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Ground States for a Stationary Mean-Field
Model for a Nucleon

Maria J. Esteban and Simona Rota Nodari

Abstract. In this paper we consider a variational problem related to a
model for a nucleon interacting with the ω and σ mesons in the atomic
nucleus. The model is relativistic, and we study it in a nuclear physics
nonrelativistic limit, which is of a very different nature than the nonrel-
ativistic limit in the atomic physics. Ground states are shown to exist
for a large class of values for the parameters of the problem, which are
determined by the values of some physical constants.

1. Introduction

This article is concerned with the existence of minimizers for the energy func-
tional

E(ϕ) =
∫

R3

|σ · ∇ϕ|2
(1 − |ϕ|2)+ dx− a

2

∫

R3

|ϕ|4 dx (1.1)

under the L2-normalization constraint∫

R3

|ϕ|2 dx = 1. (1.2)

More precisely, for a large class of values for the parameter a, we show the
existence of solutions of the following minimization problem

I = inf

⎧⎨
⎩E(ϕ); ϕ ∈ X,

∫

R3

|ϕ|2 dx = 1

⎫⎬
⎭ , (1.3)

where

X =

⎧⎨
⎩ϕ ∈ L2(R3,C2) ;

∫

R3

|σ · ∇ϕ|2
(1 − |ϕ|2)+ dx < +∞

⎫⎬
⎭ . (1.4)

We remind that σ denotes the vector of Pauli matrices (σ1, σ2, σ3),
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σ1 =
(

0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
.

The Euler–Lagrange equation of the energy functional E under the
L2-normalization constraint is given by the second order equation

− σ · ∇
(

σ · ∇ϕ
(1 − |ϕ|2)+

)
+

|σ · ∇ϕ|2
(1 − |ϕ|2)2+

ϕ− a|ϕ|2ϕ+ bϕ = 0, (1.5)

where b is the Lagrange multiplier associated with the L2-constraint (1.2).
Hence a solution of the minimization problem (1.3) is a solution of the equa-
tion (1.5). Moreover, Lemma 2.1 below proves that any ϕ ∈ X satisfies |ϕ|2 ≤ 1
a.e. in R

3. So, a minimizer for (1.3) is actually a solution of

− σ · ∇
(

σ · ∇ϕ
1 − |ϕ|2

)
+

|σ · ∇ϕ|2
(1 − |ϕ|2)2ϕ− a|ϕ|2ϕ+ bϕ = 0. (1.6)

Solutions of (1.6) which are minimizers for I are called ground states.
Equation (1.6) is equivalent to the system{

iσ · ∇χ+ |χ|2ϕ− a|ϕ|2ϕ+ bϕ = 0,

−iσ · ∇ϕ+ (1 − |ϕ|2)χ = 0.
(1.7)

As we formally derived in a previous paper [1], this system is the nuclear phys-
ics nonrelativistic limit of the σ-ω relativistic mean-field model [9,10] in the
case of a single nucleon.

In [1], we proved the existence of square integrable solutions of (1.7) in
the particular form

(
ϕ(x)
χ(x)

)
=

⎛
⎜⎜⎝
g(r)

(
1
0

)

if(r)
(

cosϑ
sinϑeiφ

)
⎞
⎟⎟⎠ , (1.8)

where f and g are real valued radial functions. This ansatz corresponds to
particles with minimal angular momentum, that is, j = 1/2 (for instance, see
[8]). In this model, the equations for f and g read as follows:{

f ′ + 2
rf = g(f2 − ag2 + b),

g′ = f(1 − g2),
(1.9)

where we assumed f(0) = 0 in order to avoid solutions with singularities at
the origin, and we showed that given a, b > 0 such that a−2b > 0, there exists
at least one nontrivial solution of (1.9) such that

(f(r), g(r)) −→ (0, 0) as r −→ +∞. (1.10)

In this paper, we prove the existence of solutions of the above nuclear
physics nonrelativistic limit of the σ–ω relativistic mean-field model without
considering any particular ansatz for the nucleon’s wave function. It is not
known if it is possible to use symmetrization techniques to prove symmetry of
the ground state solutions, at least in some particular cases. The presence of the
Pauli matrices in the kinetic energy term makes things difficult in that respect.
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Note that (1.6) is the Euler–Lagrange equation of the energy functional

F(ϕ) =
∫

R3

|σ · ∇ϕ|2
1 − |ϕ|2 dx− a

2

∫

R3

|ϕ|4 dx (1.11)

under the L2 normalization constraint. In the Appendix, we prove that the
energy functional F is not bounded from below. So, trying to find solutions
of (1.6) which minimize the energy F is hopeless and the definition of ground
states for (1.6) based on this functional is not clear.

In our previous work [1], we showed that for all the solutions of (1.9)
which are square integrable, g2(r) < 1 in [0,+∞). Hence, according to this
result, we conjecture that a solution of (1.6) has to satisfy |ϕ|2 ≤ 1 a.e. in
R

3. As we prove in the Appendix, this assumption is also justified when we
consider the intermediate model

ϕ =
(
u
0

)
(1.12)

with u : R
3 → R and a > b. Moreover, in the physical literature finite nuclei

are described via functions ϕ such that, in the right units, |ϕ|2 ≤ 1 and |ϕ| is
rather flat near the center of the nucleus, and is equal to 0 outside it, see [2,5].

Note that if |ϕ|2 ≤ 1 a.e. in R
3, then F(ϕ) = E(ϕ), and the ground states

of (1.6) can be defined without further specification as the minimizers of E .
The main result of our paper is the following:

Theorem 1.1. If I < 0 there exists a minimizer of (1.3). Moreover, I < 0
if and only if a > a0 where a0 is a strictly positive constant. In particular,
10.96 ≈ 2

S2 < a0 < 48.06, where S is the best constant in the Sobolev embed-
ding of H1(R3) into L6(R3).

Remark 1. The upper estimate for a0 is obtained by using a particular test
function and is probably not optimal. The calculation of a0’s exact value is a
challenging open problem.

Remark 2. It is easy to prove that I ≤ 0 for all values of a. But if I = 0 there
will be minimizing sequences which are not relatively compact and maybe none
of them is. In that case the minimum would not be achieved. It is thus an open
problem to know whether I is achieved for all values of a or not.

The proof of the above theorem is an application of the concentration-
compactness principle [3,4] with some new ingredients. The main new difficulty
is due to the presence of the term

∫
R3

|σ·∇ϕ|2
(1−|ϕ|2)+ dx in the energy functional.

As we will see below, to rule out the dichotomy case in the concentration-com-
pactness lemma we have to choose ad-hoc cut-off functions allowing us to deal
with possible singularities of the integrand. This is also necessary in order to
show the localization properties of

∫
R3

|σ·∇ϕ|2
(1−|ϕ|2)+ dx.

In the next section, we will establish a concentration-compactness lemma
in X and then apply it to prove our main result. The Appendix contains some
auxiliary results about various properties of the model problem that we con-
sider here.



1290 M. J. Esteban and S. Rota Nodari Ann. Henri Poincaré

2. Proof of Theorem 1.1

To prove this theorem, we are going to apply a concentration-compactness
lemma that we state below. The reader may refer to [3,4] for more details on
this kind of approach. The particular shape of the energy functional, where the
kinetic energy term is multiplied by a function which could present singularities
as |ϕ| gets close to 1 creates some complications in the use of concentration-
compactness, that we deal with by using very particular cut-off functions.

Let us introduce

Iν = inf

⎧⎨
⎩E(ϕ) ; ϕ ∈ X,

∫

R3

|ϕ|2 dx = ν

⎫⎬
⎭ (2.1)

where ν > 0 and I1 = I, and we make a few preliminary observations.

Lemma 2.1 [6]. Let ϕ ∈ X. Then, ϕ ∈ H1(R3,C2) and |ϕ|2 ≤ 1 a.e. in R
3.

Proof. First, by a straightforward calculation, we obtain∫

R3

|∇ϕ|2 dx =
∫

R3

|σ · ∇ϕ|2 dx ≤
∫

R3

|σ · ∇ϕ|2
(1 − |ϕ|2)+ dx < +∞.

Hence, ϕ ∈ H1(R3,C2). Next, let n ∈ C
2 such that |n| = 1. Note that for ϕ ∈

X, 1Re{n·ϕ}≥1(σ ·∇ϕ) = 0, a.e. in R
3. Define the functions f = (Re{n·ϕ}−1)+

and ψ = fn. (Note that for 2 complex vectors A,B ∈ C
2, A · B denotes the

scalar product Σ2
i=1AiBi, where z stands for the complex conjugate of any

complex number z).
We have f ∈ H1(R3,R) and ψ ∈ H1(R3,C2). Moreover, for k = 1, 2, 3,

∂kψ = ∂kf n and ∂kf = Re {n · ∂kϕ}1Re{n·ϕ}≥1= n · ∂kψ.

Hence, we obtain∫

R3

|∇f |2dx

=
∫

R3

|∇ψ|2dx =
∫

R3

3∑
k=1

Re {Re {n · ∂kϕ}n · ∂kψ} dx

=
∫

R3

3∑
k=1

Re {n · ∂kϕ} Re {n · ∂kψ} dx =
∫

R3

3∑
k=1

Re {∂kf n · ∂kϕ} dx

=
∫

R3

Re {∇ψ · ∇ϕ} dx =
∫

R3

Re {(σ · ∇ψ) · (σ · ∇ϕ)} dx

=
∫

R3

Re
{
(σ · ∇ψ) · 1Re{n·ϕ}≥1(σ · ∇ϕ)

}
dx = 0.

As a consequence, f = 0 a.e. in R
3 that means Re{n ·ϕ} ≤ 1 a.e. for all n ∈ C

2

such that |n| = 1. This clearly implies that |ϕ| ≤ 1 a.e. in R
3. �
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In what follows, we say that a sequence {ϕn}n is X-bounded if there
exists a positive constant C independent of n such that

‖ϕn‖2
L2 +

∫

R3

|σ · ∇ϕn|2
(1 − |ϕn|2)+ dx ≤ C. (2.2)

Lemma 2.2. Let {ϕn}n be a minimizing sequence of (2.1), then {ϕn}n is X-
bounded, bounded in H1(R3) and Iν > −∞.

Proof. Indeed, since {ϕn}n is a minimizing sequence, there exists a constant
C such that

C ≥ E(ϕn) ≥
∫

R3

|σ · ∇ϕn|2
(1 − |ϕn|2)+ dx− a

2
ν ≥

∫

R3

|σ · ∇ϕn|2 dx− a

2
ν

=
∫

R3

|∇ϕn|2 dx− a

2
ν ≥ −a

2
ν.

As a conclusion, ‖ϕn‖H1 is bounded independently of n and Iν is bounded
from below. �

Lemma 2.3. For all ν ∈ (0, 1), Iν ≤ 0. Moreover, the strict inequality I < 0 is
equivalent to the strict concentration-compactness inequalities

I < Iν + I1−ν , ∀ν ∈ (0, 1). (2.3)

Proof. Indeed, let ϕ ∈ D(R3) such that
∫

R3 |ϕ|2 = ν and
∫

R3
|σ·∇ϕ|2

(1−|ϕ|2)+ dx <

+∞, and let ϕγ(x) = γ−3/2ϕ(γ−1x) for γ > 1. Then

Iν ≤ E(ϕγ) =
1
γ2

∫

R3

|σ · ∇ϕ|2(
1 − 1

γ3 |ϕ|2
)

+

dx− 1
γ3

a

2

∫

R3

|ϕ|4 dx,

and letting γ → +∞, we prove Iν ≤ 0.
By a scaling argument, we obtain

Iϑν ≤ inf

⎧⎨
⎩ϑ1/3

∫

R3

|σ · ∇ϕ|2
(1 − |ϕ|2)+ dx− ϑa

2

∫

R3

|ϕ|4 dx|ϕ ∈ X,

∫

R3

|ϕ|2 dx = ν

⎫⎬
⎭ ,

and, if Iν < 0, we may restrict the infimum Iν to elements ϕ satisfying

K(ϕ) =
∫

R3

|σ · ∇ϕ|2
(1 − |ϕ|2)+ dx ≥ δ > 0,

for some δ > 0. Indeed, if there is a minimizing sequence {ϕn}n of Iν such that
K(ϕn) −→

n
0, then, by Sobolev embeddings, ϕn −→

n
0 in Lp(R3) for 2 < p ≤ 6

and Iν ≥ 0. As a conclusion, if Iν < 0, then, for all ϑ > 1 and for all ν > 0,

Iϑν < ϑ inf

⎧⎨
⎩E(ϕ)|ϕ ∈ X,K(ϕ) > 0,

∫

R3

|ϕ|2 dx = ν

⎫⎬
⎭ = ϑIν . (2.4)
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Hence, a straightforward argument (see lemma II.1 of [3]) proves that (2.3) is
equivalent to I < 0. �

In order to prove Theorem 1.1 we need to analyse the possible behaviour
of minimizing sequences for I. This is done in the following lemma.

Lemma 2.4. Let {ϕn}n be a X-bounded sequence such that
∫

R3 |ϕn|2 dx = 1
for all n ≥ 0. Then there exists a subsequence that we still denote by {ϕn}n

such that one of the following properties holds:

1. Compactness up to a translation: there exists a sequence {yn}n ⊂ R
3 such

that, for every ε > 0, there exists 0 < R < ∞ with
∫

B(yn,R)

|ϕn|2 dx ≥ 1 − ε;

2. Vanishing: for all 0 < R < ∞

sup
y∈R3

∫

B(y,R)

|ϕn|2 dx −→
n

0;

3. Dichotomy: there exist α ∈ (0, 1) and n0 ≥ 0 such that there exist two
X-bounded sequences, {ϕn

1}n≥n0 and {ϕn
2}n≥n0 , satisfying the following

properties:

‖ϕn − (ϕn
1 + ϕn

2 )‖Lp −→
n

0, for 2 ≤ p < 6, (2.5)

and ∫

R3

|ϕn
1 |2 dx −→

n
α and

∫

R3

|ϕn
2 |2 dx −→

n
1 − α, (2.6)

dist(suppϕn
1 , suppϕn

2 ) −→
n

+∞. (2.7)

Moreover, in this case we have that

lim inf
n→+∞ E(ϕn) − E(ϕn

1 ) − E(ϕn
2 ) ≥ 0, (2.8)

which implies I ≥ Iα + I1−α.

Proof of Lemma 2.4. Let {ϕn}n be a X-bounded sequence such that∫
R3 |ϕn|2 dx = ν for all n ≥ 0. We remind that X-bounded means that there

exists C > 0 such that

‖ϕn‖2
L2 +

∫

R3

|σ · ∇ϕn|2
(1 − |ϕn|2)+ dx ≤ C.

Moreover, thanks to Lemma 2.1, if {ϕn}n is aX-bounded sequence then {ϕn}n

is bounded in L∞ (by the constant 1) and in H1(R3). Then, along the lines of
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[3], we introduce the so-called Lévy concentration functions

Qn(R) = sup
y∈R3

∫

|x−y|<R

|ϕn|2 dx, (2.9)

Kn(R) = sup
y∈R3

∫

|x−y|<R

|σ · ∇ϕn|2
(1 − |ϕn|2)+ dx (2.10)

for R > 0. Note that Qn and Kn are continuous non-decreasing functions on
[0,+∞), such that for all n ≥ 0 and for all R > 0

Qn(R) +Kn(R) ≤ C

since {ϕn}n is X-bounded. Then, up to a subsequence, we have for all R > 0

Qn(R) −→
n
Q(R), (2.11)

Kn(R) −→
n
K(R), (2.12)

where Q and K are nonnegative, non-decreasing functions. Clearly, we have
that

α = lim
R→+∞

Q(R) ∈ [0, 1],

and we denote l = limR→+∞K(R).
If α = 0, then the situation (2) of the lemma arises as a direct conse-

quence of definition (2.9). If α = 1, then (1) follows, see [3] for details. Assume
that α ∈ (0, 1), we have to show that (3) holds.

First of all, consider ε > 0, small, and Rε > 0 such that Q(Rε) = α − ε
and K(Rε) ≤ l − ε. Then, for n large enough,

Qn(Rε) −Q(Rε) < 1/n, Kn(Rε) −K(Rε) < 1/n,

and by definition of the Lévy functions Qn and Kn, extracting subsequences
if necessary, there exists yn ∈ R

3 such that
∣∣∣∣∣∣∣

∫

|x−yn|<Rε

|ϕn|2 dx−Qn(Rε)

∣∣∣∣∣∣∣
≤ 1
n
,

∣∣∣∣∣∣∣
∫

|x−yn|<Rε

|σ · ∇ϕn|2
(1 − |ϕn|2)+ dx−Kn(Rε)

∣∣∣∣∣∣∣
≤ 1
n
.

Next define Rn > Rε such that
∫

Rε<|x−yn|<Rn

|ϕn|2 dx =
3
n

+ ε.
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Necessarily, Rn → +∞ as n → +∞. Indeed, if Rn ≤ M for some M > 0, then
Q(M) > α, which is impossible. We then deduce that for n large enough,

∫
Rn
8 ≤|x−yn|≤Rn

|ϕn|2 dx ≤ 3
n

+ ε.

Let ξ, ζ be cut-off functions: ξ, ζ ∈ D(R3) such that

ξ(x) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1 |x| ≤ 1

1 − exp

⎛
⎝1− 1

1 − exp
(
1 − 1

2−|x|
)

⎞
⎠ 1 < |x| < 2

0 |x| ≥ 2

ζ(x) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0 |x| ≤ 1

exp

⎛
⎝1 − 1

1 − exp
(
1 − 1

2−|x|
)

⎞
⎠ 1 < |x| < 2

1 |x| ≥ 2

,

and let ξμ, ζμ denote ξ
(

·
μ

)
, ζ

(
·
μ

)
. We define

ϕn
1 (·) = ξRn

8
(· − yn)ϕn(·) = ξRn

8 ,yn
(·)ϕn(·) (2.13)

ϕn
2 (·) = ζRn

2
(· − yn)ϕn(·) = ζRn

2 ,yn
(·)ϕn(·) (2.14)

with Rn → +∞. The limit (2.7) follows easily from these definitions. Further-
more, (2.5) and (2.6) are obtained in the following way:

lim
n→+∞

∫

R3

|ϕn − (ϕn
1 + ϕn

2 )|2 dx

= lim
n→+∞

∫
Rn
8 ≤|x−yn|≤Rn

|(1 − ξRn
8

− ζRn
2

)ϕn|2 dx

≤ lim
n→+∞

∫
Rn
8 ≤|x−yn|≤Rn

|ϕn|2 dx ≤ ε.

Now by taking a sequence of ε tending to 0, and by taking a diagonal sequence
of the functions ϕn, and calling it by the same name, we find

∫
Rn
8 ≤|x−yn|≤Rn

|ϕn|2 dx −→
n

0,

and, since {ϕn
1}n and {ϕn

2}n are bounded in H1(R3), we also obtain

lim
n→+∞ ‖ϕn − (ϕn

1 + ϕn
2 )‖Lp −→

n
0,
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for 2 ≤ p < 6. Next, we have to prove that {ϕn
1}n≥n0 and {ϕn

2}n≥n0 are
X-bounded. To this purpose, we show that

lim
n→+∞

∫

R3

|σ · ∇ϕn
1 |2

(1 − |ϕn
1 |2)+ dx−

∫

R3

ξ2Rn
8 ,yn

|σ · ∇ϕn|2
(1 − |ϕn

1 |2)+ dx = 0 (2.15)

and

lim
n→+∞

∫

R3

|σ · ∇ϕn
2 |2

(1 − |ϕn
2 |2)+ dx−

∫

R3

ζ2
Rn
2 ,yn

|σ · ∇ϕn|2
(1 − |ϕn

2 |2)+ dx = 0. (2.16)

Indeed, if (2.15) and (2.16) hold, we obtain that for all ε > 0, there exists
n0 ≥ 0 such that for all n ≥ n0, we have

∫

R3

|σ · ∇ϕn
1 |2

(1 − |ϕn
1 |2)+ dx ≤

∫

R3

ξ2Rn
8 ,yn

|σ · ∇ϕn|2
(1 − |ϕn

1 |2)+ dx+ o(1)n→+∞

≤
∫

R3

|σ · ∇ϕn|2
(1 − |ϕn|2)+ dx+ o(1)n→+∞ ≤ C + o(1)n→+∞,

and

∫

R3

|σ · ∇ϕn
2 |2

(1 − |ϕn
2 |2)+ dx ≤

∫

R3

ζ2
Rn
2 ,yn

|σ · ∇ϕn|2
(1 − |ϕn

2 |2)+ dx+ o(1)n→+∞

≤
∫

R3

|σ · ∇ϕn|2
(1 − |ϕn|2)+ dx+ o(1)n→+∞ ≤ C + o(1)n→+∞.

To prove (2.15) we proceed as follows. We remark that

∫

R3

|σ · ∇ϕn
1 |2

(1 − |ϕn
1 |2)+ dx−

∫

R3

ξ2Rn
8 ,yn

|σ · ∇ϕn|2
(1 − |ϕn

1 |2)+ dx = An +Bn,

where

An :=
∫

R3

|σ · (∇ξRn
8 ,yn

)ϕn|2
(1 − |ϕn

1 |2)+ dx

=
∫

Rn
8 ≤|x−yn|≤ Rn

4

|σ · (∇ξRn
8 ,yn

)ϕn|2
(1 − |ϕn

1 |2)+ dx

≤
∫

Rn
8 ≤|x−yn|≤ Rn

4

|σ · (∇ξRn
8 ,yn

)ϕn|2
1 − ξ2Rn

8 ,yn

dx := Cn,
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and

|Bn| ≤ 2(Cn)
1
2

⎛
⎝

∫

R3

|σ · ∇ϕn|2
(1 − |ϕn|2)+ dx

⎞
⎠

1
2

.

Let us now prove that Cn tends to 0 as n goes to +∞. Using spherical
coordinates, we obtain

Cn ≤
Rn
4∫

Rn
8

π∫

0

2π∫

0

|(σ · er)ϕn(s, θ, φ)|2
(
ξ′

Rn
8

(s)
)2

1 − ξ2Rn
8

(s)
s2 sin θ ds dθ dφ

≤ 64
R2

n

Rn
4∫

Rn
8

π∫

0

2π∫

0

|ϕn(s, θ, φ)|2
(
ξ′

(
8

Rn
s
))2

1 − ξ2
(

8
Rn
s
) s2 sin θ ds dθ dφ

≤ 64
R2

n

max
1≤r≤2

(ξ′(r))2

1 − ξ2(r)

×
+∞∫

0

π∫

0

2π∫

0

|ϕn(s, θ, φ)|2 s2 sin θ ds dθ dφ = O

(
1
R2

n

)

since max1≤r≤2
(ξ′(r))2

1−ξ2(r) ≤ C. Indeed, since ξ2(r) = 1 if and only if r = 1,
(ξ′(r))2

1−ξ2(r) is a continuous function on (1, 2). Moreover, by a straightforward cal-

culation, we obtain limr→1+
(ξ′(r))2

1−ξ2(r) = 0 = limr→2−
(ξ′(r))2

1−ξ2(r) . Hence, we can

conclude, that (ξ′(r))2

1−ξ2(r) is bounded in [1, 2]. As a conclusion, since Rn → +∞,
we obtain

lim
n→+∞

∫

R3

|σ · ∇ϕn
1 |2

(1 − |ϕn
1 |2)+ dx−

∫

R3

ξ2Rn
8 ,yn

|σ · ∇ϕn|2
(1 − |ϕn

1 |2)+ dx = 0.

With the same argument, we prove (2.16).
Finally, it remains to show that

lim inf
n→+∞ E(ϕn) − E(ϕn

1 ) − E(ϕn
2 ) ≥ 0.

First of all, using the definitions (2.13) and (2.14), we obtain

lim
n→+∞

∫

R3

|σ · ∇ϕn|2
(1 − |ϕn|2)+ dx ≥ lim

n→+∞

∫

R3

|σ · ∇ϕn|2
(1 − |ϕn

1 |2 − |ϕn
2 |2)+ dx.

Next, we remark that

∫

R3

|σ · ∇ϕn|2
(1 − |ϕn

1 |2 − |ϕn
2 |2)+ dx−

∫

R3

|σ · ∇ϕn
1 |2

(1 − |ϕn
1 |2)+ dx−

∫

R3

|σ · ∇ϕn
2 |2

(1 − |ϕn
2 |2)+ dx
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=
∫

R3

|σ · ∇ϕn|2
(1 − |ϕn

1 |2 − |ϕn
2 |2)+ dx−

∫

R3

ξ2Rn
8 ,yn

|σ · ∇ϕn|2
(1 − |ϕn

1 |2)+ dx

−
∫

R3

ζ2
Rn
2 ,yn

|σ · ∇ϕn|2
(1 − |ϕn

2 |2)+ dx+ o(1)n→∞

=
∫

R3

(1 − ξ2Rn
8 ,yn

− ζ2
Rn
2 ,yn

)|σ · ∇ϕn|2
(1 − |ϕn

1 |2 − |ϕn
2 |2)+ dx+ o(1)n→∞

≥ o(1)n→∞.

As a conclusion,

lim
n→+∞

∫

R3

|σ · ∇ϕn|2
(1 − |ϕn|2)+ dx ≥ lim

n→+∞

∫

R3

|σ · ∇ϕn
1 |2

(1 − |ϕn
1 |2)+ dx

+ lim
n→+∞

∫

R3

|σ · ∇ϕn
2 |2

(1 − |ϕn
2 |2)+ dx,

and, using (2.5) and the localization properties of ϕn
1 and ϕn

2 , we have

I = lim
n→+∞ E(ϕn) ≥ lim inf

n→+∞ E(ϕn
1 ) + lim inf

n→+∞ E(ϕn
2 ) ≥ Iα + I1−α.

�

Proof of Theorem 1.1. Assume that I < 0. By Lemma 2.2, any minimizing
sequence {ϕn}n is X-bounded, and then we can use Lemma 2.4 to it. It is
easy to rule out vanishing and dichotomy whenever I < 0.

Vanishing cannot occur. Indeed, if vanishing occurs, then, up to a subse-
quence, ∀R < +∞ we have

lim
n→+∞ sup

y∈R3

∫

B(y,R)

|ϕn|2 = 0. (2.17)

This implies that ϕn converges strongly in Lp(R3) for 2 < p < 6 and, as a
consequence, I ≥ 0. Clearly, this contradicts I < 0.
Moreover, if dichotomy occurs, we have

I = lim
n→+∞ E(ϕn) ≥ lim inf

n→+∞ E(ϕn
1 ) + lim inf

n→+∞ E(ϕn
2 ) ≥ Iα + I1−α

which contradicts Lemma 2.3, since I < 0.
Hence, for n large enough, there exists {yn}n ⊂ R

3 such that ∀ε > 0,
∃R < +∞, ∫

B(yn,R)

|ϕn|2 ≥ 1 − ε.

We denote by ϕ̃n(·) = ϕn(· + yn). Since {ϕ̃n}n is bounded in H1, {ϕ̃n}n

converges weakly in H1, almost everywhere on R
3 and in Lp

loc for 2 ≤ p < 6 to
some ϕ̃. In particular, as a consequence of weak convergence in H1, σ · ∇ϕ̃n
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converges weakly to σ ·∇ϕ̃ in L2. Moreover, thanks to the concentration-com-
pactness argument, {ϕ̃n}n converges strongly in L2 and in Lp for 2 ≤ p < 6.

Lemma 2.5. Let {fn}n and {gn}n be two sequences of functions such that
fn : R

3 → R+, gn : R
3 → C

2 , fn converges to f a.e., gn converges weakly to
g in L2 and there exists a constant C, that does not depend on n, such that∫

R3 fn|gn|2 dx ≤ C. Then∫

R3

f |g|2 dx ≤ lim inf
n→+∞

∫

R3

fn|gn|2 dx.

�

Proof. Given a function h : R
3 → R+, let Tk be the function defined by

Tk(h)(x) =

{
h(x) if h(x) ≤ k

k if h(x) > k

for all k ∈ [0,∞). Hence, the following properties are satisfied for all k ∈ [0,∞):

Tk(fn) −→
n
Tk(f) a.e. in R

3, (2.18)

Tk(fn)|g|2 −→
n
Tk(f)|g|2 in L1, (2.19)

Tk(fn)g ⇀
n
Tk(f)g in L2, (2.20)

‖Tk(fn)g‖L2 −→
n

‖Tk(f)g‖L2 , (2.21)

where to obtain (2.19) and (2.21), we use Lebesgue’s dominated convergence
theorem. Moreover, as a consequence of (2.20) and (2.21), we have

Tk(fn)g −→
n
Tk(f)g in L2. (2.22)

Next, we have

0 ≤ lim inf
n→+∞

∫

R3

Tk(fn)|gn − g|2 dx = lim inf
n→+∞

∫

R3

Tk(fn)|gn|2 dx

+ lim inf
n→+∞

∫

R3

Tk(fn)|g|2 dx

− lim inf
n→+∞

⎛
⎝

∫

R3

Tk(fn) gn · g dx+
∫

R3

Tk(fn) gn · g dx
⎞
⎠

= lim inf
n→+∞

∫

R3

Tk(fn)|gn|2 dx+
∫

R3

Tk(f)|g|2 dx− 2
∫

R3

Tk(f)|g|2 dx.

thanks to (2.19), (2.22) and the fact that gn converges weakly to g in L2. As
a consequence, ∫

R3

Tk(f)|g|2 dx ≤ lim inf
n→+∞

∫

R3

Tk(fn)|gn|2 dx. (2.23)
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Since

lim inf
n→+∞

∫

R3

Tk(fn)|gn|2 dx ≤ lim inf
n→+∞

∫

R3

fn|gn|2 dx ≤ C,

we can pass to the limit for k that goes to +∞ in (2.23) and we obtain∫

R3

f |g|2 dx ≤ lim inf
n→+∞

∫

R3

fn|gn|2 dx.

�

By applying Lemma 2.5 to fn = 1
(1−|ϕ̃n|2)+

and gn = |σ ·∇ϕ̃n|, we obtain
∫

R3

|σ · ∇ϕ̃|2
(1 − |ϕ̃|2)+ dx ≤ lim inf

n→+∞

∫

R3

|σ · ∇ϕ̃n|2
(1 − |ϕ̃n|2)+ dx.

Hence, ϕ̃ ∈ X,
∫

R3 |ϕ̃|2 dx = 1, and

E(ϕ̃) ≤ lim inf
n→+∞ E(ϕ̃n) ≤ E(ϕ̃).

As a conclusion, the minimum of I is achieved by ϕ̃.
Finally, it remains to prove that there exists a0 > 0 such that for all

a > a0 we have I < 0. We do it in the lemma below.

Lemma 2.6. There exists a strictly positive constant a0 such that I < 0 if and
only if a > a0. In particular, 10.96 ≈ 2

S2 < a0 < 48.06, where S is the best
constant in the Sobolev embedding of H1(R3) into L6(R3).

Proof. It is clear that I < 0 for a large enough. Since I is non-increasing with
respect to a, we may denote by a0 the least positive constant such that I < 0
for a > a0. We have to prove that a0 > 0 or in other words I = 0 for a small
enough. Using Sobolev and Hölder inequalities, we find, for ϕ ∈ X such that∫

R3 |ϕ|2 dx = 1,

E(ϕ) ≥ 1
S2

⎛
⎝

∫

R3

|ϕ|6 dx
⎞
⎠

1/3

− a

2

⎛
⎝

∫

R3

|ϕ|6 dx
⎞
⎠

1/3

.

Hence, if a ≤ 2
S2 , I = 0. This implies a0 > 2

S2 . According to [7] the best
constant for the Sobolev inequality

‖u‖Lq(Rm) ≤ C‖∇u‖Lp(Rm)

with 1 < p < m and q = mp
(m−p) is given by

C = π−1/2m−1/p

(
p− 1
m− p

)1−1/p (
Γ(1 +m/2)Γ(m)

Γ(m/p)Γ(1 +m−m/p)

)1/m

.

In particular,

S =
1√
3π

(
4√
π

)1/3

,
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and

2
S2

=
3π4/3

21/3
≈ 10.96.

To obtain an upper estimate for a0, we consider the following test function

ϕ̄(x) =
(
f̄R(|x|)

0

)

where f̄R(|x|) = f̄
(

|x|
R

)
,

f̄(|x|) =

{
cos(|x|) |x| ≤ π

2

0 |x| > π
2

and R ∈ (0, 1) is such that
∫ |f̄R|2 dx = 1. This implies

R =
(

2
π

)2/3 (
3

π2 − 6

)1/3

.

Next, we denote by ā the positive constant such that E(ϕ) = 0. By definition,

ā =
2
∫

R3
|σ·∇ϕ̄|2

(1−|ϕ̄|2)+ dx∫ |ϕ̄|4 =
2
∫

R3
|∇f̄R|2
1−|f̄R|2 dx∫ |f̄R|4 ,

and, by a straightforward calculation, we obtain
∫

R3

|∇f̄R|2
1 − |f̄R|2 dx =

π4

6
R =

π10/3

32/3(2(π2 − 6))1/3
,

∫
|f̄R|4 =

π2(2π2 − 15)
32

R3 =
3(2π2 − 15)
8(π2 − 6)

.

As a consequence,

ā =
8π10/3

(
2
3 (π2 − 6)

)2/3

3(2π2 − 15)
≈ 48.06.

Since the energy functional E is decreasing in a, if a > ā then I ≤ E(ϕ̄) < 0.
As a conclusion, a0 ≤ ā+ ε for all ε > 0. �
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Appendix A.

A.1.

We begin this section by proving that if (ϕ, χ) is a solution of (1.7) with
ϕ ∈ H1(R3) of the form (1.12), then |ϕ|2 ≤ 1 a.e. in R

3. As we saw before, ϕ
is a solution of

− σ · ∇
(

σ · ∇ϕ
1 − |ϕ|2

)
+

|σ · ∇ϕ|2
(1 − |ϕ|2)2ϕ− a|ϕ|2ϕ+ bϕ = 0, (A.1)

or equivalently,

Δϕ
|ϕ|2 − 1

− |σ · ∇ϕ|2
(|ϕ|2 − 1)2

ϕ− a|ϕ|2ϕ+ bϕ = 0,

or still,

Δϕ− |∇ϕ|2
|ϕ|2 − 1

ϕ− (a|ϕ|2ϕ− bϕ)(|ϕ|2 − 1) = 0,

because for functions ϕ of the form (1.12),

|σ · ∇ϕ|2 = |∇ϕ|2 and σ · (∇ϕ ∧ ∇ϕ) = 0 a. e.

For any K > 1, we define the truncation function TK(s) by TK(s) = s if
1 < s < K, and TK(s) = 0 otherwise. Multiplying the above equation by
ϕTK(|ϕ|2) ∈ L2(R3), we obtain

−
∫

R3

|∇ϕ|2 TK(|ϕ|2) −
∫

R3

(∇ϕ · ϕ)∇TK(|ϕ|2) −
∫

R3

|∇ϕ|2
|ϕ|2 − 1

|ϕ|2 TK(|ϕ|2)

−
∫

R3

(a|ϕ|2 − b)(|ϕ|2 − 1)|ϕ|2 TK(|ϕ|2) = 0. (A.2)

Moreover, for all K > 1,

∇TK(|ϕ|2) =

{
2ϕ · ∇ϕ 1 < |ϕ|2 < K

0 |ϕ|2 ≤ 1 or |ϕ|2 ≥ K

Therefore, if a − b > 0 the l.h.s. of (A.2) is negative and this implies that
either |ϕ|2 ≤ 1 or |ϕ|2 ≥ K a.e. As a conclusion, taking the limit K → +∞,
if a − b > 0 then any solution ϕ of (A.1) of the form (1.12) satisfies |ϕ|2 ≤ 1
a.e. in R

3, and in the equation (A.1) we can replace the term (1 − |ϕ|2) by
(1 − |ϕ|2)+ without changing its solution set. The same happens for solutions
of the form (1.8).

A.2.

Let us next prove that the functional F , defined by (1.11), is not bounded
from below. Consider the function ξ introduced in the proof of Lemma 2.4.
Let us denote A :=

∫
R3 |ξ(x)|2 dx.
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Then, let us define the radially symmetric function

f(r) =

{
e(r−√

ln 2)2 , 0 ≤ r <
√

ln 2,

ξ̄(r + 1 − √
ln 2), r ≥ √

ln 2,

where ξ̄(|x|) = ξ(x) for all x, and take a :=
∫

R3 f(|x|)2 dx. Note that supp(f)

⊂ [0, 1 +
√

ln 2] and max0≤r≤1+
√

ln 2
(f ′(r))2

1−f2(r) ≤ C, for some constant C > 0.
Next, for all integers n > 0, define the rescaled functions ξn(x) :=

n3/2ξ(nx). This change of variables leaves invariant the L2(R3) norm. Then
for n large, consider the function

gn(x) := max
R3

{ξn(x), f(|x|)}.

Note that the measure of the set {x ∈ R
3 ; gn = ξn} tends to 0 as n goes to

+∞. This function satisfies
∫

R3 |gn(x)|2 dx = A+a+o(1), as n goes to +∞. In
order to normalize it in the L2 norm, let us finally define the rescaled function
gR

n (x) := gn

(
x
R

)
, R > 0 and choose Rn such that

∫
R3 |gRn

n (x)|2 dx = 1. As n
goes to +∞, Rn → R̄ := (A + a)−1/3 > 0. We compute now the energy F of
the vector function ϕRn

n defined by

ϕRn
n (x) =

(
gRn

n (x)
0

)
.

We find

F(ϕRn
n )

4π
=

∫

ξRn
n ≥fRn

((ξRn
n )′(r))2

1 − (ξRn
n (r))2

r2dr − an3R3
n

2

∫

ξRn
n ≥fRn

(ξ(r))4 r2dr

+Rn

∫

ξRn
n ≤fRn

(f ′(r))2

1 − f2(r)
r2dr − aR3

n

2

∫

ξRn
n ≤fRn

f(r)4 r2dr

≤ −an3R3
n

2

+∞∫

0

(ξ(r))4 r2dr +Rn

+∞∫

0

(f ′(r))2

1 − f2(r)
r2dr

−aR3
n

2

+∞∫

0

f(r)4 r2dr + o(n3),

because whenever ξRn
n ≥ fRn , (ξRn

n )2 > 1 and because the sequence {Rn}n is
bounded. This clearly shows that F is unbounded from below.
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1(2), 109–145 (1984)

[4] Lions, P.L.: The concentration-compactness principle in the calculus of varia-
tions. The locally compact case. II. Ann. Inst. H. Poincaré Anal. Non Linéaire
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