an outgoing normal to Σ(C + ε).
The mean curvature H(C + ε) is then positive at p, whereas Proposition 5.4
tells us that H(C + ε) ≤ 0 at p, which is a contradiction. �

Let f be as in Theorem 2.1. We recall the expressions for g, S,H, and
Scal obtained in Sect. 2.2, and rewrite them as functions of the arguments Df
and D2f , where Df and D2f denote the Euclidean gradient and the Euclidean
Hessian respectively:

gij(Df) = bij − V 2f if j

1 + V 2|df |2 ,

Sij(Df,D2f) =
V√

1 + V 2|df |2
[
fij − Γl

ijfl +
fiVj + Vifj

V
+ V 〈df,dV 〉fifj

]
,

S
i

j(Df,D
2f) =

V√
1 + V 2|df |2

(
bik − V 2f ifk

1 + V 2|df |2
)

(
fkj − Γl

kjfl +
fkVj + Vkfj

V
+ V 〈df,dV 〉fkfj

)
,

H(Df,D2f) =
V√

1 + V 2|df |2
(
bij − V 2f if j

1 + V 2|df |2
)

(
fij − Γl

ijfl +
fiVj + Vifj

V
+ V 〈df,dV 〉fifj

)
,

Scal(Df,D2f) = −n(n− 1) +H
2
(Df,D2f) − S

j

i (Df,D
2f)S

i

j(Df,D
2f).

Following [19, Section 4], we will now prove maximum principles for the scalar
curvature equation Scal(Df,D2f) + n(n− 1) = 0. The lemma below concerns
ellipticity of this equation.

Lemma 5.8.

∂Scal
∂fij

=
2V√

1 + V 2|df |2
(
Hgij − S

ij
)
.
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Proof. A straightforward computation gives

∂Scal
∂fij

= 2H
∂H

∂fij
− 2S

k

l

∂S
l

k

∂fij

=
2V√

1 + V 2|df |2
(
Hgij − S

k

l g
lm ∂fmk

∂fij

)

=
2V√

1 + V 2|df |2
(
Hgij − S

ij
)
.

�

Proposition 5.9. Let f be as in Theorem 2.1. Suppose that the scalar curvature
Scal and the mean curvature H of its graph satisfy Scal ≥ −n(n − 1) and
H ≥ 0. Then, the matrix

(
Hgij − S

ij
)

is positive semi-definite everywhere in

H
n\Ω.

Proof. We work at a point p ∈ H
n\Ω. Since Hgij − S

ij
=

∑
k(Hδj

k − S
j

k)gik,
where gik is positive definite, we only need to show that (Hδj

k −S
j

k) is positive
semi-definite. After possibly rotating the coordinates, we may assume that
S = (S

j

k) = diag(λ1, . . . , λn). Then, in the notation of Lemma 5.3, we have(
Hδj

k − S
j

k

)
= diag

(
σ1(S|1), . . . , σ1(S|n)

)
.

By Lemma 5.3 it follows that

σ1(S)σ1(S|k) ≥ σ2(S) +
n

2(n− 1)
(
σ1(S|k))2

,

for k = 1, . . . , n. If σ1(S) = H > 0, since σ2(S) = 1
2 (Scal + n(n − 1)) ≥ 0, it

is obvious that σ1(S|k) ≥ 0 for every k = 1, . . . , n. Otherwise if H = 0 then
S = 0 and hence σ1(S|k) = 0. This proves that σ1(S|k) ≥ 0. �

In the next two propositions, we prove versions of the maximum principle
for the scalar curvature equation, the first one for points in the interior and
the second one for points on the boundary.

Proposition 5.10. Let fi : H
n\Ω → R, i = 1, 2, be two functions satisfying

the assumptions of Theorem 2.1. Suppose that f1 ≥ f2 in H
n\Ω, and that

fi, i = 1, 2, satisfy the inequalities

Scal(Df1,D2f1) = −n(n− 1), H(Df1,D2f1) ≥ 0,

Scal(Df2,D2f2) ≥ −n(n− 1), H(Df2,D2f2) ≥ 0

in H
n\Ω. If the matrix

(
Hgij − S

ij
)

is positive definite in H
n\Ω for either

f1 or f2, and if f1 = f2 at some point of H
n\Ω, then f1 ≡ f2 in H

n\Ω.
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Proof. We consider the scalar curvature operator as Scal(p, ξ) ∈ C1(Rn,Rn ×
R

n). Then

0 ≥ Scal(Df1,D2f1) − Scal(Df2,D2f2)

= Scal(Df1,D2f1) − Scal(Df1,D2f2)+Scal(Df1,D2f2)−Scal(Df2,D2f2)

=
∑
i,j

aij((f1)ij − (f2)ij) +
∑

i

bi((f1)i − (f2)i),

where

bi =

1∫
0

∂Scal
∂pi

(tDf1 + (1 − t)Df2,D2f2) dt,

and

aij =

1∫
0

∂Scal
∂ξij

(Df1, tD2f1 + (1 − t)D2f2) dt.

Note that by Lemma 5.8 we have

aij =

1∫
0

∂Scal
∂ξij

(Df1, tD2f1 + (1 − t)D2f2) dt

=
2V√

1 + V 2|df |2
1∫

0

(
Hgij − S

j

kg
ik
)

(Df1, tD2f1 + (1 − t)D2f2) dt

=
2V√

1 + V 2|df |2

⎡
⎣ 1∫

0

t
(
H(Df1,D2f1)gij(Df1)

−Sj

k(Df1,D2f1)gik(Df1)
)

dt

+

1∫
0

(1 − t)
(
H(Df1,D2f2)gij(Df1) − S

j

k(Df1,D2f2)gik(Df1)
)

dt

⎤
⎦

=
V√

1 + V 2|df |2
[(
H(Df1,D2f1)gij(Df1) − S

j

k(Df1,D2f1)gik(Df1)
)

+
(
H(Df1,D2f2)gij(Df1) − S

j

k(Df1,D2f2)gik(Df1)
)]
.

If f1 = f2 at p ∈ H
n\Ω, then p is a local minimum point of f1 − f2, hence

Df1 = Df2 at p. Consequently, aij is positive definite at p. By continuity,
aij is positive definite in some open neighborhood U of p in H

n\Ω. Then
f1 ≡ f2 in U by the Hopf strong maximum principle. It follows that the set
{p ∈ H

n\Ω | f1(p) = f2(p)} is both open and closed in H
n\Ω. Since H

n\Ω is
connected, we conclude that f1 ≡ f2 everywhere H

n\Ω. �
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Proposition 5.11. Let fi : H
n\Ω → R, i = 1, 2, be functions satisfying the

assumptions of Theorem 2.1. Suppose that f1 ≥ f2 ≥ C in H
n\Ω, and that

fi, i = 1, 2, satisfy the inequalities

Scal(Df1,D2f1) = −n(n− 1), H(Df1,D2f1) ≥ 0,

Scal(Df2,D2f2) ≥ −n(n− 1), H(Df2,D2f2) ≥ 0

in H
n\Ω. If the matrix

(
Hgij − S

ij
)

is positive definite in H
n\Ω for either

f1 or f2, and if f1 = f2 = C on ∂Ω, then f1 ≡ f2 in H
n\Ω.

Proof. Let Σi denote the graph of fi, i = 1, 2. Take p ∈ ∂Σ1 = ∂Σ2 ⊂ {s = C},
and let ν(p) be the common normal to Σi, i = 1, 2, at this boundary point.
Suppose that Π is the hyperbolic subspace orthogonal to ν(p), then Π is iso-
metric to H

n. Let Br(p) be a geodesic ball of radius r in Π centered at p, and
let U = Br(p) ∩ {s > C}. If r is sufficiently small, we can write Σi near p as
the graph of f̃i : U → R, i = 1, 2, in U×R with the metric b+V 2ds̃⊗ds̃, where
b is the hyperbolic metric on U , and s̃ is the coordinate along the R-factor. It
is obvious that ∇f̃i = 0 at p for i = 1, 2. We also have f̃1 ≥ f̃2 in U , and

Scal(Df̃1,D2f̃1) = −n(n− 1), H(Df̃1,D2f̃1) ≥ 0,

Scal(Df̃2,D2f̃2) ≥ −n(n− 1), H(Df̃2,D2f̃2) ≥ 0.

Moreover, either f̃1 or f̃2 has positive definite matrix (Hgij−Sij
) at p. Arguing

as in the proof of Proposition 5.10, we see that (f̃1 − f̃2) satisfies

0 ≥
∑
i,j

aij((f̃1)ij − (f̃2)ij) +
∑

i

bi((f̃1)i − (f̃2)i),

where we may assume (after decreasing r) that aij is positive definite on U .
If we assume that f̃1 > f̃2 in U then by the Hopf boundary lemma we have
∇(f̃1 − f̃2)(p) = 0, a contradiction. Consequently, f̃1(q) = f̃2(q) at some inte-
rior point q ∈ H

n\Ω. Application of Proposition 5.10 completes the proof. �
We recall that ρ := sinh(r). The hyperbolic metric b takes the form

b =
(dρ)2

1 + ρ2
+ ρ2σ,

and the function V = cosh(r) =
√

1 + ρ2.

Proposition 5.12. The second fundamental form of the graph given by (5) is
given by

S = −n− 2
2

√
2mρ− n

2

1 + ρ2 − 2m
ρn−2

dρ2 +
√

2mρ− n
2 +2σ.

In particular, the principal curvatures of the graph Σ are −n−2
2

√
2mρ− n

2 with
multiplicity 1 and

√
2mρ− n

2 with multiplicity n− 1. The mean curvature H is
given by

H =
n

2

√
2mρ− n

2 .
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In particular, the quadratic form

Hg − S = (n− 1)
√

2mρ− n
2

1 + ρ2 − 2m
ρn−2

dρ2 +
n− 2

2

√
2mρ− n

2 +2σ

is positive definite.

Proof. Straightforward calculations. �

We are now ready to prove the result on rigidity for the case of equality
in the last inequality of Theorem 2.1. From Theorem 4.4, we know that in this
case Scal = −n(n− 1) and ∂Ω ⊂ H

n is a round sphere centered at the origin.
The result thus follows from the next theorem.

Theorem 5.13. Let f : H
n\Ω → R be an asymptotically hyperbolic function

which satisfies the assumptions of Theorem 2.1 and such that the graph of f
has constant scalar curvature Scal = −n(n − 1). Also assume that ∂Ω is a
round sphere centered at the origin and that df(η)(x) → ∞ as x → ∂Ω where
η is the outward normal of the level sets of f . Then, the graph of f is isometric
to the t = 0 slice of the anti-de Sitter Schwarzschild space–time, as described
in Sect. 2.3.

Proof. By adding a constant to f we assume that f = 0 on ∂Ω. From Prop-
osition 5.1 we know that H does not change sign. Proposition 5.4 together
with the fact that H is positive on ∂Ω tells us that H ≥ 0 on the boundary,
and thus H ≥ 0 everywhere. The maximum principle applied to H together
with df(η) → +∞ at ∂Ω tells us that lim supx→∞ f(x) > 0. Since f is an
asymptotically hyperbolic function we conclude that limx→∞ f(x) = C where
0 < C < ∞.

Let fAdS-Schw be the asymptotically hyperbolic function whose graph is
isometric to the t = 0 slice of anti-de Sitter Schwarzschild space–time, with
mass parameter m such that its horizon is exactly the sphere ∂Ω. This function
vanishes on ∂Ω and has limx→∞ fAdS-Schw = C0 where 0 < C0 < ∞.

If C ≤ C0 we set uλ = fAdS-Schw + λ for λ ≥ 0. If λ is large enough then
uλ > f . We decrease λ until finally uλ(p) = f(p) at a point p, possibly p = ∞.
If p is an interior point then Proposition 5.10 tells us that uλ ≡ f , if p is a
boundary point then Proposition 5.11 tells us that uλ ≡ f . There is, however,
one more situation to consider, namely when uλ > f and limx→∞(uλ −f) = 0.
Since both the graph of uλ and the graph of f have Scal = −n(n − 1), argu-
ing as in the proof of Proposition 5.10 we conclude that uλ − f satisfies the
equation ∑

i,j

aij(uλ − f)ij +
∑

i

bi(uλ − f)i = 0.

In this case, the Hopf strong maximum principle tells us that uλ −f attains its
positive maximum either at an interior point or at a point of ∂Ω. Let us denote
this point by q and suppose that (uλ −f)(q) = β > 0. Clearly, f ≥ uλ −β, and
f(q) = (uλ −β)(q). By either Proposition 5.10 or Proposition 5.11 we conclude
that uλ − β ≡ f .
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If C > C0 we set vλ = fAdS-Schw − λ for λ ≥ 0. For λ large enough we
have vλ < f and we decrease λ until vλ hits f . Arguing as above it is easy to
show that vλ ≡ f .

In any case, we have found that f and fAdS-Schw differ by a constant,
which is the conclusion of the theorem. �
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Appendix A. A Property of Unbounded Open Subsets of R
n

In this appendix we will prove the following result on the boundary compo-
nents of an unbounded open subset of R

n.

Proposition A.1. Let H : R
n → R, n ≥ 2, be a continuous function which takes

both positive and negative values. Assume that each connected component of
H−1((0,∞)) and H−1((−∞, 0)) is unbounded. Then, there is a connected com-
ponent of H−1(0) which is unbounded.

To prove the proposition we use the following lemma.

Lemma A.2. Let K ⊂ R
n, n ≥ 2, be compact and connected. Let U be the

unbounded connected component of R
n\K. Then Uε := {x ∈ U | d(x,K) < ε}

is connected.

Proof. Let F := R
n\U . This set is closed and bounded and, therefore, com-

pact. We show that F is connected. Let f : F → {0, 1} be continuous. Then
f is constant on K. Take x ∈ F\K. For 0 = a ∈ R

n consider the half-line
{x+ ta | 0 ≤ t}. Let t0 be the smallest number so that x+ t0a ∈ K. Then, the
line segment {x+ta | 0 ≤ t ≤ t0} is a subset of F , and we conclude that f must
be constant on F so F is connected. Next define Fε := {x ∈ R

n | d(x, F ) < ε}.
Since Fε = ∪p∈FBε(p) this is a connected set. Note that Fε = Uε ∪ F . The
Mayer–Vietoris sequence for homology tells us that

· · · → H1(Rn) → H0(Uε) → H0(U) ⊕H0(Fε) → H0(Rn) → 0,

from which we conclude that Uε is connected. �
Proof of Proposition A.1. Let V be a connected component of H−1((0,∞)).
Let V ′ ⊂ R

n be the image of V when compactifying R
n with a point at infinity

and then removing a point p lying in an unbounded component of R
n\V . The

set V ′ is open, bounded and connected, so the closure K := V ′ is compact and
connected. Let ∂∞K be the part of the boundary of K facing the unbounded
component of R

n\K. Since the intersection of a nested sequence of compact
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connected sets is connected we conclude from the Lemma that ∂∞K is con-
nected. Going back to V this means that the union ∂∞V ∪ {∞} is connected,
where ∂∞V is the part of the boundary facing the component of R

n\V con-
taining p. From this, we see that all components of ∂∞V must be unbounded,
since if there was a bounded component this would remain disconnected from
the others when adding the point at infinity. Finally, every component of ∂∞V
is contained in some connected component of H−1(0), and those components
of H−1(0) are, therefore, unbounded. �
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[18] Hoffman, D., Spruck, J.: Sobolev and isoperimetric inequalities for Riemannian
submanifolds. Commun. Pure Appl. Math. 27, 715–727 (1974)

[19] Huang, L.-H., Wu, D.: The equality case of the penrose inequality for asymp-
totically flat graphs. http://arxiv.org/abs/1205.2061 (2012)

[20] Suan Huang, L.-H., Wu, D.: Hypersurfaces with nonnegative scalar curvature.
http://arxiv.org/abs/1102.5749 (2011)

[21] Huisken, G., Ilmanen, T.: The inverse mean curvature flow and the Riemannian
Penrose inequality. J. Differ. Geom. 59(3), 353–437 (2001)

[22] Lam, M.-K.G.: The graph cases of the Riemannian positive mass and Penrose
inequalities in all dimensions. http://arxiv.org/abs/1010.4256 (2010)

[23] Mars, M.: Present status of the Penrose inequality. Class. Quantum Grav-
ity 26(19), 193001–193059 (2009)

[24] Montiel, S., Ros, A.: Compact hypersurfaces: the Alexandrov theorem for higher
order mean curvatures. Differential geometry. Pitman Monographs and Surveys
in Pure and Applied Mathematics, vol. 52, pp. 279–296. Longman Science and
Technical, Harlow (1991)

[25] Morse, A.P.: The behavior of a function on its critical set. Ann. Math.
(2) 40(1), 62–70 (1939)
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