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Multiple Vortices in the Aharony–Bergman–
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Abstract. Vortices in non-Abelian gauge field theory play important roles
in confinement mechanism and are governed by systems of nonlinear ellip-
tic equations of complicated structures. In this paper, we present a series
of existence and uniqueness theorems for multiple vortex solutions of the
BPS vortex equations, arising in the dual-layered Chern–Simons field the-
ory developed by Aharony, Bergman, Jafferis, and Maldacena, over R

2

and on a doubly periodic domain. In the full-plane setting, we show that
the solution realizing a prescribed distribution of vortices exists and is
unique. In the compact setting, we show that a solution realizing n pre-
scribed vortices exists over a doubly periodic domain Ω if and only if the
condition

n <
λ|Ω|
2π

holds, where λ > 0 is the Higgs coupling constant. In this case, if a
solution exists, it must be unique. Our methods are based on calculus of
variations.

1. Introduction

Vortices have important applications in many fundamental areas of physics.
For example, in particle physics, vortices allow one to generate dually (elec-
trically and magnetically) charged vortex-like solitons [21,32,39] known as
dyons [34,42,43]; in cosmology, vortices generate topological defects know as
cosmic strings [15,31] which give rise to useful mechanisms for matter forma-
tion in the early universe. Besides, both electrically and magnetically charged
vortices arise in a wide range of areas in condensed-matter physics including
high-temperature superconductivity [11,29], optics [8,30,33], etc.

Mathematically, Chern–Simons theories in (2 + 1)-dimensions are
introduced to accommodate electricity. The equations of motions of various
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Chern–Simons vortex models are hard to approach even in the radially sym-
metric static cases. However, since the discovery of the self-dual structure in the
Abelian Chern–Simons vortex model [16,18,19] in 1990 (cf. [17]), there came
a burst of fruitful works on Chern–Simons vortex equations, non-relativistic
and relativistic, Abelian and non-Abelian [9,10]. For example, Aldrovandi and
Schaposnik [3,28] found the non-Abelian vortex solutions when gauge field
dynamics is solely governed by a Chern–Simons action and the symmetry
breaking potential is six-order in order to ensure self-duality and supersym-
metric extension, in the presence of a set of orientational collective coordi-
nates. Furthermore, the existence of Chern–Simons–Higgs vortex solutions was
proved in (2+1)-dimensions with internal collective coordinates [22]. The exis-
tence of topological solutions for relativistic Abelian Chern–Simons equations
involving two Higgs particles and two gauge fields was proved through studying
the full R

2 limit of a coupled system of two nonlinear elliptic equations [25]. In
2008, Aharony et al. [2] developed the so-called ABJM theory in terms of three-
dimensional Chern–Simons-matter theories with gauge groups U(N) × U(N)
and SU(N) × SU(N) which have explicit N = 6 superconformal symmetry.
Before long, Auzzi and Kumar [4] find half-BPS vortex solitons, at both weak
and strong couplings, in this theory.

More recently, the existence of solutions for Abelian Chern–Simons equa-
tions involving two Higgs particles and two gauge fields on a torus was proved
by Lin and Prajapat [24]. Using the methods of monotone iterations, a pri-
ori estimates, degree-theory argument and constrained minimization, multiple
vortex equations in U(N) and SO(2N) theories were discussed [14,26,27] and
a series of sharp existence and uniqueness theorems were established. Lieb and
Yang [23] discussed non-Abelian vortices in supersymmetric gauge field the-
ory, over doubly periodic domains, via a highly efficient direct minimization
approach. These studies unveil a broad spectrum of systems of elliptic equa-
tions with exponential nonlinearities and rich properties and structures, which
present new challenges.

In this paper, we will concentrate on the non-Abelian BPS vortex equa-
tions derived by Auzzi and Kumar [4] in a supersymmetric Chern–Simons–
Higgs theory formulated by Aharony et al. [2], known as the ABJM model.
Developing and extending the methods of [20,23,26,27,38,41], we obtain the
existence and uniqueness of a multiple vortex solution.

The content of the rest of paper is outlined as follows. In Sect. 2, we
review the multiple vortex equations in the ABJM model and compare them
with those arising in the classical Abelian Chern–Simons–Higgs theory. We
then state our main (sharp) existence results. In Sect. 3, we present the equa-
tions governing the multiple vortices. In Sect. 4, we prove the existence and
uniqueness of a multiple vortex solution realizing an arbitrarily prescribed vor-
tex distribution over R

2, applying the variational method of Jaffe and Taubes
[20] used for the Abelian Higgs model. In Sect. 5, we prove the existence of a
multiple vortex solution over a doubly periodic domain under a necessary and
sufficient condition explicitly stated in terms of some physical coupling para-
meters, by a multi-constrained variational approach. Furthermore, in Sect. 6,
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our methods are shown to be equally effective in treating the existence and
uniqueness problems for the multiple vortex solution induced from indepen-
dently prescribed distributions of zeros of two complex scalar fields, instead of
one.

2. Vortices in the Model of Aharony, Bergman, Jafferis
and Maldacena

In the classical Abelian Chern–Simons–Higgs theory [17], the Chern–Simons
action density is given by

LCS =
κ

4
εμνγAμFνγ , (2.1)

where κ > 0 is the Chern–Simons coupling constant often referred to as the
Chern–Simons level, Aμ (μ = 0, 1, 2) is a real-valued gauge field defined over
the Minkowski spacetime R

2,1 of signature (+ − −), and Fμν = ∂μAν − ∂νAμ

is the electromagnetic field. Use φ to denote the scalar Higgs field which is
complex-valued and subject to the sixth-order potential density [16,19]

V (φ) =
λ

4
|φ|2(|φ|2 − 1)2. (2.2)

The gauge-covariant derivatives are then given by Dμφ = ∂μφ−iAμφ where i =√−1. The Chern–Simons–Higgs action density built over the above-described
Chern–Simons electromagnetism and the Higgs scalar is written as [16,19]

L = −κ

4
εμνγAμFνγ +

1
2
DμφDμφ − λ

4
|φ|2(|φ|2 − 1)2. (2.3)

In the critical BPS coupling under the condition

λ =
1

2κ2
, (2.4)

the static equations of motion of the Lagrangian (2.3) are shown to be reduced
to the first-order equations [16,19]

D1φ ± iD2φ = 0, (2.5)

F12 ∓ 1
2κ2

|φ|2(1 − |φ|2) = 0, (2.6)

subject to the Gauss law constraint κF12 = A0|φ|2. It is well known that
the solutions of this BPS vortex system are characterized by the locations of
the zeros of the scalar field φ, identified as the spots where electrically and
magnetically charged vortices take shape. For the system over the full plane,
there exist topological [35,40] and non-topological [6,7,36] solutions; for the
system over a doubly periodic domain Ω, a solution with n prescribed zeros
or vortices exists if and only if the Chern–Simons coupling constant κ is no
greater [5,37] than a critical level, κc > 0, which satisfies the estimate

κc ≤ 1
4

√
|Ω|
πn

, (2.7)
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which possibly also depends on the locations of the n zeros. While the existence
theory for the above-described Abelian BPS Chern–Simons–Higgs equations is
much developed, there are several lasting and unsettled technical issues such as
the uniqueness of solutions and the precise form of the critical Chern–Simons
level κc, which remain challenging to analysts.

The main contribution of the present paper is to develop an existence
theory for the recently elegantly formulated supersymmetric (non-Abelian)
Chern–Simons–Higgs model by Aharony et al. [2], known also as the ABJM
model, for which we show that all the unsettled issues in the classical Abelian
Chern–Simons–Higgs model [16,19] disappear. In other words, for the ABJM
model, we prove that, in the non-compact full-plane setting, the solution real-
izing a prescribed distribution of vortices exists and is unique, and that, in
the compact doubly-periodic setting, we obtain an explicitly stated necessary
and sufficient condition under which a unique solution realizing n prescribed
vortices exists.

Recall that the ABJM model [2] is a Chern–Simons–Higgs theory within
which the matter fields are four complex scalars,

CI = (Q1, Q2, R1, R2), I = 1, 2, 3, 4, (2.8)

in the bifundamental matter field (N,N) representation of the gauge group
U(N) × U(N), which hosts two gauge fields, Aμ and Bμ. The Chern–Simons
action associated with the two gauge group Aμ and Bμ of levels +k and −k is
given by the Lagrangian density

LCS =
k

4π
εμνγTr

(
Aμ∂νAγ +

2i
3

AμAνAγ − Bμ∂νBγ − 2i
3

BμBνBγ

)
, (2.9)

where the gauge-covariant derivatives on the bifundamental fields are defined
as

DμCI = ∂μCI + iAμCI − iCIBμ, I = 1, 2, 3, 4. (2.10)

The scalar potential of the mass deformed theory can be written in a compact
way as in [13]

V = Tr(Mα†Mα + Nα†Nα), (2.11)

where

Mα = ρQα +
2π

k
(2Q[αQ†

βQβ] + RβR†
βQα − QαR†

βRβ

+2QβR†
βRα − 2RαR†

βQβ), (2.12)

Nα = −ρRα +
2π

k
(2R[αR†

βRβ] + QβQ†
βRα − RαQ†

βQβ

+2RβQ†
βQα − 2QαQ†

βRβ), (2.13)

where the Kronecker symbol εαβ (α, β = 1, 2) is used to lower or raise indices,
and ρ > 0 a massive parameter. Thus, when the spacetime metric is of the



Vol. 14 (2013) Multiple Vortices in the ABJM Model 1173

signature (+−−), the total (bosonic) Lagrangian density of ABJM model can
be written as

L = −LCS + Tr([DμCI ]†[DμCI ]) − V, (2.14)

which is of a pure Chern–Simons type for the gauge field sector. As in [4], we
focus on a reduced situation where (say) Rα = 0. Then, by virtue of (2.12)
and (2.13), the scalar potential density (2.11) takes the form

V = Tr(Mα†Mα), Mα = ρQα +
4π

k
(QαQ†

βQβ − QβQ†
βQα). (2.15)

The equations of motion of the Lagrangian (2.14) are rather complicated.
However, in the static limit, Auzzi and Kumar [4] showed that these equations
may be reduced into the following first-order BPS system of equations

D0Q
1 − iW 1 = 0, D1Q

2 − iD2Q
2 = 0, (2.16)

D1Q
1 = 0, D2Q

1 = 0, D0Q
2 = 0, W 2 = 0, (2.17)

coupled with the Gauss law constraints which are the temporal components of
the Chern–Simons equations

k

4π
εμνγF (A)

νγ = i(Qα[DμQα]† − [DμQα]Qα†), (2.18)

k

4π
εμνγF (B)

νγ = i([DμQα]†Qα − Qα†[DμQα]), (2.19)

where

F (A)
μν = ∂μAν − ∂νAμ + i[Aμ, Aν ],

F (B)
μν = ∂μBν − ∂νBμ + i[Bμ, Bν ],

W 1 = ρQ1 +
2π

k
(Q1Q2†Q2 − Q2Q2†Q1),

W 2 = ρQ2 +
2π

k
(Q2Q1†Q1 − Q1Q1†Q2),

provided that [4] one takes that Q1 assumes its vacuum expectation value

Q1 =

√
ρk

2π
diag

(
0, 1, . . . ,

√
N − 2,

√
N − 1

)
, (2.20)

the non-trivial entries of Q2 are given by (N − 1) complex scalar fields χ and
φ� (� = 1, . . . , N − 2) according to

Q2
N,N−1 =

√
ρk

2π
χ, Q2

N−�,N−�−1 =

√
ρk

2π
φ�, (2.21)

and the spatial components of the gauge fields Aj and Bj (j = 1, 2) are
expressed in terms of (N − 1) real-valued vector potentials a� = (a�

j) and
b = (bj) (j = 1, 2; � = 1, . . . , N − 2) satisfying

Aj = Bj = diag(0, aN−2
j , . . . , a1

j , bj), j = 1, 2. (2.22)



1174 S. Chen et al. Ann. Henri Poincaré

We now consider the solution for the N = 3 case. Our ansatz is taken to
be ([4])

Q1 =

√
ρk

2π

⎛
⎝0 0 0

0 1 0
0 0

√
2

⎞
⎠,

Q2 =

√
ρk

2π

⎛
⎝ 0 0 0√

2χ 0 0
0 φ 0

⎞
⎠, (2.23)

Aj = Bj =

⎛
⎝0 0 0

0 aj 0
0 0 bj

⎞
⎠, j = 1, 2,

where χ is a real-valued scalar field, φ is a complex-valued scalar field, and aj

and bj are two real-valued gauge potential vector fields.
Define ajk = ∂jak−∂kaj and set λ = 4ρ2. Then the BPS vortex equations

(2.16) and (2.17) without assuming radial symmetry are reduced into

(∂1 + i∂2)χ = i(a1 + ia2)χ, (2.24)
(∂1 + i∂2)φ = −i([a1 + ia2] − [b1 + ib2])φ. (2.25)

a12 = −λ

2
(2χ2 − |φ|2 − 1), (2.26)

b12 = −λ(|φ|2 − 1). (2.27)

We shall look for solutions of these equations so that χ never vanishes but φ
vanishes exactly at the finite set of points

Z = {p1, p2, . . . , pn}. (2.28)

A solution is called an n-vortex solution as in the Abelian Higgs situation
[20,41]. Our main existence theorem for the ABJM multiple vortices may be
stated as follows.

Theorem 2.1. For the BPS multiple vortex equations (2.24)–(2.27) arising in
the ABJM Chern–Simons–Higgs model expressed in terms of the gauge fields
aj , bj and scalar fields χ, φ so that χ is real-valued and φ is complex-valued
with the prescribed set of zeros of φ given in (2.28), the existence and unique-
ness of a finite-energy solution is always ensured over the full plane R

2 which
also satisfies the asymptotic condition χ → 1, |φ| → 1 as |x| → ∞ exponen-
tially fast. Furthermore, the existence and uniqueness of an n-vortex solution
over a doubly periodic domain Ω is ensured under the necessary and sufficient
condition

n <
λ|Ω|
2π

. (2.29)

Besides, the associated fluxes over R
2 or Ω have the values∫

a12 dx = 0,

∫
b12 dx = 2πn. (2.30)
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It should be noted that, although the gauge field aj generates only zero
flux, it cannot be gauged away to make a12 vanish everywhere, unless there
is no vortex present or n = 0. This point will become apparent in the next
section.

3. Governing System of Elliptic Equations

To facilitate our computation, it will be convenient to adopt the complexified
derivatives

∂ =
1
2
(∂1 − i∂2), ∂ =

1
2
(∂1 + i∂2), (3.1)

and the notation

a = a1 + ia2, b = b1 + ib2. (3.2)

As a consequence, away from Z, Eqs. (2.24) and (2.25) become

∂ ln χ = −1
2
ia, ∂ ln φ = −1

2
i(a − b), (3.3)

which allow us to solve for a, b to get

a = 2i∂ ln χ, a − b = 2i∂ ln φ. (3.4)

Using

a12 = −i(∂a − ∂a), (3.5)

(2.26), (2.27), (3.4), and the fact that ∂∂ = ∂∂ = 1
4Δ, we have

a12 = −Δln χ. (3.6)

Likewise, we have, away from Z, the relation

b12 = a12 − 1
2
Δ ln |φ|2 = −1

2
Δ(ln χ2 + ln |φ|2). (3.7)

Set u = ln χ2 and v = ln |φ|2 and note that |φ| behaves like |x − ps| for x
near ps (s = 1, . . . , n). We see that u and v satisfy the equations

Δu = λ(2eu − ev − 1), (3.8)

Δu + Δv = 2λ(ev − 1) + 4π
n∑

s=1

δps
(x), (3.9)

where we have included our consideration of the zero set Z of φ as given in
(2.28).

If the gauge field aj may be gauged away, then in view of (2.26) the
associated curvature a12 vanishes everywhere which results in

2χ2 = |φ|2 + 1. (3.10)

Using this result in (3.8) (with χ2 = eu, |φ|2 = ev), we see that u is harmonic,
which leads to the conclusion that u, thus χ, is a constant. Hence, |φ|2 or v is
a constant. This is impossible by virtue of (3.9) when vortices are present.

In the subsequent sections, we study the existence and uniqueness of
solutions of the system of Eqs. (3.8) and (3.9).
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4. Solution on Full Plane

In this section, we prove the existence and uniqueness of the solution of the
system of Eqs. (3.8) and (3.9) over R

2 satisfying the boundary condition

u → 0, v → 0 as |x| → ∞. (4.1)

To proceed further, we introduce the background function [20]

v0(x) = −
n∑

s=1

ln(1 + τ |x − ps|−2), τ > 0. (4.2)

Then, we have

Δv0 = −h(x) + 4π
n∑

s=1

δps
(x), h(x) = 4

n∑
s=1

τ

(τ + |x − ps|2)2 . (4.3)

Using the substitution v = v0 + w, we have

Δu = λ(2eu − ev0+w − 1), (4.4)
Δ(u + w) = 2λ(ev0+w − 1) + h(x). (4.5)

Taking f = u + w, we change (4.4) and (4.5) into

Δu = λ(2eu − ev0+f−u − 1), (4.6)

Δf = 2λ(ev0+f−u − 1) + h(x). (4.7)

It is clear that (4.6) and (4.7) are the Euler–Lagrange equations of the
action functional

I(u, f) =
∫
R2

{
1
2λ

|∇u|2 +
1
4λ

|∇f |2 + (2(eu − 1) − u)

+(ev0+f−u − ev0) +
(

h

2λ
− 1

)
f

}
dx. (4.8)

It is clear that the functional I is a C1-functional for u, f ∈ W 1,2(R2) and its
Fréchet derivative satisfies

DI(u, f)(u, f) =
∫
R2

{
1
λ

|∇u|2 +
1
2λ

|∇f |2 + ev0(ef−u − 1)(f − u)

+2(eu − 1)u + (ev0 − 1)(f − u) +
h

2λ
f

}
dx. (4.9)

Since

|∇u|2 + |∇f |2 = 2|∇u|2 + |∇w|2 + 2(∇u,∇w), (4.10)

Hence

|∇u|2 + |∇f |2 ≤ 3|∇u|2 + 2|∇w|2 ≤ 3(|∇u|2 + |∇w|2). (4.11)
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On the other hand, we have

|∇u|2 + |∇f |2 ≥ 2|∇u|2 + |∇w|2 − 2|(∇u,∇w)|
≥

(
2 − 1

ε

)
|∇u|2 + (1 − ε)|∇w|2, (4.12)

for any ε ∈ ( 1
2 , 1).

Taking ε = 2
3 , we get

|∇u|2 + |∇f |2 ≥ 1
2
|∇u|2 +

1
3
|∇w|2 ≥ 1

3
(|∇u|2 + |∇w|2). (4.13)

Similarly, we have
1
3
(u2 + w2) ≤ u2 + f2 ≤ 3(u2 + w2). (4.14)

As a consequence of (4.9), (4.13) and (4.14), we obtain

DI(u, f)(u, f) − 1
6λ

∫
R2

{|∇u|2 + |∇w|2} dx

≥
∫
R2

{
ev0(ew − 1)w + 2(eu − 1)u + (ev0 − 1)w +

h

2λ
(u + w)

}
dx

=
∫
R2

{(
ev0(ew − 1) + ev0 − 1 +

h

2λ

)
w +

(
2(eu − 1) +

h

2λ

)
u

}
dx

=
∫
R2

{
w

(
ev0+w − 1 +

h

2λ

)
+ u

(
2(eu − 1) +

h

2λ

)}
dx

≡ M1(w) + M2(u). (4.15)

As in [20], we decompose w and u into their positive and negative parts,
w = w+ − w− and u = u+ − u−, where q+ = max{q, 0} and q− = −min{q, 0}
for q ∈ R. Using the elementary inequality

et − 1 ≥ t, t ∈ R, (4.16)

we have

ev0+w − 1 +
h

2λ
≥ v0 + w +

h

2λ
, (4.17)

which leads to

M1(w+) ≥
∫
R2

w2
+dx +

∫
R2

w+

(
v0 +

h

2λ

)
dx

≥ 1
2

∫
R2

w2
+dx − 1

2

∫
R2

(
v0 +

h

2λ

)2

dx. (4.18)

On the other hand, using the inequality

1 − e−t ≥ t

1 + t
, t ≥ 0, (4.19)
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we have

w−

(
1 − h

2λ
− ev0−w−

)
= w−

(
1 − h

2λ
+ ev0(1 − e−w−) − ev0

)

≥ w−

(
1 − h

2λ
+ ev0

w−
1 + w−

− ev0

)

=
w2

−
1 + w−

(
1 − h

2λ

)
+

w−
1 + w−

(
1 − ev0 − h

2λ

)
.

(4.20)

In view of (4.3), we see that we may choose τ > 0 large enough so that

h(x)
λ

< 1, x ∈ R
2. (4.21)

Since 1 − ev0 and h both lie in L2(R2), we have

∫
R2

w−
1 + w−

∣∣∣∣1 − ev0 − h

2λ

∣∣∣∣ dx ≤ ε

∫
R2

w2
−

1 + w−
dx + C(ε), (4.22)

where ε > 0 may be chosen to be arbitrarily small. Combining (4.20) and
(4.22), we obtain

M1(−w−) ≥ 1
4

∫
R2

w2
−

1 + w−
dx − C1(ε), (4.23)

provided that ε < 1
4 . From (4.18) and (4.23), we get

M1(w) ≥ 1
4

∫
R2

w2

1 + |w| dx − C, (4.24)

where in the sequel we use C to denote an irrelevant positive constant. Similar
estimates may be made for M2(u). Thus, (4.15) gives us

DI(u, f)(u, f) − 1
6λ

∫
R2

{|∇u|2 + |∇w|2} dx

≥ 1
4

∫
R2

(
u2

1 + |u| +
w2

1 + |w|
)

dx − C. (4.25)

We now recall the well-known Gagliardo–Nirenberg inequality
∫
R2

u4dx ≤ 2
∫
R2

u2dx

∫
R2

|∇u|2dx, u ∈ W 1,2(R2). (4.26)
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Consequently, we have⎛
⎝ ∫

R2

u2dx

⎞
⎠

2

=

⎛
⎝ ∫

R2

|u|
1 + |u| (1 + |u|)|u|dx

⎞
⎠

2

≤
∫
R2

u2

(1 + |u|)2 dx

∫
R2

(1 + |u|)2|u|2dx

≤ 2
∫
R2

u2

(1 + |u|)2 dx

∫
R2

(u2 + u4)dx

≤ 4
∫
R2

u2

(1 + |u|)2 dx

∫
R2

u2dx

⎛
⎝1 +

∫
R2

|∇u|2dx

⎞
⎠

≤ 1
2

⎛
⎝ ∫

R2

u2dx

⎞
⎠

2

+ C

⎛
⎜⎝1 +

⎡
⎣∫

R2

u2

(1 + |u|)2 dx

⎤
⎦

4

+

⎡
⎣ ∫

R2

|∇u|2dx

⎤
⎦

4
⎞
⎟⎠ . (4.27)

As a result of (4.27), we have
⎛
⎝ ∫

R2

u2dx

⎞
⎠

1
2

≤ C

⎛
⎝1 +

∫
R2

|∇u|2dx +
∫
R2

u2

(1 + |u|)2 dx

⎞
⎠ . (4.28)

Applying (4.28) in (4.25), we arrive at

DI(u, f)(u, f) ≥ C1(‖u‖W 1,2(R2) + ‖w‖W 1,2(R2)) − C2. (4.29)

Thus, using (4.11), (4.13) and (4.14) in (4.29), we conclude with the coercive
lower bound

DI(u, f)(u, f) ≥ C1(‖u‖W 1,2(R2) + ‖f‖W 1,2(R2)) − C2. (4.30)

With (4.30), we can now show that the existence of a critical point of the
action functional (4.8) follows using a standard argument as in [41].

In fact, from (4.30), we can choose R > 0 large enough such that

inf{DI(u, f)(u, f)|u, f ∈ W 1,2(R2), ‖u‖W 1,2(R2) + ‖f‖W 1,2(R2) = R} ≥ 1
(4.31)

(say). Now consider the minimization problem

η = min{I(u, f)|‖u‖W 1,2(R2) + ‖f‖W 1,2(R2) ≤ R}. (4.32)

Let {(uk, fk)} be a minimization sequence of (4.32). Without loss of gen-
erality, we may assume that {(uk, fk)} weakly converges to an element (u, f)
in W 1,2(R2). The weakly lower semi-continuity of I implies that (u, f) solves
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(4.32). To show that (u, f) is a critical pint of I, it suffices to see that it is an
interior point. That is,

‖u‖W 1,2(R2) + ‖f‖W 1,2(R2) < R. (4.33)

Suppose otherwise that ‖u‖W 1,2(R2) + ‖f‖W 1,2(R2) = R. Then for t ∈ (0, 1) the
point (1 − t)(u, f) is interior which gives us

I((1 − t)u, (1 − t)f) ≥ η = I(u, f). (4.34)

On the other hand, we have

lim
t→0

I((1 − t)(u, f)) − I(u, f)
t

=
d
dt

I((1 − t)(u, f))|t=0

= −DI(u, f)(u, f) ≤ −1. (4.35)

Consequently, if t > 0 is sufficiently small, (4.34) leads to

I((1 − t)(u, f)) < I(u, f) = η, (4.36)

which contradicts (4.34). Therefore, the existence of a critical point of I follows.
Note that the part in the integrand of I which does not involve the

derivatives of u and f may be rewritten as

Q(u, f) = 2(eu − 1) − u + ev0+f−u − ev0 +
(

h

2λ
− 1

)
f, (4.37)

whose Hessian is easily checked to be positive definite. Thus, the functional
I is strictly convex. As a consequence, I can have at most one critical point
(u, f) in the space W 1,2(R2).

To proceed further, we now show that the following claim holds.

Claim: If g ∈ W 1,2(R2), then eg − 1 ∈ L2(R2).

We first recall the Sobolev embedding inequality in two dimensions [12]:

‖g‖Lk(R2) ≤
(

π

(
k − 2

2

)) k−2
2k

‖g‖W 1,2(R2), k ≥ 2. (4.38)

On the other hand, the MacLaurin series leads to

(eg − 1)2 = g2 +
∞∑

k=3

2k − 2
k!

gk. (4.39)

Combining the above with (4.38), we have, formally,

‖eg − 1‖2
L2(R2) ≤ ‖g‖2

Lk(R2) +
∞∑

k=3

2k − 2
k!

(
π

k − 2
2

) k−2
2

‖g‖k
W 1,2(R2). (4.40)

Setting

αk =
2k − 2

k!

(
π

k − 2
2

) k−2
2

‖g‖k
W 1,2(R2),

and applying the Stirling formula,

k! ∼
√

2πkk+ 1
2 e−k (k → ∞), (4.41)
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we have

k
√

αk ∼
k
√

2k − 2
ke−1(2kπ)

1
2k

(
π

k − 2
2

) k−2
2k

‖g‖W 1,2(R2)

∼ 2e
√

π‖g‖W 1,2(R2)

(
k − 2
2k2

) 1
2

→ 0 (k → ∞). (4.42)

Thus, we have shown that (4.40) is a convergent series, which verifies our claim.
We now continue our work. Noting v0, h ∈ L2(R2) and using the claim,

we see that the right-hand side of (4.6) and (4.7) belongs to L2(R2). We may
now apply the standard elliptic theory to (4.4) and (4.5) to infer that u,w ∈
W 2,2(R2). In particular, u,w and |∇u|, |∇w| approach zero as |x| → ∞, which
renders the validity of the boundary condition (4.1).

Finally, we derive the decay rates for u, v and |∇u|, |∇v|. Consider (3.8)
and (3.9) outside the disk DR = {x ∈ R

2||x| < R}, where

R > max
{

|ps|
∣∣∣∣s = 1, 2, . . . , n

}
.

We rewrite (3.8) and (3.9) in R
2\DR as

Δu = λ(2eu − ev − 1), (4.43)
Δv = λ(−2eu + 3ev − 1). (4.44)

By computation, we have

Δ(u2 + v2) = 2(|∇u|2 + |∇v|2) + 4λu(eu − 1) + 6λv(ev − 1)
−2λu(ev − 1) − 4λv(eu − 1), x ∈ R

2\DR. (4.45)

Noting u, v → 0 as |x| → ∞, for any ε : 0 < ε < 1, we can find a suitably large
Rε > R so that

Δ(u2 + v2) ≥ (1 − ε)(4λu2 + 6λv2) − 6(1 + ε)λ|uv|
≥ (1 − ε)λ(u2 + v2), x ∈ R

2\DRε
. (4.46)

Thus, using a comparison function argument and the property u2 + v2 = 0 at
infinity, we can obtain a constant C(ε) > 0 to make

u2(x) + v2(x) ≤ C(ε)e−
√

(1−ε)λ|x| (4.47)

valid.
Let ∂ denote any of the two partial derivatives, ∂1 and ∂2. Then (4.43)

and (4.44) yield

Δ(∂u) = λ(2(∂u)eu − (∂v)ev), (4.48)
Δ(∂v) = 3λ(∂v)ev − 2λ(∂u)eu. (4.49)
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By computation and then using the Cauchy inequality, we get

Δ(|∇u|2 + |∇v|2) = 2[|∇(∂1u)|2 + |∇(∂2u)|2 + |∇(∂1v)|2 + |∇(∂2v)|2]
+4λ|∇u|2eu + 6λ|∇v|2ev − 2λ∂1u∂1vev − 2λ∂2u∂2vev

−4λ∂1u∂1veu − 4λ∂2u∂2veu

≥ 4λ|∇u|2eu + 6λ|∇v|2ev − λ|∇u|2(1 + 2e2u)
−λ|∇v|2(2 + e2v), x ∈ R

2\DR. (4.50)

Therefore, as before, we conclude that for any ε : 0 < ε < 1, there is a R̃ε > R,
so that

Δ(|∇u|2 + |∇v|2) ≥ (1 − ε)λ(|∇u|2 + |∇v|2), x ∈ R
2\DR̃ε

. (4.51)

Noting the property |∇u|2 + |∇v|2 = 0 at infinity, applying the comparison
principle, we arrive at

|∇u|2 + |∇v|2 ≤ C(ε)e−
√

(1−ε)λ|x|, |x| > R, (4.52)

where C(ε) > 0 is a constant.
Again, from (4.52), we see that |∇u|, |∇v| = O(|x|−3) at infinity, which

implies |∇f | = O(|x|−3) at infinity. Therefore, in view of the divergence theo-
rem, we have ∫

R2

Δudx =
∫
R2

Δfdx = 0. (4.53)

Integrating (4.6) and (4.7) over R
2 and inserting (4.53) and the definition of

h, we have

λ

∫
R2

(2eu − ev0+f−u − 1) dx = 0, (4.54)

λ

∫
R2

(ev0+f−u − 1) dx = −2πn, (4.55)

as stated in Theorem 2.1.
We may summarize our results as follows.

Theorem 4.1. For any distribution of the points p1, p2, . . . , pn ∈ R
2, the system

of nonlinear elliptic equations (3.8) and (3.9) subject to the boundary condi-
tion (4.1) has a unique solution. Furthermore, the solution satisfies the decay
estimates

u2(x) + v2(x) ≤ C(ε)e−
√

(1−ε)λ|x|, (4.56)

|∇u|2(x) + |∇v|2(x) ≤ C(ε)e−
√

(1−ε)λ|x|, (4.57)

for x ∈ R
2 near infinity, where ε ∈ (0, 1) is arbitrary and C(ε) > 0 is a

constant.

In the next section, we turn our attention to the study of the doubly
periodic case.
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5. Solution on Doubly Periodic Domain

In this section, we consider solutions of (3.8) and (3.9) defined over a doubly
periodic domain Ω. In order to get rid of the singular source terms, we introduce
a background function v0 satisfying

Δv0 = −4πn

|Ω| + 4π

n∑
s=1

δps
(x). (5.1)

Using the new variable w so that v = v0 + w, we can modify (3.8) and (3.9)
into

Δu = λ(2eu − ev0+w − 1), (5.2)

Δu + Δw = 2λ(ev0+w − 1) +
4πn

|Ω| . (5.3)

Note that, since the singularity of v0 at ps is of the type ln |x−ps|2, the weight
function ev0 is everywhere smooth.

To proceed further, we take u + w = f . Then the governing system of
equations become

Δu = λ(2eu − ev0+f−u − 1), (5.4)

Δf = 2λ(ev0+f−u − 1) +
4πn

|Ω| . (5.5)

Integrating (5.5) and (5.4), we have∫
Ω

ev0+f−udx = |Ω| − 2πn

λ
≡ C1 > 0, (5.6)

∫
Ω

eudx =
1
2

∫
Ω

ev0+f−udx +
1
2
|Ω| =

1
2
(C1 + |Ω|) ≡ C2 > 0. (5.7)

Of course, the conditions (5.6) and (5.7) imply that the existence of an n-vortex
solution requires that C1 > 0 and C2 > 0, which is simply

|Ω| − 2πn

λ
≡ C1 > 0, (5.8)

since C1 > 0 contains C2 > 0.
We can prove that (5.8) is in fact sufficient for existence as well.

Theorem 5.1. The system of the non-Abelian vortex equations (5.4) and (5.5)
has a solution if and only if (5.8) holds or

2πn < λ|Ω|. (5.9)

Furthermore, if a solution exists, it must be unique, which can be constructed
through solving a multiply constrained minimization problem.

We use W 1,2(Ω) to denote the usual Sobolev space of scalar-valued or
vector-valued Ω-periodic L2-functions whose derivatives belong to L2(Ω). We
will prove Theorem 5.1 in terms of three lemmas as follows.
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Lemma 5.2. Consider the constrained minimization problem

min{I(u, f)|(u, f) ∈ W 1,2(Ω), Jk(u, f) = Ck, Ck > 0, k = 1, 2}, (5.10)

where

I(u, f) =
∫
Ω

{
1
2
|∇u|2 +

1
4
|∇f |2 − λu − λf +

2πn

|Ω| f

}
dx, (5.11)

J1(u, f) =
∫
Ω

ev0ef−u dx, (5.12)

J2(u, f) =
∫
Ω

eu dx. (5.13)

Then a solution of (5.10) is a solution of Eqs. (5.4) and (5.5).

Proof. It is clear that the Fréchet derivatives dJ1, dJ2 of the constraint func-
tional are linearly independent.

Let (u, f) be a solution of (5.10). Then by standard elliptic regularity
theory (u, f) must be smooth and there exist Lagrange multipliers λ1, λ2 ∈ R

so that

Δu = −λ − λ1e
v0ef−u + λ2e

u, (5.14)

Δf = −2λ + 2λ1e
v0ef−u +

4πn

|Ω| . (5.15)

Integrating Eq. (5.15) and using J1(u, f) = C1, we obtain λ1 = λ which means
that (u, f) verifies Eq. (5.5). To recover Eq. (5.4), we use J2(u, f) = C2. By
virtue of λ1 = λ and integrating Eq. (5.14), we have λ2 = 2λ.

In particular, (u, f) is a solution of Eqs. (5.4) and (5.5). The lemma is
proven. �

The admissible set of the variational problem (5.10) will be denoted by

C = {(u, f) ∈ W 1,2(Ω)|Jk(u, f) = Ck, k = 1, 2}. (5.16)

When (5.6) and (5.7) are satisfied, C1, C2 > 0. Thus C 
= ∅.

Lemma 5.3. If the condition (5.9) holds, then (5.10) has a solution. In other
words, the system (3.8) and (3.9) has a solution if and only if (5.9) is fulfilled.

Proof. By virtue of Lemma 5.2, it is sufficient to show the existence of a
minimizer of the constrained optimization problem (5.10).

We first proved that under the condition (5.8) or (5.9), the objective
functional I is bounded from below on C. For this purpose, we rewrite each
η ∈ W 1,2(Ω) as follows

η = η + η′,

where η denotes the integral mean of η, η = 1
|Ω|

∫
Ω

ηdx and
∫
Ω

η′dx = 0. Hence,
I may be put for (u, f) ∈ C in the form

I(u, f) =
∫
Ω

{
1
2
|∇u′|2 +

1
4
|∇f ′|2

}
dx − λf |Ω| + 2πnf − λu|Ω|. (5.17)
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Setting

Λ(u, f) = −(λ|Ω| − 2πn)f − λ|Ω|u, (5.18)

we can derive from (5.6) and (5.7) the expressions

u = ln C2 − ln

⎛
⎝∫

Ω

eu′

⎞
⎠ , (5.19)

f = ln(C1C2) − ln

⎛
⎝∫

Ω

eu′

⎞
⎠ − ln

⎛
⎝∫

Ω

ev0+f ′−u′

⎞
⎠ . (5.20)

Inserting (5.19) and (5.20) into (5.18), we have

Λ(u, f) = (2λ|Ω| − 2πn) ln

⎛
⎝∫

Ω

eu′

⎞
⎠ + (λ|Ω| − 2πn) ln

⎛
⎝∫

Ω

ev0+f ′−u′

⎞
⎠ + C3,

where C3 = (2πn − λ|Ω|) ln C1 + (2πn − 2λ|Ω|) ln C2.
Using Jensen’s inequality, we get

ln

⎛
⎝∫

Ω

exp(v0 + f ′ − u′)

⎞
⎠ ≥ ln

⎡
⎣|Ω| exp

⎛
⎝ 1

|Ω|
∫
Ω

(v0 + f ′ − u′)

⎞
⎠

⎤
⎦

= ln

⎡
⎣|Ω| exp

⎛
⎝ 1

|Ω|
∫
Ω

v0

⎞
⎠

⎤
⎦ ,

ln

⎛
⎝∫

Ω

eu′

⎞
⎠ ≥ ln

⎡
⎣|Ω| exp

⎛
⎝ 1

|Ω|
∫
Ω

u′

⎞
⎠

⎤
⎦ = ln |Ω|.

Noting (5.9), we have

Λ(u, f)≥(2λ|Ω| − 2πn) ln |Ω|+(λ|Ω| − 2πn) ln

⎡
⎣|Ω| exp

⎛
⎝ 1

|Ω|
∫
Ω

v0

⎞
⎠

⎤
⎦+C3.

(5.21)

Inserting (5.21) into (5.17), we arrive at the coercive lower estimate

I(u, f) ≥
∫
Ω

{
1
2
|∇u′|2 +

1
4
|∇f ′|2

}
dx − C4, (5.22)

where C4 > 0 is an irrelevant constant. From (5.22), we know that the existence
of solution of (5.10) follows.

In fact, let {(uj , fj)} ⊂ C be a minimizing sequence of the variational
problem (5.10) and set

f
j

=
1

|Ω|
∫
Ω

fjdx, uj =
1

|Ω|
∫
Ω

ujdx. (5.23)
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Then, with u′
j = uj − uj and f ′

j = fj − f
j
, we have u′

j = 0 and f ′
j

= 0. In
view of (5.22), we see that {(u′

j , f
′
j)} is bounded in W 1,2(Ω). Without loss of

generality, we may assume that {(u′
j , f

′
j)} converges weakly in W 1,2(Ω) to an

element (u′, f ′) (say). The compact embedding

W 1,2(Ω) ↪→ Lp(Ω), p ≥ 1, (5.24)

then implies (u′
j , f

′
j) → (u′, f ′) in Lp(Ω) (p ≥ 1) as j → ∞. In particular,

u′ = 0 and f ′ = 0.
Recall the Trudinger–Moser inequality [1]

∫
Ω

eF dx ≤ C(ε) exp

⎛
⎝

[
1

16π
+ ε

] ∫
Ω

|∇F |2dx

⎞
⎠ , F ∈ W 1,2(Ω), F = 0,

(5.25)

where C(ε) > 0 is a constant. In view of (5.24) and (5.25), we see that the
functionals defined by the right-hand side of (5.19) and (5.20) are continuous in
u′, f ′ with respect to the weak topology of W 1,2(Ω). Therefore, uj → u, f

j
→

f as j → ∞, as given in (5.19) and (5.20). In other words, (u, f) = (u +
u′, f + f ′) satisfies the constraints (5.6) and (5.7), and solves the constrained
minimization problem (5.10). Thus, Lemma 5.2 is proven. �

Now we state the uniqueness of the solution to Eqs. (5.4) and (5.5) as
follows.

Lemma 5.4. If system (5.4) and (5.5) has a solution, then the solution must
be unique.

Proof. Consider the following functional,

J(u, f) =
1
2
||∇u||22 +

1
4
||∇f ||22 + (−λu − λf +

2πn

|Ω| f)|Ω|

+
∫
Ω

{
λev0+f−u + 2λeu

}
dx.

It is straightforward to check by calculating the Hessian that J is strictly
convex in W 1,2(Ω). Thus, J has at most one critical point. However, any
solution of (5.4) and (5.5) must be a critical point of J . This proves the lemma.

�

6. Further Extensions

In this section, we consider the multiple vortex equations (2.24)–(2.27) for
the scalar fields χ and φ, both taking complex-valued, which are allowed to
independently generate vortices with their respective prescribed zero sets

Zχ = {q1, q2, . . . , qm}, Zφ = {p1, p2, . . . , pn}. (6.1)

In such a context, we can similarly develop an existence and uniqueness theory
for the solutions of the equations by the same variational methods. To see this,
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we observe that, with the prescribed zero sets given in (6.1) for the fields χ

and φ and in terms of the variables u = ln |χ|2 and v = ln |φ|2, the governing
system of nonlinear elliptic equations (3.8) and (3.9) is modified into

Δu = λ(2eu − ev − 1) + 4π

m∑
t=1

δqt
(x), (6.2)

Δ(u + v) = 2λ(ev − 1) + 4π
m∑

t=1

δqt
(x) + 4π

n∑
s=1

δps
(x), (6.3)

with the associated boundary condition

u, v → 0 as |x| → ∞. (6.4)

Parallel to Theorem 4.1, we have

Theorem 6.1. The system of nonlinear elliptic equations (6.2) and (6.3) subject
to the boundary condition (6.4) has a unique solution for which the boundary
condition (6.4) may be achieved exponentially fast.

In order to prove Theorem 6.1, we introduce the background functions
as before,

u0(x) = −
m∑

t=1

ln(1 + τ |x − qt|−2), (6.5)

v0(x) = −
n∑

s=1

ln(1 + τ |x − ps|−2), τ > 0. (6.6)

Then

Δu0 = −h1(x) + 4π

m∑
t=1

δqt
(x), (6.7)

Δv0 = −h2(x) + 4π

n∑
s=1

δps
(x), (6.8)

where

h1(x) = 4
m∑

t=1

τ

(τ + |x − qt|2)2 , (6.9)

h2(x) = 4
n∑

s=1

τ

(τ + |x − ps|2)2 . (6.10)

We set u = u0 + w1, v = v0 + w2, and f = w1 + w2. Then (6.2) and (6.3)
become

Δw1 = λ(2eu0+w1 − ev0+f−w1 − 1) + h1(x), (6.11)

Δf = 2λ(ev0+f−w1 − 1) + h1(x) + h2(x). (6.12)
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It can be checked that (6.11) and (6.12) are the Euler–Lagrange equations
of the action functional

I(w1, f) =
∫
R2

{
1
2λ

|∇w1|2 +
1
4λ

|∇f |2 + 2
(
eu0+w1 − eu0

)

+
(
ev0+f−w1 − ev0

)
+

(
h1

λ
− 1

)
w1 +

(
h1 + h2

2λ
− 1

)
f

}
dx.

(6.13)

It is clear that the functional I is C1 over W 1,2(R2) and strictly convex.
We can use the methods in [20] and in the earlier study in the present paper
to establish the coercive bounds

DI(w1, f)(w1, f) ≥ C1(‖w1‖W 1,2(R2) + ‖f‖W 1,2(R2)) − C2. (6.14)

Therefore, it follows that the functional I has a unique critical point in
W 1,2(R2) which establishes the existence and uniqueness of a classical solution
to the system of Eqs. (6.2) and (6.3) subject to the boundary condition (6.4).

We now turn our attention to the existence of multivortex solution over
a doubly periodic domain Ω.

Take u0 and v0 over Ω to satisfy

Δu0 = −4πm

|Ω| + 4π

m∑
t=1

δqt
(x), Δv0 = −4πn

|Ω| + 4π

n∑
s=1

δps
(x). (6.15)

Then setting u = u0 + w1, v = v0 + w2, we see that Eqs. (6.2) and (6.3) over
the doubly periodic domain Ω become

Δw1 = λ(2eu0+w1 − ev0+w2 − 1) +
4πm

|Ω| , (6.16)

Δ(w1 + w2) = 2λ(ev0+w2 − 1) +
4π

|Ω| (m + n). (6.17)

Theorem 6.2. For the vortex equations (6.16) and (6.17) defined over a doubly
periodic domain Ω, there is a solution if and only if the inequalities

2π(m + n) < λ|Ω|, (6.18)
π(3m + n) < λ|Ω|, (6.19)

are satisfied. Moreover, if a solution exists, it must be unique.

In the special case when the scalar field χ has no zero, that is, m = 0 in
(6.18) and (6.19), we recover Theorem 5.1.

To proceed in the formalism of calculus of variations, we use the new
variables g = w1, f = w1 + w2. Then (6.16) and (6.17) take the form

Δg = λ(2eu0+g − ev0+f−g − 1) +
4πm

|Ω| , (6.20)

Δf = 2λ(ev0+f−g − 1) +
4π

|Ω| (m + n). (6.21)
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Integrating these two equations and simplifying the results, we arrive at the
constraints ∫

Ω

ev0+f−gdx = |Ω| − 2π

λ
(m + n) ≡ α1, (6.22)

∫
Ω

eu0+gdx =
1
2

(
α1 + |Ω| − 4πm

λ

)
≡ α2. (6.23)

In order to show that the necessary condition α1 > 0, α2 > 0, which is exactly
what stated in (6.18) and (6.19), is also sufficient for the existence of a solution,
we recognize that Eqs. (6.20) and (6.21) are the Euler–Lagrange equations of
the action functional

I(f, g) =
∫
Ω

{
1
4λ

|∇f |2 +
1
2λ

|∇g|2 + 2eu0+g + ev0+f−g

+
(

4πm

λ|Ω| − 1
)

g +
(

2π(m + n)
λ|Ω| − 1

)
f

}
dx. (6.24)

Now decompose f, g into f = f ′ + f, g = g′ + g with f, g ∈ R and∫
Ω

f ′dx = 0,
∫
Ω

g′dx = 0. Thus, applying (6.22) and (6.23), we may rewrite
(6.24) in the form

I(f, g) −
∫
Ω

{
1
4λ

|∇f ′|2 +
1
2λ

|∇g′|2
}

dx

= α1 ln

⎛
⎝∫

Ω

ev0+f ′−g′
dx

⎞
⎠ + 2α2 ln

⎛
⎝∫

Ω

eu0+g′
dx

⎞
⎠

+α1(1 − ln α1) + 2α2(1 − lnα2). (6.25)

It is seen immediately that the right-hand side of (6.25) has a uniform
lower bound in view of the Jensen inequality again. So the existence of a critical
point of (6.24) subject to the constraints (6.22) and (6.23) follows as before.
The uniqueness of a critical point of (6.24) results from the convexity of the
functional.
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