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Enhanced Wegner and Minami Estimates
and Eigenvalue Statistics of Random
Anderson Models at Spectral Edges

François Germinet and Frédéric Klopp

Abstract. We consider the discrete Anderson model and prove enhanced
Wegner and Minami estimates where the interval length is replaced by
the IDS computed on the interval. We use these estimates to improve on
the description of finite volume eigenvalues and eigenfunctions obtained
in Germinet and Klopp (J Eur Math Soc http://arxiv.org/abs/1011.1832,
2010). As a consequence of the improved description of eigenvalues and
eigenfunctions, we revisit a number of results on the spectral statistics in
the localized regime obtained in Germinet and Klopp (J Eur Math Soc
http://arxiv.org/abs/1011.1832, 2010) and Klopp (PTRF http://fr.arxiv.
org/abs/1012.0831, 2010) and extend their domain of validity, namely:

• the local spectral statistics for the unfolded eigenvalues;
• the local asymptotic ergodicity of the unfolded eigenvalues.

In dimension 1, for the standard Anderson model, the improvement
enables us to obtain the local spectral statistics at band edge, that is
in the Lifshitz tail regime. In higher dimensions, this works for modified
Anderson models.

1. Introduction

Anderson models are known to exhibit a region of localized states, either at
the edges of the spectrum, or in a given range of energies if the disorder is large
enough. Within this region of localization it is natural to study the two basic
components of the spectral theory in this case: the eigenfunctions (how local-
ized they are, where, etc.), and the eigenvalues (their multiplicity, their statis-
tics, etc.). The localization properties of eigenfunctions in the localized phase
are by now quite well understood (e.g. [1,6,8,14]). The precise description of
these localization properties plays an important role in the understanding of
many physical phenomena (e.g. dynamical localization, constancy of the Hall
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conductance in quantum Hall systems, Mott formula). Much less works have
been devoted to the understanding of the eigenvalues statistics of the Anderson
model; for random matrices many more results are available (e.g. [4,13,28]).
Poisson statistics of Anderson eigenvalues have been studied in [10,23,26].

An important ingredient that enters the proof of localization is a so called
Wegner estimate that controls the probability of finding an eigenvalue of the
finite volume operator in a small interval of energy. As for Poisson statistics, the
analysis of [10,23] relies on localization properties, the Wegner estimate and on
a so called Minami estimate that enables one to control the probability of the
occurrence of two eigenvalues of the finite volume operator in a small interval
of energy. It is worth mentioning that simplicity of the spectrum is a direct
consequence of localization properties combined with a Minami estimate [15].

Recently, in [10], the present authors introduced a refined way of describ-
ing eigenvalues and centers of localization in finite volumes, through a reduc-
tion procedure that enables one to approximate eigenvalues at finite volume by
independent and identically distributed random variables. With this reduction
in hand, they could in particular extend known results about Poisson statistics
and obtain the first asymptotic result for the eigenlevel spacings distribution.
[21] used this reduction to study the local asymptotic ergodicity of the unfolded
eigenvalues.

In the present article, we introduce enhanced Wegner and Minami esti-
mates that are valid only within the region of localization. The main novelty
is that they take into account the weight that the integrated density of states
(IDS) gives to intervals to estimate the probabilities of the occurrence of a
single or of multiple eigenvalues in a small energy interval. These estimates
enable us to revisit the reduction procedure mentioned above and get better
controls. We thus remove some limitations of [10] and cover situations where
the IDS gets too small for the analysis of [10] to be valid, for example, when
the IDS is exponentially small in an inverse power of the length of the inter-
val. As an application, our results enable us to prove Poisson statistics for
the unfolded eigenvalues in dimension 1 at the band edges, that is where a
Lifshitz tail regime occurs. To our best knowledge, this is the first such result.
As another application, we provide improved large deviation estimates for the
number of finite volume eigenvalues contained in suitably scaled intervals, as
well as a central limit theorem for this quantity.

2. Main Results

We consider the discrete Anderson Hamiltonian

Hω := H0 + Vω, (2.1)

acting on �2(Zd), where

• H0 is a convolution matrix with exponentially decaying off-diagonal coef-
ficients i.e. exponential off-diagonal decay that is H0 = ((hk−k′))k,k′∈Zd

such that,



Vol. 14 (2013) Enhanced Wegner and Minami Estimates 1265

– h−k = hk for k ∈ Z
d and for some k �= 0, hk �= 0.

– there exists c > 0 such that, for k ∈ Z
d,

|hk| ≤ 1
c
e−c|k|. (2.2)

Define

h(θ) =
∑

k∈Zd

hkeikθ where θ = (θ1, . . . , θd) ∈ R
d. (2.3)

• Vω is an Anderson potential:

Vω(x) :=
∑

j∈Zd

ωjΠj . (2.4)

where Πj is the projection onto site j, and ω = {ωj}j∈Zd is a family of inde-
pendent identically distributed random variables whose common probability
distribution μ is non-degenerate and has a bounded density g.

We denote by
• Σ ⊂ R the almost sure spectrum of Hω (see e.g. [14,27]); it is known that

Σ = h(Rd) + supp g;
• ΣSDL ⊂ Σ ⊂ R the set of energies where strong dynamical localization

holds; we refer to Theorem 4.1 for a precise description of ΣSDL; it is
known that such a region of energies exists at least near the edges of the
spectrum Σ (see e.g. [1,6–8,14]).
Recall (see [14]) the integrated density of states (IDS) may be defined as

N(E) = E tr(Π01]−∞,E](Hω)Π0) = E〈δ0,1]−∞,E](Hω)δ0〉. (2.5)

In particular, if I is an interval, we define N(I) as

N(I) := E tr(Π01I(Hω)Π0) = E〈δ0,1I(Hω)δ0〉. (2.6)

For L > 1, consider Λ = [−L,L]d ∩ Z
d, a cube on the lattice and let

Hω(Λ) be the random Hamiltonian Hω restricted to Λ with periodic boundary
conditions.

Notations: by a � b we mean there exists a constant c ∈]0,∞[ so that a ≤ cb.
By a 
 b we mean there exists a constant c ∈]1,∞[ such that c−1b ≤ a ≤ cb.

2.1. Improved Versions of the Wegner and Minami Estimates

We show Wegner and Minami estimates where the upper bounds keep track of
the integrated density of states. In particular, they enable to take advantage
of the smallness of the integrated density when this happens.

Let us first recall the usual Wegner and Minami estimates that are known
to hold for Hω (see e.g. [2,3,11,14] and references therein):
(W) E[tr(1J (Hω(Λ)))] ≤ C|J | |Λ|;
(M) E[tr(1J (Hω(Λ))) · [tr(1J (Hω(Λ))) − 1]] ≤ C(|J | |Λ|)2.

Our main result is

Theorem 2.1. Fix ξ ∈ (0, 1). There exist constants c, C ∈ (0,+∞) such that
for L > 1 the following holds.
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1. Let I ⊂ ΣSDL be a compact interval. Then

|E tr1I(Hω(Λ)) − N(I)|Λ|| ≤ C exp(−cLξ). (2.7)

As a consequence, if |N(I)| ≥ C exp(−cLξ) we get the Wegner esti-
mate:

E(tr1I(Hω(Λ))) ≤ 2N(I)|Λ|. (2.8)

2. (High order Minami) Given n ≥ 2 and I1 ⊂ · · · ⊂ In ⊂ ΣSDL intervals
so that |N(In)| ≥ C exp(−cLξ),

E

(
n∏

k=1

(tr1Ik
(Hω(Λ)) − k + 1)

)
≤ 2

(
n−1∏

k=1

‖ρ‖∞|Ik||Λ|
)

N(In)|Λ|. (2.9)

In particular, for n = 2, if |N(I)| ≥ C exp(−cLξ), we get the
Minami estimate:

E[tr1I(Hω(Λ))(tr1I(Hω(Λ)) − 1)] ≤ 2N(I)|I||Λ|2. (2.10)

Remark 2.1. (i) The constant 2 in (2.8), (2.9) and (2.10) can be replaced by
any constant larger than 1, provided |Λ| is large enough.

2.2. Local Spectral Statistics

We shall combine Theorem 2.1 with the description of the eigenvalues of Hω(Λ)
obtained in the paper [10] to obtain new results for the spectral statistics of
the Anderson model. In particular, the improved Minami estimate enables us
to remove the restriction on the smallness of the density of states that was
imposed in [10,21] to obtain results locally in energy.

Consider the eigenvalues of Hω(Λ) ordered increasingly and repeated
according to multiplicity and denote them by

E1(ω,Λ) ≤ E2(ω,Λ) ≤ · · · ≤ E|Λ|(ω,Λ).

Following [24,25], define the unfolded eigenvalues as

0 ≤ N(E1(ω,Λ)) ≤ N(E2(ω,Λ)) ≤ · · · ≤ N(E|Λ|(ω,Λ)) ≤ 1.

Let E0 be an energy in ΣSDL. The unfolded local level statistics near E0

is the point process defined by

Ξ(ξ;E0, ω,Λ) =
∑

j≥1

δξj(E0,ω,Λ)(ξ), (2.11)

where

ξj(E0, ω,Λ) = |Λ|(N(Ej(ω,Λ)) − N(E0)). (2.12)

Remark 2.2. It is convenient to consider the unfolded (or renormalized) lev-
els rather than the levels themselves as these, independent of the system, are
random variables distributed over [0, 1] (see [25]). In particular, one may hope
that they follow a distribution independent of the density of states. This is in
fact part of the content of Theorem 2.2.

The unfolded local level statistics are described by
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Theorem 2.2. Pick E0 be an energy in ΣSDL such that the integrated density of
states satisfies, for some ρ ∈ (0, 1/d),∃ a0 > 0 s.t. ∀a ∈ (−a0, a0) ∩ (Σ − E0),

|N(E0 + a) − N(E0)| ≥ e−|a|−ρ

. (2.13)

When |Λ| → +∞, the point process Ξ(E0, ω,Λ) converges weakly to

• a Poisson point process on the real line with intensity 1 if E0 ∈
◦
Σ, the

interior of Σ.
• a Poisson point process on the half line with intensity 1 if E0 ∈ ∂Σ, the

half-line being R
+ (resp. R

−) if (E0 − ε,E0)∩Σ = ∅ (resp. (E0, E0 + ε)∩
Σ = ∅) for some ε > 0.

The main improvement over [10, Theorem 1.2] is that the decay in
assumption (2.13) can be taken exponential (compare with [10, (1.12)]); it
does not depend anymore on the Minami estimate.

In [10], we also state and prove stronger uniform results for the conver-
gence to Poisson of the local unfolded statistics (see [10, Theorems 1.3 and
1.6]). In the present case, these results still hold under assumption (2.13).
Moreover, the size of intervals over which the uniform convergence of Poisson
statistics is proved in [10] can be notably improved thanks to the improved
Wegner and Minami estimates of Theorem 2.1 if the density of states is zero
at the point E0. We refer to Remark 4.1. for further precisions.

2.3. Local Spectral Statistics at Spectral Edges

In dimension one, for any H0 (thus, in particular, for the free Laplace opera-
tor), the condition (2.13) is satisfied at all the spectral edges, i.e. in the Lifshitz
tails region as the Lifshitz exponent is 1/2 if the density g does not decay too
fast at the edges of its support (see [17]). So, we get the Poisson behavior for
the unfolded eigenvalues at all the spectral edges, namely,

Theorem 2.3. Assume d = 1. Let E0 ∈ ∂Σ.
When |Λ| → +∞, the point process Ξ(E0, ω,Λ) converges weakly to a

Poisson point process on the half line with intensity 1 if E0 ∈ ∂Σ, the half-line
being R

+ (resp. R
−) if (E0 − ε,E0) ∩ Σ = ∅ (resp. (E0, E0 + ε) ∩ Σ = ∅) for

some ε > 0.

To the best of our knowledge, this is the first proof of Poisson asymptotics
for the unfolded eigenvalues at the spectral edges. In [12,28], for fixed k, the
authors studied the joint law of the first k eigenvalues of special one-dimen-
sional random (continuous) models; for these models, the density of states
N(E) can be computed explicitly.

In higher dimensions, if H0 is the free Laplace operator, the Lifshitz
exponent at spectral edges is usually d/2, even more so at the bottom of the
spectrum (see e.g. [16,18,19]); so condition (2.13) is not satisfied in this case.
Nevertheless, it may be satisfied if H0 is not the free Laplace operator as we
shall see now.

By assumption, the function h defined in (2.3) is real analytic on T
d =

R
d/(2πZ

d). Under some additional assumptions on h near its, say, minimum,
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one can show that condition (2.13) is satisfied near the infimum of the almost
sure spectrum of Hω (see e.g. [17,20])

Theorem 2.4. Assume that minθ∈Td h(θ) = 0, that h−1(0) is discrete and that,
for θ0 ∈ h−1(0), there exists α > d2 such that, for θ close to θ0, one has
h(θ) ≤ |θ − θ0|α.

Let E− = inf Σ where Σ is the almost sure spectrum of Hω.
When |Λ| → +∞, the point process Ξ(E−, ω,Λ) converges weakly to a

Poisson point process on the half line R
+ with intensity 1.

2.4. Ergodicity of the Local Eigenvalue Distribution

The local results of [21] can also be improved along the same lines. For J = [a, b]
a compact interval such that N(b) − N(a) = N(J) > 0 and a fixed configura-
tion ω, consider the point process

ΞJ(ω, t,Λ) =
∑

En(ω,Λ)∈J

δN(J)|Λ|[NJ (En(ω,Λ))−t], (2.14)

under the uniform distribution in [0, 1] in t; here we have set

NJ (·) :=
N(·) − N(a)
N(b) − N(a)

. (2.15)

Theorem 2.5. Pick E0 ∈ ΣSDL.
Fix (IΛ)Λ a decreasing sequence of intervals such that supIΛ

|x|→|Λ|→+∞
0. Assume that, for some δ ∈ (0, 1), one has

|Λ|δ · N(E0 + IΛ) → +∞, (2.16)

and

if �′ = o(L) then
N(E0 + IΛL+�′ )
N(E0 + IΛL

)
→

|Λ|→+∞
1. (2.17)

Then, ω-almost surely, the probability law of the point process ΞE0+IΛ

(ω, ·,Λ) under the uniform distribution 1[0,1](t)dt converges to the law of the
Poisson point process on the real line with intensity 1.

The main improvement over [21, Theorem 1.5] is that there is no restric-
tion anymore on the relative sizes of N(E0 + IΛ) and |IΛ|, respectively, the
density of states measure and the length of E0 + IΛ (compare (2.16) and
[21, (1.9)]).

2.5. Eigenvalue Spacings Statistics

As a consequence of Theorem 2.5, using the results of [24], we obtain the fol-
lowing result which improves upon [10, Theorem 1.5] and [21, Theorem 1.5]
in the sense that we cover a larger region of energies and the required lower
bound on the IDS is relaxed.

Theorem 2.6. Fix E0 ∈ ΣSDL and (IΛ)Λ a decreasing sequence of intervals
satisfying (2.16) and (2.17).

Define

δNj(ω,Λ) = |Λ|(N(Ej+1(ω,Λ)) − N(Ej(ω,Λ))) ≥ 0. (2.18)
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Define the empirical distribution of these spacings to be the random num-
bers, for x ≥ 0

DLS(x;E0 + IΛ, ω,Λ) =
#{j; Ej(ω,Λ) ∈ E0 + IΛ, δNj(ω,Λ) ≥ x}

N(E0 + IΛ,Λ, ω)
, (2.19)

where N(E0 + IΛ,Λ, ω) is the random number of eigenvalues of Hω(Λ) in
E0 + IΛ.

Then, with probability 1, as |Λ| → +∞,DLS(x;E0 + IΛ, ω,Λ) converges
uniformly to the distribution x �→ e−x, that is, with probability 1,

sup
x≥0

|DLS(x;E0 + IΛ, ω,Λ) − e−x| →
|Λ|→+∞

0. (2.20)

Spacings statistics over intervals of macroscopic size are also available
(see [10, Theorem 1.6] and [21, Theorem 1.2]) in the present context.

2.6. A Large Deviation and a Central Limit Theorem for the Eigenvalue
Counting Function

Finally, in some regimes, we also can improve upon the large deviation esti-
mate obtained for the eigenvalue counting function in [10, Theorem 1.3] for
which we also prove a central limit theorem in

Theorem 2.7. For L > 1, let Λ = ΛL. Pick a sequence of compact intervals
IΛ ⊂ ΣSDL so that, for some 1 ≤ β ≤ β′ < α′ ≤ α < ∞, for all L, one has

|IΛ|−α′ � |Λ| � |IΛ|−α and |IΛ|β′ � N(IΛ) � |IΛ|β . (2.21)

Set ν0 = 1
α−β min(α′ − β′, 1

d+1 ).

1. Large deviation estimate. For ε > 0 small enough (depending on ν0), we
have

P

{
| tr1IΛ(Hω(Λ)) − N(IΛ)|Λ|| ≥ (N(IΛ)|Λ|)max( 1

2 ,1−ν0)+ε
}

≤ exp(−(N(IΛ)|Λ|)ε).

2. Central limit theorem. Assume ν0 > 1
2 . Then the random variable

tr1IΛ(Hω(Λ)) − N(IΛ)|Λ|
(N(IΛ)|Λ|) 1

2

converges in law to the standard Normal distribution.

We first point out that only the size of the intervals IΛ matters, more
precisely, their relative size compared to the volume and the density of states
[see (2.21)]. In particular, the intervals IΛ need not be centered at a given
point. Let us also note that, by the standard Wegner estimate (W), one can
always pick β = 1.

Let us close this section with a brief outline of the paper. In Sect. 3,
we prove the enhanced Wegner and Minami estimates, namely Theorem 2.1.
Then, we turn to the proofs of the results on spectral statistics. In Sect. 4, we
prove
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• three different theorems of approximation of the eigenvalues of Hω(Λ)
by eigenvalues on smaller cubes as in [10, Theorems 1.1 and 1.2] (each
theorem being optimized according to a given point of view),

• the distribution functions of these approximated eigenvalues as in
[10, Lemma 2.1].
In Sect. 5, we derive the spectral statistics theorem per se, namely

Theorems 2.2, 2.5, 2.6 and 2.7.

3. The Proofs of the Enhanced Wegner and Minami Estimates

We start with the proof of Theorem 2.1. Then, we use it to derive the distri-
bution of the “unique” eigenvalue of Hω(Λ) in I when N(I)|Λ| is small.

3.1. Proof of the Improved Wegner and Minami Estimates

Proof of Theorem 2.1. The proof of point (1) is analogous to that of [10,
Lemma 2.2]. The main gain is obtained by the use of covariance which rel-
ies on the specific approximations we take for the finite volume Hamiltonians.

To that end, note that by covariance

E[tr1IΛ(Hω(Λ))] = |Λ| E[tr(χ01IΛ(Hω(Λ))χ0)]. (3.1)

Recall (2.5): the increase of the integrated density of states of Hω on IΛ

is given by

N(IΛ) = N(bΛ) − N(aΛ) = E[tr(χ01IΛ(Hω)χ0)].

To control |E[tr(χ01IΛ(Hω(Λ))χ0)] − E[tr(χ01IΛ(Hω)χ0)]|, we use local-
ization estimates after having smoothed out the characteristic function. Let
fδ be a C∞ and compactly supported function such that fδ = 1 in IΛ, and
fδ = 0 outside a neighborhood of length δ of IΛ (δ is small enough so that
the support of fδ lies in ΣSDL). Note that, by Wegner’s estimate (W) and the
Lipschitz continuity of N ,

|E[tr(χ0[1IΛ(Hω(Λ)) − fδ(Hω(Λ))]χ0)]|
+|E[tr(χ0(1IΛ(Hω) − fδ(Hω))χ0)]| ≤ Cδ. (3.2)

To estimate |E[tr(χ0(fδ(Hω(Λ)) − fδ(Hω))χ0)]|, we use a Helffer–
Sjöstrand formula to represent fδ(Hω(Λ)) and fδ(Hω). As the support of fδ

lies in the localization region and as f is of C∞ regularity, the exponential
decay estimate for the resolvents of Hω(Λ) and Hω imply that, for ξ′ ∈ (ξ, 1),
there exists C > 0 such that, for Λ sufficiently large (see e.g. the computation
of [9, (8.9)]), one has,

|E[tr(χ0(fδ(Hω(Λ)) − fδ(Hω))χ0)]| ≤ δ−Ce−
ξ′
.

We set δ = e−
ξ′′
with ξ′′ ∈ (ξ, ξ′). Plugging this into (3.2) and (3.1)

yields (2.7) and completes the proof of (2.7). We turn to point (2) and shall
take advantage of the strategy introduced in [3] to prove a Minami estimate
from spectral averaging and Wegner estimate. We adapt [3, Theorem 2.3] to
get Minami’s estimate in its generalized form. The proof is the same except at
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the very last step, [3, (4.17)], where the estimate (2.8) is used in replacement
of the usual Wegner bound. �

Remark 3.1. The periodic boundary conditions imposed upon the restrictions
Hω(Λ) are important as they enable us to preserve covariance.

3.2. The Distribution of the “Local” Eigenvalues

Consider a cube Λ of side length � and an interval IΛ = [aΛ, bΛ] ⊂ I (i.e. IΛ is
contained in the localization region). Consider the following random variables:

• X = X(Λ, IΛ) is the Bernoulli random variable

X = 1Hω(Λ) has exactly one eigenvalue in IΛ ;

• Ẽ = Ẽ(Λ, IΛ) is the eigenvalue of Hω(Λ) in IΛ conditioned on X = 1;
• ξ̃ = ξ̃(Λ, IΛ) = (Ẽ(Λ, IΛ) − aΛ)/|IΛ|.

Clearly ξ̃ is valued in [0, 1]; let Ξ̃ be its distribution function.
In the present section, we will describe the distribution of these random

variables as |Λ| → +∞ and |IΛ| → 0. We prove

Lemma 3.1. For any ν ∈ (0, 1) and K compact interval in ΣSDL, there exists
C > 1 such that, for Λ = Λ
 and IΛ ⊂ K such that N(IΛ) ≥ e−
ν/C , one has

P(X = 1) = N(IΛ)|Λ|(1 + O(|IΛ||Λ|) + O(e−
ν

)), (3.3)

where O(·) are locally uniform in ΣSDL.
Moreover, for (x, y) ∈ [0, 1], one has

(Ξ̃(x) − Ξ̃(y))P (X = 1)
= [N(aΛ + x|IΛ|) − N(aΛ + y|IΛ|)]|Λ| (1 + O(|x − y||IΛ||Λ|)

+O((|x − y|)−Ce−
ν/C) (3.4)

where O(·) are locally uniform in ΣSDL.

This lemma is to be compared with [10, Lemma 2.1]; it gives a fairly good
description of the random variables X and ξ̃ if |IΛ||Λ| � 1.

Proof of Lemma 3.1. We follow the proof of [10, Lemma 2.1]. Using (2.10), the
estimate [10, (2.5)] becomes

0 ≤ E(tr[1IΛ(Hω(Λ))]) − P(X = 1) ≤ CN(IΛ)|IΛ||Λ|2.
Thus, the proof of [10, Lemma 2.1] yields

P(X = 1) = N(IΛ)|Λ|(1 + O(|IΛ||Λ|) + O(|IΛ|−Ce−
ν/C). (3.5)

Recall that, by Wegner’s estimate, N(IΛ)|Λ|≤C|IΛ||Λ|. Thus, as N(IΛ)≥
e−
ν/C , enlarging possibly C, one obtains (3.3).

Replacing IΛ with the interval Ix,y,Λ in the estimation of P (X = 1) yields
the proof of (3.4).

The proof of Lemma 3.1 is complete. �
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4. Box Reduction and Description of the Eigenvalues

After giving a precise description of ΣSDL, we shall state three different reduc-
tions that improve on the ones given in [10] thanks to Theorem 2.1. Each of
them is optimized according to a given point of view, depending on the appli-
cation it will be used for (Poisson statistics, local ergodicity of eigenvalues and
level spacings statistics, or deviation estimates and CLT).

4.1. The Strong Dynamical Localization Regime

Before turning to the local description of the eigenvalues, let us underline that
we will give this description in the discrete setting. In particular, we will use
the fact that in the localization region ΣSDL, we have true exponential decay.

We first recall

Theorem 4.1 [10]. Let I ⊂ Σ be a compact interval and assume that Wegner’s
estimate (W) holds in I. For L given, consider Λ = ΛL(0) a cube of side length
L centered at 0, and denote by ϕω,Λ,j , j = 1, . . . , tr1I(Hω(Λ)), the normalized
eigenvectors of Hω(Λ) with corresponding eigenvalue in I. The following are
equivalent

1. I ⊂ ΣSDL

2. For all E ∈ I, there exists θ > 3d − 1,

lim sup
L→∞

P

{
∀x, y ∈ Λ, |x − y| ≥ L

2
, ‖χx(Hω(Λ) − E)−1χy‖ ≤ L−θ

}
= 1.

(4.1)

3. There exists ξ > 0,

sup
y∈Λ

E

{
∑

x∈Λ

eξ|x−y| sup
j

‖ϕω,Λ,j‖x‖ϕω,Λ,j‖y

}
< ∞. (4.2)

4. There exists ξ > 0,

sup
y∈Λ

E

{
∑

x∈Λ

eξ|x−y| sup
j

‖ϕω,Λ,j‖x‖ϕω,Λ,j‖y

}
< ∞. (4.3)

5. There exists ξ > 0,

sup
y∈Λ

E

⎧
⎪⎨

⎪⎩

∑

x∈Λ

eξ|x−y| sup
supp f⊂I

|f |≤1

‖χxf(Hω(Λ))χy‖2

⎫
⎪⎬

⎪⎭
< ∞. (4.4)

6. There exists ξ > 0,

sup
y∈Λ

E

⎧
⎪⎨

⎪⎩

∑

x∈Λ

eξ|x−y| sup
supp f⊂I

|f |≤1

‖χxf(Hω(Λ))χy‖2

⎫
⎪⎬

⎪⎭
< ∞. (4.5)
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7. There exists ξ > 0,

sup
y∈Λ

sup
supp f⊂I

|f |≤1

E

{
∑

x∈Λ

eξ|x−y|‖χxf(Hω(Λ))χy‖2

}
< ∞. (4.6)

8. (SUDEC for finite volume with polynomial probability) There exists ξ > 0
such that for all p > d, there is q = qp,d so that for any L large enough,
the following holds with probability at least 1 − L−p: for any eigenvector
ϕω,Λ,j of Hω,Λ, with energy in I, for any (x, y) ∈ Λ2, one has

‖ϕω,Λ,j‖x‖ϕω,Λ,j‖y ≤ Lqe−ξ|x−y|. (4.7)

9. (SULE for finite volume with polynomial probability) There exists ξ > 0
such that for all p > d, there is q = qp,d so that, for any L large enough,
the following holds with probability at least 1 − L−p: for any eigenvector
ϕω,Λ,j of Hω,Λ, with energy in I, there exists a center of localization, that
is, a point xω,Λ,j ∈ Λ, so that for any x ∈ Λ, one has

‖ϕω,Λ,j‖x ≤ Lqe−ξ|x−xω,Λ,j |. (4.8)

10. (SUDEC for finite volume with sub-exponential probability) There exists
ξ > 0 such that for all ν ∈ (0, 1), for any L large enough, the follow-
ing holds with probability at least 1 − e−Lν

: for any eigenvector ϕω,Λ,j of
Hω,Λ, with energy in I, for any (x, y) ∈ Λ2, one has

‖ϕω,Λ,j‖x‖ϕω,Λ,j‖y ≤ e2Lν

e−ξ|x−y|. (4.9)

11. (SULE for finite volume with sub-exponential probability) There exists
ξ > 0 such that for all ν ∈ (0, 1), for any L large enough, the follow-
ing holds with probability at least 1 − e−Lν

: for any eigenvector ϕω,Λ,j of
Hω,Λ, with energy in I, there is a center of localization xω,Λ,j ∈ Λ, so
that for any x ∈ Λ, one has

‖ϕω,Λ,j‖x ≤ e2Lν

e−ξ|x−xω,Λ,j |. (4.10)

Moreover one can pick q = p + d in (8) and q = p + 3
2d in (9).

Let us note here that the centers of localizations [defined in point (9)
or (11)] are not unique for a given eigenfunction; nevertheless, one can easily
show that all the centers of localization of a given eigenfunction are contained
in a ball of radius at most C log L (resp. CLν) in the sense of point (9) [resp.
(11)] of Theorem 4.1.

4.2. Controlling all the Eigenvalues

Assume E0 is such that (2.13) holds for some ρ ∈ (0, 1/d). Let us first explain
why the restriction ρ < 1/d is necessary. For an interval IΛ to contain a
large number of eigenvalues of Hω(Λ) (at least in expectation), one needs that
N(IΛ)|Λ| be large. On the other hand, as we shall see in the proof of the next
result, we also need |IΛ|(log |Λ|)d to be small. This second restriction is essen-
tially enforced by the localization of the eigenfunctions in region of (linear)
size log |Λ|. These two requirements can only be met if (2.13) holds.
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We prove

Theorem 4.2. Assume E0 is such that (2.13) holds for some ρ ∈ (0, 1/d). Fix
0 < dρ < ρ′ < ρ′′ < 1 and 0 < α < min(d/ρ′ − d/ρ′′, 1/ρ − d/ρ′). Pick
IΛ centered at E0 such that N(IΛ)|Λ| = logα |Λ|. For L sufficiently large and
� = log1/ρ′

L, we have a decomposition of Λ into disjoint cubes of the form
Λ
(γj) := γj + [0, �]d:

• ∪jΛ
(γj) ⊂ ΛL,
• dist(Λ
(γj),Λ
(γk)) ≥ log1/ρ′′ |Λ| if j �= k,
• dist(Λ
(γj), ∂Λ) ≥ log1/ρ′′ |Λ|
• |ΛL\ ∪j Λ
(γj)| � |Λ| logd/ρ′′−d/ρ′ |Λ|,

such that, there exists a set of configurations ZΛ s.t.:
• P(ZΛ) ≥ 1 − (log L)−(min(d/ρ′−d/ρ′′,1/ρ−d/ρ′)−α)/2,
• for ω ∈ ZΛ, each center of localization associated to Hω(Λ) belong to

some Λ
(γj) and each box Λ
(γj) satisfies:
1. the Hamiltonian Hω(Λ
(γj)) has at most one eigenvalue in IΛ, say,

E(ω,Λ
(γj));
2. Λ
(γj) contains at most one center of localization, say xkj

(ω,L), of
an eigenvalue of Hω(Λ) in IΛ, say Ekj

(ω,L);
3. Λ
(γj) contains a center xkj

(ω,L) if and only if σ(Hω(Λ
(γj))) ∩
IΛ �= ∅; in which case, one has, with �′ = log−1/ρ′′

L,

|Ekj
(ω,L) − E(ω,Λ
(γj))| ≤ e−
′

and dist(xkj
(ω,L),ΛL\Λ
(γj)) ≥ �′.

(4.11)

In particular, if ω ∈ ZΛ, all the eigenvalues of Hω(Λ) are described
by (4.11).

Remark 4.1. (i) In Theorem 4.2, the condition N(IΛ)|Λ| = logα |Λ| does not,
in general, provide the largest possible interval IΛ where our analysis works. It
is chosen so as to work in all regimes provided (2.13) holds; it is optimal only
in regimes where the integrated density of states N(IΛ) is exponentially small
in |IΛ|−1. In other regimes, one may actually take N(IΛ)|Λ| larger. Note that,
as in Theorem 4.2, one has |IΛ|�d � 1, Lemma 3.1 gives a precise description
of:

• the probability distribution of the γ’s for which Hω(Λ
(γ)) has exactly
one eigenvalue in IΛ,

• the distribution of this eigenvalue when this is the case.
(ii) If the integrated density of states N(IΛ) is exponentially small in

|IΛ|−1 then, as pointed out in (4.12) below, the typical size of intervals where
we can control all the eigenvalues, and thus, prove Poisson convergence, is of
order an inverse power of log |Λ|. This should be compared to [10] where the
admissible size for |IΛ| was of order |Λ|−α, with α > (1+(d+1)−1)−1 (see [10,
(1.43)] with ρ = 1 and ρ′ = 0). If now we have N(IΛ) 
 |IΛ|1+ρ′

, ρ′ ≥ 0, then
the admissible size for |IΛ| is of order |Λ|−α, with α > (1 + ρ′ + (d + 1)−1)−1,
with no restriction on ρ′ (compare to [10, (1.44)]). In particular α can be
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close to zero if ρ′ is large. These improvements are direct consequences of the
improved Wegner and Minami estimates of Theorem 2.1 above.

Proof of Theorem 4.2. As N(IΛ)|Λ| = logα |Λ|, assumption (2.13) yields, for
|Λ| sufficiently large,

|IΛ| ≤ 2 log−1/ρ |Λ|. (4.12)

We follow the proof of [10, Theorem 1.1]. Let S
,L be the set of boxes
Λ
(γj) ⊂ Λ containing at least two centers of localization of Hω,L (see the
proof of [10, Theorem 1.1] for more details). First, we note that, by the locali-
zation property (Loc), we need � to be larger than C log1/ρ′

L (for some large
C) to get (4.11). With the choices made in Theorem 4.2, the estimate (3.1) in
[10] becomes

P(#S
,L ≥ 1) � Ld

logd/ρ′
L

N(IΛ)|IΛ|(log L)2d/ρ′ � Ld(logd/ρ′
L)N(IΛ)|IΛ|

� logα−(1/ρ−d/ρ′) L (4.13)

by our choice of IΛ.
Let Υ be the complement of the union of the boxes (Λ
−
′(γj))j (see the

proof of [10, Theorem 1.1] for more details). In the same way as above, the
estimate (3.3) in [10] becomes

P(Hω(Λ) has a localization center in Υ)
� |Υ|N(IΛ)

� |IΛ|−1N(IΛ)|IΛ||Λ|(logd/ρ′′−d/ρ′ |Λ|)
� logα−d(1/ρ′−1/ρ′′) |Λ| (4.14)

by our choice of IΛ.
This completes the proof of Theorem 4.2. �

4.3. Controlling Most Eigenvalues

We will give two versions of this reduction. In Theorem 4.3, the first version,
we consider energy intervals where the density of states is not too small: it
can be polynomially small to any order but not smaller. In this region, we give
a version of the reduction that minimizes the estimate on the probability of
the bad set (where our description does not work) as well as the number of
eigenvalues that are not described by our scheme. This version is used in the
proof of Theorem 2.7.

In Theorem 4.4, the second version of the reduction theorem, we want
to allow exponentially small density of states as in Theorem 4.2. The control
will still be obtained with a good probability but we do not control as many
eigenvalues. This version is used in the proofs of Theorems 2.5 and 2.6.

This reduction goes back to the result obtained in [10, Theorem 1.2] and
improves upon it. We follow the proof of that result and only indicate the
differences.
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Theorem 4.3. Set �′ = R log |Λ| with R large and consider intervals IΛ ⊂ ΣSDL.
Assume that for some 1 ≤ β ≤ β′ < α′ ≤ α < ∞, for |Λ| large, we have

|IΛ|−α′ � |Λ| � |IΛ|−α and |IΛ|β′ � N(IΛ) � |IΛ|β
Set

δ0 = (α − β)−1 > 0, ζ =
α − β

α′ − β′ ≥ 1, ν0 = min
(

ζ−1,
δ0

d + 1

)
≤ 1.

(4.15)

Note that ν0ζ ≤ 1.
For any ν < ν0 and κ ∈ (0, 1), there exist

• a decomposition of ΛL into O(|Λ|/�d
Λ) disjoint cubes of the form Λ
(γj) :=

γj + [0, �]d, where � ∼ (|IΛ|�′)− 1
d+1 , so that:

– ∪jΛ
(γj) ⊂ ΛL,
– dist(Λ
(γj),Λ
(γk)) ≥ �′ if j �= k,
– dist(Λ
(γj), ∂Λ) ≥ �′

– |ΛL\ ∪j Λ
(γj)| � |Λ|�′/�,
• a set of configurations ZΛ satisfying

P(ZΛ) ≥ 1 − exp(−(N(IΛ)|Λ|)δκ,ν /C),

with δκ,ν = min(1 − νζ, κν) ∈]0, 1
2 [, such that, for |Λ| sufficiently large

(depending only on β, β′, α, α′, ν and κ),

• for all ω ∈ ZΛ, there exist at least |Λ|

d (1 + o(1)) disjoint boxes Λ
(γj)

satisfying the properties (1), (2) and (3) described in Theorem 4.2 with
�′ = R log |Λ|,

• the number of eigenvalues of Hω,L that are not described by the above
picture is bounded by C(N(IΛ)|Λ|)γκ,ν , with γκ,ν = 1 − (1 − κ)ν ∈]0, 1[.

Particular cases:
• If |IΛ| 
 |Λ|−α−1

and N(IΛ) 
 |IΛ|β, then ζ = 1.
• If n(E) > 0 and IΛ’s are centered at E, then β = β′ = 1.

Proof of Theorem 4.3. We proceed as in [10, Proof of Theorem 1.2] but take
advantage of Theorem 2.1 above.

By assumption, we have

|IΛ|−(α′−β′) � N(IΛ)|Λ| � |IΛ|−(α−β). (4.16)

or equivalently, with notations defined in (4.15),

(N(IΛ)|Λ|)−ζδ0 � |IΛ| � (N(IΛ)|Λ|)−δ0 . (4.17)

First, use in the reduction procedure (2.8) and (2.10) as the Wegner
and Minami estimates. As in [10], we consider a collection of O(|Λ|�−d) boxes
Λ
(γj) two by two distant by at least �′, and such that |Λ\∪j Λ
(γj)| � |Λ|�′/�.
As above, let S
,L be the set of boxes Λ
(γj) ⊂ Λ containing at least two cen-
ters of localization of Hω,L (see the proof of [10, Theorem 1.2] for more details).
Set

K := 4eN(IΛ)|Λ||IΛ|�d (4.18)
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Then, by (2.10),

P(#S
,L ≥ K) � 2−K . (4.19)

Next, cover Λ\ ∪j Λ
(γj) with a “partition” of boxes Λ
′(γ′
j) and let S ′


,L

be the set of boxes Λ
′(γj) ⊂ Λ containing at least one center of localization
of Hω,L (see the proof of [10, Theorem 1.2] for more details). Set

K ′ := 2d+1N(IΛ)|Λ|�
′

�
. (4.20)

It follows from (2.8) that

P(#S ′

,L ≥ K ′) � 2−K′

. (4.21)

To evaluate the number of eigenvalues of Hω(Λ) we may miss because of
this reduction, we need to control the number of centers xk(ω,Λ) that may fall
into K boxes of S
,L and K ′ boxes of S ′


,L. In [10] we used the crude determin-
istic bound given by the volume of the considered boxes. Here we estimate this
number using the high order Minami estimate (2.9). Given an integer r ≥ 1,
it follows from (2.9) that

P

{ ∃ a box Λ
(γj) s.t.

tr1IΛ(Hω(Λ
(γj))) ≥ r

}
� |Λ|

�d
P{tr1IΛ(Hω(Λ
)) ≥ r}

� 1
r!

N(IΛ)|Λ|(C|IΛ|�d)r−1

� N(IΛ)|Λ|
(

C|IΛ|�d

r

)r−1

. (4.22)

In the same way, we have, for r′ ≥ 1 an integer,

P

{ ∃ a box Λ
′(γ′
j) s.t.

tr1IΛ(Hω(Λ
′(γ′
j))) ≥ r′

}
� |Λ|

�d

�′

�
P{tr1IΛ(Hω(Λ
′)) ≥ r′}

≤ N(IΛ)|Λ|
(

�′

�

)d+1(
C|IΛ|(�′)d

r′

)r′/C−1

.

(4.23)

The additional constant C in the exponent in the right hand side of (4.23)
comes form the fact that the Hamiltonians (Hω(Λ
′)Λ�′ ∈S′

�,L
need not be inde-

pendent, but there are finitely many subfamilies of independent Hamiltonians.
We pick r 
 r′ 
 (N(IΛ)|Λ|)δ, with δ > 0 to be chosen later. We thus

end up with

(4.22), (4.23) � exp(−(N(IΛ)|Λ|)δ). (4.24)

Hence, with a probability at least 1 − exp(−(N(IΛ)|Λ|)δ), the number of
eigenvalues of Hω(Λ) we miss with our reduction is bounded by

C(K + K ′)(N(IΛ)|Λ|)δ. (4.25)
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We now optimize in � by requiring K ∼ K ′, that is

|IΛ|�d =
�′

�
. (4.26)

In other terms we choose � = (|IΛ|�′)− 1
d+1 . So that any K,K ′ satisfying

K ∼ K ′ � K0 := (N(IΛ)|Λ|)|IΛ| 1
d+1 (�′)1+

1
d+1 , (4.27)

is good enough. To ensure that K and K ′ grow fast enough [in order to get a
fast decaying probability in (4.19) and (4.21)], we actually enlarge them and
set for any ν < ν0 (note that log(N(IΛ)|Λ|) 
 log |Λ|),

K ∼ K ′ ∼ (N(IΛ)|Λ|)|IΛ|νδ−1
0 . (4.28)

Taking (4.17) into account, we have the following lower and upper bound,

(N(IΛ)|Λ|)1−νζ � K ∼ K ′ � (N(IΛ)|Λ|)1−ν . (4.29)

Next, let κ ∈]0, 1[ be given, and fix δ above so that δ = κν. It follows from
(4.19), (4.21), (4.24), (4.25) and (4.29) that the number of missing eigenvalues
is bounded by 1−exp(−(N(IΛ)|Λ|)1−ζν)−exp(−(N(IΛ)|Λ|)κν). At last, to see
that δκ,ν < 1

2 , note that min(1 − ζν, κν) ≤ (1 + ζκ−1)−1 < 1
2 , since κ < 1 and

ζ ≥ 1. The theorem follows. �

We now turn to the second version of our reduction theorem. One has

Theorem 4.4. Pick ρ ∈ (0, 1/d). For a cube Λ = ΛL, consider an interval
IΛ = [aΛ, bΛ] ⊂ I, I a fixed compact in ΣSDL. Pick ρ < ρ′ < ρ′′ < 1/d.

There exists α0 > 0 such that, for α0 ≤ α < α′, if (IΛ) satisfies

logα |Λ| ≤ N(IΛ)|Λ| ≤ logα′ |Λ| and N(IΛ)e|IΛ|−ρ ≥ 1. (4.30)

then, picking (�̃Λ, �′
Λ) such that

�̃d
Λ|IΛ| 
 log1/ρ′−1/ρ |Λ| and (�′

Λ)d 
 �̃d
Λ log1/ρ′′−1/ρ′ |Λ|, (4.31)

there exist
• a decomposition of ΛL into disjoint cubes of the form Λ
Λ(γj) := γj +

[0, �Λ]d where �Λ = �̃Λ(1 + o(1)) such that
– ∪jΛ
Λ(γj) ⊂ ΛL,
– dist(Λ
Λ(γj),Λ
Λ(γk)) ≥ �′

Λ if j �= k,
– dist(Λ
Λ(γj), ∂Λ) ≥ �′

Λ

– |ΛL\ ∪j Λ
Λ(γj)| � |Λ|�′
Λ/�Λ,

• a set of configurations ZΛ satisfying P(ZΛ) ≥ 1 − e− logα−2 |Λ|,
so that, for L sufficiently large (depending only on (α, α′, ρ, ρ′, ρ′′)), one has

• for ω ∈ ZΛ, there exist at least |Λ|

d
Λ

(1 + O(log1/ρ′−1/ρ |Λ|)) disjoint boxes
Λ
Λ(γj) satisfying the properties (1), (2) and (3) described in Theorem 4.2
where �′

Λ in (4.11) satisfies (4.31);
• the number of eigenvalues of Hω(Λ) that are not described above is

bounded by

CN(IΛ)|Λ| [log1/ρ′−1/ρ |Λ| + log1/(dρ′′)−1/(dρ′) |Λ|].
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In Theorem 4.4, our choice of parameters is made so as to allow as small
as possible a density of states [see the second condition in (4.30)]. The price
to pay for this is that the width of the interval IΛ may not be optimal in all
regimes (compare the first condition in (4.30) with the width of the intervals
treated in [10] when N(IΛ) � |IΛ|1+ρ). It is nevertheless essentially optimal
when N(IΛ) 
 e−|IΛ|−ρ

.
We also note that, in the proof of Theorem 4.4, the choice of � = �Λ guar-

antees that |IΛ|�d � 1 [see (4.32)]; thus, Lemma 3.1 gives a precise description
of:

• the probability distribution of the γ’s for which Hω(Λ
(γ)) has exactly
one eigenvalue in IΛ,

• the distribution of this eigenvalue when this is the case

Proof of Theorem 4.4. We follow the proof of Theorem 4.3. First, note that,
as in the proof of Theorem 4.2, assumption (4.30) implies that

|IΛ| � log−1/ρ |Λ|, log1/(dρ′) |Λ| � �Λ, log1/(dρ′′) |Λ| � �′
Λ (4.32)

With our choice of �Λ and �′
Λ, one estimates K defined in (4.18) and K ′

defined in (4.20) by

logα+1/ρ′−1/ρ |Λ| � K � logα′+1/ρ′−1/ρ |Λ|
and logα+1/(dρ′)−1/(dρ) |Λ| � K ′ � logα′+1/(dρ′)−1/(dρ) |Λ|. (4.33)

In the present case, the computations done in (4.22) and (4.23) give a
too gross estimate of the number of eigenvalues, or, equivalently, of the num-
ber of localization centers, on which one cannot get a precise control if one
wants to keep a good probability estimate; this comes from the fact that the
quantities N(IΛ)|Λ||IΛ|, �, �′ may be powers of log |Λ|. We need to study more
carefully the number of eigenvalues missed by the description constructed in
the proof of Theorem 4.3. Therefore, we follow the ideas used in the proof of
[22, Theorem 4.1].

Let Γ
,L be the set of cubes {Λ
(γj); j} of the decomposition introduced
in the proof of Theorem 4.3. We “partition” Γ
,L into 2d sets such that, any
two cubes Λ
(γ) and Λ
(γ′) in each set, the Hamiltonians Hω(Λ
(γ)) and
Hω(Λ
(γ′)) are independent. Let these sets be (Γ
,L,j)1≤j≤2d and their cardi-
nality be Ñj := #Γ
,L,j . One has Ñj 
 |Λ|�−d.

For Λ
(γk) ∈ Γ
,L,j , set Xj,k = tr1IΛ(Hω(Λ
(γk))). These variables are
i.i.d. and their common distribution is described by 2.1.

We now want to estimate the maximal number of localization centers of
Hω(Λ) contained in boxes of (Γ
,L)1≤j≤2d that each contain at least two cen-
ters (these are the boxes of S
,L in the notations of the proof of Theorem 4.3).
We want to show that this number is, with a probability close to 1, bounded
by CK where K is defined in (4.18) and C > 0 is a constant to be chosen.

Let Pr be the probability to have 2d+1r localization centers of Hω(Λ) in
cubes containing at least two centers. We compute
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Pr ≤
2d∑

j=1

r∑

nj=1

(
Ñj

nj

)
P

(
min

1≤k≤nj

Xj,k ≥ 2 and
nj∑

k=1

Xj,k ≥ 2r

)

≤
2d∑

j=1

r∑

nj=1

(
Ñj

nj

) ∑

l1+···+lnj
≥2r

∀1≤k≤nj , lk≥2

nj∏

k=1

P(Xj,k = lk)

≤
2d∑

j=1

r∑

nj=1

(
Ñj

nj

) ∑

l1+···+lnj
≥2(r−nj)

∀1≤k≤nj , lk≥0

nj∏

k=1

P(Xj,k = lk + 2).

Then, using (2.9) and the independence of the local Hamiltonians associated
to boxes in Γ
,L,j , we obtain

Pr �
2d∑

j=1

r∑

nj=1

(
Ñj

nj

) ∑

l1+···+lnj
≥2(r−n)

∀1≤k≤nj , lk≥0

(CN(IΛ)�d)nj (|IΛ|�d)2r−nj

(l1 + 1)! · · · (lnj
+ 1)!

�
2d∑

j=1

r∑

nj=1

1
nj !

(ÑjN(IΛ)�d)nj (|IΛ|�d)2r−nj

�
r∑

n=1

1
n!

(|Λ|N(IΛ))n(|IΛ|�d)2r−n

� (Kη|IΛ|�d)r +
(

CK

ηr

)r

.

In the last estimate, we have cut the previous sum into two parts, the
first when n runs from 0 to ηr and the second from ηr to r. We now choose
η > 0 so that ηα′ < 1/ρ − 1/ρ′ [for α′ in (4.30), see also (4.33)]. Recall that
|IΛ|�d is small. Thus, setting r = η−1CK for some large C > 0 and using
(4.33), we obtain

Pr ≤ e−K/C ≤ e− logα−1 |Λ|/C . (4.34)

Now, as in the proof of Theorem 4.3, cover Λ\ ∪j Λ
(γj) with a partition
of boxes Λ
′(γ′

j) (see the proof of [10, Theorem 1.2] for more details). In the
same way as above, one estimates the maximal number of centers of localiza-
tion contained in the union of the boxes Λ
′(γj) ⊂ Λ. Let P

′
r be the probability

that this number exceeds r. Then, for r = CK ′ (for some constant C > 0)
where K ′ is defined in (4.20), as above, we prove

P
′
r ≤ e−K′/C ≤ e− logα−1 |Λ|/C . (4.35)

Summing (4.34) and (4.35), taking into account (4.33) and (4.32), we
obtain that, for α sufficiently large and properly chosen (ρ′, ρ′′) ∈ (dρ, 1)2,
with probability at least 1 − e− log2 |Λ|, there are at most

C(K + K ′) � N(IΛ)|Λ| [log1/ρ′−1/ρ |Λ| + log1/(dρ′′)−1/(dρ′) |Λ|].
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eigenvalues that are not accounted for by the description given in Theorem 4.4.
This completes the proof of Theorem 4.4. �

5. Applications to Eigenvalue Statistics: Proofs

5.1. The Proof of Theorem 2.7

First note that under the assumptions of Theorem 2.7, the assumptions of
Theorem 4.3 are fulfilled. We will use this decomposition.

Let X = X(Λ
, IΛ) the Bernoulli random variable equal to 1 if Hω,Λ�

has an eigenvalue in IΛ and zero otherwise. Recall that the distribution of this
random variable is described by (3.3) in Lemma 3.1.

To prove Theorem 2.7, we consider the collection of Bernoulli random
variables Xj := X(Λ
(γj), IΛ), j = 1, . . . , Ñ defined by

• X(Λ
(γ), IΛ) is defined in Sect. 3.2
• the boxes (Λ
(γj))1≤j≤Ñ are given by Theorem 4.3 and Ñ 
 |Λ|/�d.

Thus, the random variables (Xj)j are i.i.d.
We have

| tr1IΛ(Hω(Λ)) − N(IΛ)|Λ||

≤
∣∣∣∣∣∣
tr1IΛ(Hω(Λ)) −

Ñ∑

j=1

Xj

∣∣∣∣∣∣
+

∣∣∣∣∣∣

Ñ∑

j=1

Xj − N(IΛ)|Λ|
∣∣∣∣∣∣

(5.1)

By Theorem 4.3, with a probability ≥ 1−exp(−c(N(IΛ)|Λ|)δκ,ν ) we have
∣∣∣∣∣∣
tr1IΛ(Hω(Λ)) −

Ñ∑

j=1

Xj

∣∣∣∣∣∣
� (N(IΛ)|Λ|)γκ,ν . (5.2)

Next, the large deviation principle for i.i.d. (0, 1)-Bernoulli variables with
expectation p gives, for δ ∈]12 , 1[, yields (see e.g. [5]),

P

⎛

⎝

∣∣∣∣∣∣

Ñ∑

j=1

Xj − pÑ

∣∣∣∣∣∣
≥ (pÑ)δ

⎞

⎠ ≤ C exp(−cp(pÑ)2δ−1), (5.3)

where the constant cp is uniformly bounded as p ↓ 0. We apply the latter with
p = P(X = 1). On the account of Lemma 3.1, (4.26) and (4.29), we have

|pÑ − N(IΛ)|Λ|| � (N(IΛ)|Λ|)1−ν . (5.4)

Combining (5.1), (5.2), (5.3) and (5.4) we obtain, for any δ′ ∈]0, 1[,

P{| tr1IΛ(Hω(Λ)) − N(IΛ)|Λ||
≤ (N(IΛ)|Λ|)γκ,ν + (N(IΛ)|Λ|)1−ν + (pÑ)

1
2+ 1

2 δ′}
≥ 1 − exp(−(N(IΛ)|Λ|)δκ,ν ) − C exp(−cp(pÑ)δ′

). (5.5)
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Since γκ,ν > 1 − ν, and choosing δ′ = δκ,ν , we get

P

{
|tr1IΛ(Hω(Λ)) − N(IΛ)|Λ|| ≤ 3(N(IΛ)|Λ|)max(γκ,ν , 1

2+ 1
2 δκ,ν)

}

≥ 1 − 2 exp(−(N(IΛ)|Λ|)δκ,ν ). (5.6)

Taking κ sufficiently small, we get δκ,ν = κν. The result follows with
ε = κν.

We turn to the proof of point (2) which follows from the previous analysis
and the central limit theorem for Bernoulli random variables, provided ν > 1

2 .
This completes the proof of Theorem 2.7.

5.2. The Proofs of Theorems 2.2, 2.5 and 2.6

As already stated above, one can follow verbatim the proofs of the correspond-
ing results in [10,21]. Let us just make a few comments on those proofs.

5.2.1. The Proof of Theorem 2.2. The corresponding result is [10, Theorem
1.2]. In [10], we also have the stronger Theorems 1.3 and 1.6 that also have
their analogues in the present setting. Comparing (2.13) with the condition
[10, (1.12)], we see that we have now only a local condition at E0 only. This
gain is obtained thanks to Lemma 3.1 and Theorem 4.2.

5.2.2. The Proofs of Theorem 2.5 and 2.6. The result corresponding to
Theorem 2.5 is [21, Theorem 1.4]. Theorem 2.6 is a then a consequence of
Theorem 2.5, see e.g. [21,25]. Under uniform assumptions of the type
N(J)e|J|−ρ ≥ 1 for some ρ ∈ (0, 1) and for all J ⊂ E0 + IΛ, one may as well
follow the method developed in [10].

As we shall see, to prove Theorem 2.5 in the present case is easier than in
[21, Theorem1.4]. The basic idea of the proof of asymptotic ergodicity in [21,
Theorem 1.4] is, for a given interval E0 + IΛ, to split it into smaller intervals
such that, on most of these intervals, the assumptions of a reduction of the
same type as Theorem 4.4 is valid plus a remaining set of energies that only
contains a negligible fraction of the eigenvalues in E0 + IΛ. Then, one proves
asymptotic ergodicity for each of the small intervals. Therefore, one needs to
use an analogue of Lemma 3.1 to control the eigenvalues. This imposes further
restrictions on how one has to choose the small intervals. In the present case,
thanks to the improvement obtained in Lemma 3.1 over its analogues in [10,
Lemma 2.2] and [21, Lemma 2.2], the way to split the interval E0 + IΛ will
be much simpler (as a comparison of what follows with the discussions fol-
lowing [21, Theorem 2.1 and Lemma 2.2] and those in [21, Section 3.2.1] will
immediately show).

We will not give a complete proof of Theorem 2.5 but only indicate the
changes to be made in the proof of [21, Theorem 1.4].

Pick α0 < α < α′′ < α′ (where α0 is given by Theorem 4.4). Pick μ > 0.
Now, partition IΛ into intervals (Ij)j∈J such that N(Ij) 
 |Λ|−1 logα′′ |Λ|.
Define

B = {j ∈ J ; N(Ij) ≤ |Ij |μ}. (5.7)
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Then, one clearly has

|IΛ| ≥
∑

j∈B

|Ij | ≥
∑

j∈B

N(Ij)1/μ 
 #B|Λ|−1/μ logα′′/μ |Λ|

thus, #B � |Λ|1/μ and

N

⎛

⎝
⋃

j∈B

Ij

⎞

⎠ � |Λ|(1−μ)/μ logα′′ |Λ|.

The number of eigenvalues expected in E0 +IΛ is of order N(E0 +IΛ)|Λ|,
thus, by (2.16), larger than |Λ|1−δ. Pick ν > 0. By the enhanced Wegner’s esti-
mate (2.8) and Markov’s inequality, we know that, with probability at least 1−
|Λ|−ν , the number of eigenvalues in

⋃
j∈B Ij is bounded by |Λ|ν+1/μ logα′′ |Λ|.

We now pick ν and μ−1 small so that ν + 1/μ < 1 − δ.
For j �∈ B, one has N(Ij) ≥ |Ij |μ and, thus, one can apply Theorem 4.4 to

Ij for j �∈ B. So, in each Ij , we control N(Ij)|Λ|(1+o(1)) eigenvalues (the error
is uniform in j by Theorem 4.4); thus, the total number of eigenvalues we con-
trol exceeds

∑
j �∈B N(Ij)|Λ|(1+o(1)) that is, exceeds N(E0+IΛ)|Λ|(1+o(1)) ≥

|Λ|1−δ as announced above.
For j �∈ B, we moreover want to be able to apply Lemma 3.1 to control

the eigenvalues “in” the cubes Λ
Λ(γ) constructed in Theorem 4.4 and the
interval Ij . Therefore, we need to check that |Ij ||Λ
Λ(γ)| � 1 (see (3.3) and
(3.4)). This is guaranteed by (4.31) in Theorem 4.4.

Now thanks to Theorem 4.4 and Lemma 3.1, in each Ij for j �∈ B, we
reason as in the proof of [21, Theorem 1.4], or more precisely, as in the proof
of [21, Lemma 3.2] to obtain the asymptotic ergodicity.

Remark 5.1. One can actually prove Theorem 2.5 on intervals to which the
IDS gives a smaller weight, that is, relax assumption (2.16) into |Λ| · log−β |Λ| ·
N(E0 + IΛ) → +∞ for not too small β (e.g. for not too negative β). Then, the
condition N(Ij) ≤ |Ij |μ defining B will have to be replaced with conditions of
the type N(Ij) ≤ e−|Ij |−ρ

(ρ will now be in (0, 1)).
Moreover, if β is not sufficiently large, a restriction analogous to

[21, (1.10) in Theorem 1.4] will come up again.
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Schrödinger Operators. Panor. Synthèses, vol. 25, pp. 1–119. Soc. Math. France,
Paris, 2008. With an appendix by Frédéric Klopp

[15] Klein, A., Molchanov, S.: Simplicity of eigenvalues in the Anderson model.
J. Stat. Phys. 122(1), 95–99 (2006)

[16] Kirsch, W., Metzger, B.: The integrated density of states for random Schrödinger
operators. In: Spectral theory and mathematical physics: a Festschrift in honor
of Barry Simon’s 60th birthday. Proceedings of Symposia in Pure Mathematics,
vol. 76, pp. 649–696. American Mathematical Society, Providence, RI (2007)

[17] Klopp, F.: Band edge behavior of the integrated density of states of random
Jacobi matrices in dimension 1. J. Stat. Phys. 90(3–4), 927–947 (1998)

[18] Klopp, F.: Internal Lifshits tails for random perturbations of periodic
Schrödinger operators. Duke Math. J. 98(2), 335–396 (1999)

[19] Klopp, F.: Correction to: “Internal Lifshits tails for random perturbations of
periodic Schrödinger operators” [18]. Duke Math. J. 109(2), 411–412 (2001)

[20] Klopp, F.: Weak disorder localization and Lifshitz tails. Commun. Math.
Phys. 232(1), 125–155 (2002)

[21] Klopp, F.: Asymptotic ergodicity of the eigenvalues of random operators in the
localized phase. PTRF (2010). http://fr.arxiv.org/abs/1012.0831

[22] Klopp, F.: Universal joint asymptotic ergodicity of the eigenvalues and localiza-
tion centers of random operators in the localized phase (2011, in preparation)

[23] Minami, N.: Local fluctuation of the spectrum of a multidimensional Anderson
tight binding model. Commun. Math. Phys. 177(3), 709–725 (1996)

http://arxiv.org/abs/1011.1832
http://fr.arxiv.org/abs/1012.0831


Vol. 14 (2013) Enhanced Wegner and Minami Estimates 1285

[24] Minami, N.: Theory of point processes and some basic notions in energy level sta-
tistics. In: Probability and mathematical physics. CRM Proceedings and Lecture
Notes, vol. 42, pp. 353–398. American Mathematical Society, Providence, RI
(2007)

[25] Minami, N.: Energy level statistics: a formulation and some examples. In: Spec-
tra of Random Operators and Related Topics, pp. 79–97. RIMS, Kyoto (2011)

[26] Molchanov, S.A.: The local structure of the spectrum of a random one-dimen-
sional Schrödinger operator. Trudy Sem. Petrovsk. 8, 195–210 (1982)

[27] Pastur, L., Figotin, A.: Spectra of random and almost-periodic operators. Grun-
dlehren der Mathematischen Wissenschaften [Fundamental Principles of Math-
ematical Sciences], vol. 297. Springer, Berlin (1992)

[28] Texier, C.: Individual energy level distributions for one-dimensional diagonal
and off-diagonal disorder. J. Phys. A 33(35), 6095–6128 (2000)

François Germinet
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