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Abstract. Noncommutative Donaldson–Thomas invariants for abelian
orbifold singularities can be studied via the enumeration of instanton
solutions in a six-dimensional noncommutative N = 2 gauge theory;
this construction is based on the generalized McKay correspondence and
identifies the instanton counting with the counting of framed represen-
tations of a quiver which is naturally associated with the geometry of
the singularity. We extend these constructions to compute BPS partition
functions for higher-rank refined and motivic noncommutative Donald-
son–Thomas invariants in the Coulomb branch in terms of gauge theory
variables and orbifold data. We introduce the notion of virtual instanton
quiver associated with the natural symplectic charge lattice which gov-
erns the quantum wall-crossing behaviour of BPS states in this context.
The McKay correspondence naturally connects our formalism with other
approaches to wall-crossing based on quantum monodromy operators and
cluster algebras.

1. BPS States on Local Threefolds

The spectrum of BPS states in supersymmetric string compactifications has
a subtle dependence on the background moduli [1–3]; in the following we will
deal exclusively with the type IIA string theory. As these moduli are varied
physical states can decay into fundamental constituents or form bound states.
As a result the single particle Hilbert space can lose or gain a factor. BPS
states can be realized by an appropriate configuration of D-branes wrapping
calibrated cycles in the internal geometry which are mathematically charac-
terized by certain enumerative invariants. These invariants must also behave
according to the same pattern; this is the content of the theory of generalized
Donaldson–Thomas invariants [4,5]. On crossing a wall of marginal stabil-
ity, where physical states decay or bound states are formed, the generalized
Donaldson–Thomas invariants change according to a wall-crossing formula.
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The matching between mathematical predictions and physical expectations
has been the focus of much recent activity, see e.g. [6–11].

It is however difficult to translate this picture into practice since for a
generic Calabi–Yau threefold the computation of Donaldson–Thomas invari-
ants is a rather daunting task. Thus there is a need for having a controlled
setup where conjectures can be stated explicitly and computational evidence
can be provided. Toric Calabi–Yau manifolds are a commonly used playground
since the torus action allows for the use of powerful localization formulas to
compute explicitly the enumerative invariants and, therefore, the spectrum of
physical states.

For local toric Calabi–Yau threefolds the situation is as follows: [12–14].
The moduli space of vacua is divided into chambers by walls of marginal
stability in codimension one. In one of these chambers, corresponding to the
large radius classical geometry, the BPS enumerative invariants are computed
directly by topological string theory and coincide with the ordinary Donald-
son–Thomas invariants, or equivalently with other enumerative invariants such
as the Gromov–Witten and Gopakumar–Vafa invariants. The other chambers
are in principle accessible from this one by using wall-crossing formulas. In
the chamber relevant to this paper the enumerative invariants are captured
by algebraic structures encoded in a quiver. This chamber is non-geometric
in the sense that it describes a region in the moduli space of vacua where
conventional geometry breaks down due to quantum effects. Heuristically this
region can be thought of as arising in the limit where one or more cycles in the
Calabi–Yau manifold shrink to zero size but their quantum volume, as mea-
sured by the B-field or any Ramond–Ramond field (depending on the com-
pactification), is still non-zero. The chamber in which this happens, typically
near conifold or orbifold points in the vacuum moduli space, will be refereed
to as the noncommutative crepant resolution chamber.

The purpose of this paper is to investigate this chamber from the worl-
dvolume point of view of the D-brane configurations. From this perspective
the Donaldson–Thomas invariants count (generalized) instanton solutions in
the D6-brane worldvolume gauge theory, which characterize how many lower-
dimensional branes are stably bound to the D6-branes. The problem reduces
to the classification and enumeration of these instanton solutions. In the ordi-
nary Donaldson–Thomas chamber this was done in [15–17]. This formalism
was adapted in [18] to study noncommutative Donaldson–Thomas invariants
associated with toric orbifold singularities. A key ingredient in this approach
is the generalized McKay correspondence; it implies that the noncommuta-
tive Donaldson–Thomas invariants can be computed via a certain quantum
mechanics based on a quiver diagram associated with the singularity. This
quiver matrix quantum mechanics provides an efficient tool to compute explic-
itly the BPS spectrum of D-brane bound states in terms of combinatorial data,
namely coloured partitions. This approach allows an explicit computation of
higher rank invariants in the Coulomb branch, that is when the gauge group
is broken down to U(1)N . This phase turns out to be very rich and to depend
on the specific boundary conditions chosen for the gauge field at infinity. By
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considering arbitrary boundary condition in each U(1) factor one finds a rather
intricate enumerative problem. Unfortunately there does not seem to be any
straightforward extension of the formalism to capture genuinely non-abelian
instanton configuration. This is a pretty much open problem and the only par-
tial results in the literature [19,20] hold for the simplest C

3 geometry. In this
lucky case the walls of marginal stability corresponding to non-abelian bound
states can be reached directly by tuning the B-field without crossing any other
wall, and thus the wall-crossing formula can be applied directly to compute
non-abelian higher rank BPS degeneracies.

The quiver matrix model comes with a very explicit dictionary, devel-
oped in [18], between algebraic and geometric quantities. We will see that this
dictionary provides a very powerful tool to investigate structures associated
with BPS states via the McKay correspondence. Following the development
in [21], a good strategy to approach the enumerative problem of BPS states
is to study objects that are invariant as one moves around the moduli space.
Examples of such objects were found in [1] and more recently by Kontsevich
and Soibelman [5] who showed that the condition for a certain product of
operators to be invariant on the moduli space is equivalent to a wall-cross-
ing formula for the degeneracies of BPS states. To the BPS states which are
captured by quivers we can associate another algebraic structure that is (to
some extent) invariant, called a quantum cluster algebra. This is constructed
by applying a sequence of mutations to the quiver. Each mutation is the quan-
tum mechanics equivalent of a Seiberg duality and determines a jump in the
BPS spectrum, crossing a wall of the second kind [5,22]. The cluster algebra
encompasses all possible mutations. We show that to each orbifold singular-
ity of the class studied in [18] it is possible to canonically associate a quiver
model, which we call a virtual quiver, from which a cluster algebra can be
defined. Physically this can be achieved by giving “enough” masses to bifun-
damental strings stretched between D-branes. We will find that the structure
of this virtual quiver, as well as the associated quantum algebras, is completely
determined by the McKay correspondence. This opens up exciting possibili-
ties for the study of BPS states. Recall that in the four-dimensional case for
du Val singularities the McKay correspondence implies an action of an affine
Kac–Moody algebra on the instanton moduli space. Because of this action the
partition function of N = 4 supersymmetric Yang–Mills theory on the resolu-
tion of the singularity with fixed boundary condition at infinity is a character
of the affine Kac–Moody algebra. The analogy here with the quantum cluster
algebra characterizing the BPS spectrum is rather tantalizing and deserves
further investigation.

Another application we will describe is the use of instanton quivers
to set up the computation of motivic Donaldson–Thomas invariants in the
noncommutative crepant resolution chamber. Motivic Donaldson–Thomas
invariants were introduced by Kontsevich and Soibelman [5], who used
them to prove and conjecture wall-crossing identities for the “numerical”
Donaldson–Thomas invariants. They represent a sort of categorification of the
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Donaldson–Thomas invariants. Physically this means that the motivic invari-
ants capture the homological algebra of the Hilbert space of BPS states; they
represent regions of the moduli space of vacuum states defined via the locus of
relations associated with the instanton quiver. There is an underlying K-theory
of varieties (or better of stacks) whose generator is a certain parameter L

1
2 .

An integration map connects this K-theory with ordinary refined invariants in
the sense of [23], and with the ordinary numerical invariants. This integration
map should be thought of as the mathematical analog of taking the (refined)
Witten index over the Hilbert space of BPS states; the inverse process, which
associates to a number a certain space such that the number is an invariant
of that space, is precisely the key point of the whole categorification process.
These issues were investigated in [7,10] providing substantial evidence for the
conjectured correspondence between motivic and refined invariants. We may
regard the motivic theory as a step towards providing the geometric category
pertinent to the topological quantum field theory underlying the D6-brane
worldvolume gauge theory.

This paper is organized as follows. In Sects. 2–6 we set up the prob-
lem and summarize the results of our long paper [18] in a somewhat informal
way that we hope is more accessible to a wider audience. In particular we
introduce what we call stacky gauge theories which naturally compute classes
of BPS invariants labelled by gauge theoretical boundary conditions. Then
we put our formalism at work in Sect. 7 which includes our first new result,
a partition function of refined BPS invariants. Precisely as in [18], the stacky
gauge theory predicts that the partition function counts states weighted by the
instanton action, contrary to other approaches which exist in the literature.
Section 8 deals with physical D-brane charges. We find that our approach
naturally endows the lattice of fractional brane charges with the K-theory
intersection pairing. The relevant quiver is, therefore, not the ordinary McKay
quiver but what we call a virtual instanton quiver. We conjecture that such
a quiver can always be reached by a superpotential deformation which gives
masses to bi-fundamental strings. In Sect. 9 we adapt a formalism to compute
motivic invariant to our instanton quivers and extend it to deal with generic
Coulomb branch invariants for an arbitrary boundary condition. Finally in
Sects. 10 and 11 we study the connection between our formalism and other
new approaches to wall-crossing such as the theory of cluster algebras, the
quantum monodromy theory of [21], and the motivic Donaldson–Thomas the-
ory. Our main goal here is to simply build a bridge between these concepts;
their connections deserve to be investigated further. In particular we suggest
that the correct object to consider is the virtual instanton quiver. Once this
step is taken, every ingredient is rephrased in terms of representation theory
data. The stacky gauge theory approach allows to compute the central charges
by using the McKay correspondence to fix their moduli dependence. In par-
ticular the wall-crossing formula and the cluster algebra formalism appear to
depend on the boundary conditions. This approach suggests that the Seiberg-
like dualities of the quiver quantum mechanics should be properly studied in
the context of virtual quivers.
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2. Quivers and Noncommutative Crepant Resolutions

The chamber of the moduli space of string vacua that we consider is “non-geo-
metric” in nature. By this we mean that its target space description does not
correspond to ordinary geometry but requires more abstract tools. A recur-
rent theme in modern mathematics is that when ordinary geometry is not apt
to describe a space, a perfectly good alternative (and sometimes conceptually
deeper) description can be given in terms of algebraic structures defined over
the space. Such is the case for example in noncommutative geometry where
appropriate algebras of functions or operators over a space are used to char-
acterize the space itself and its geometry.

Many local Calabi–Yau threefolds admit a similar description in terms of
the representation theory of a quiver. A quiver Q = (Q0,Q1) is an algebraic
entity defined by a set of nodes Q0 and by a set of arrows Q1 connecting the
nodes. To the arrows one might associate a set of relations R. The path alge-
bra of the quiver is defined as the algebra of all possible paths in the quiver
modulo the ideal generated by the relations; the product in the algebra is
the concatenation of paths whenever this makes sense and 0 otherwise. This
algebra will be denoted as A = CQ/〈R〉. A representation of the quiver Q
can be constructed by associating a complex vector space to each node and a
linear map between vector spaces for each arrow, respecting the relations R.
When appropriate conditions are met the moduli space of representations of
the quiver Q, where all vector spaces have dimension one, is a smooth toric
Calabi–Yau variety X; this is the crepant resolution of an abelian orbifold
singularity C

3/Γ provided by the Γ-Hilbert scheme HilbΓ(C3). Below we will
regard this resolved geometry as describing a certain “large radius phase” of
D-branes on the singularity.

Under certain circumstances the path algebra A associated with the
quiver Q is itself a crepant resolution of the abelian singularity C

3/Γ, called
the noncommutative crepant resolution. In this case one replaces the singular
space with an algebra whose center is the coordinate algebra of the singularity.
In this sense A is a desingularization of C

3/Γ. One can furthermore prove that
A enjoys many nice properties expected from a crepant resolution.

For the abelian orbifold singularities C
3/Γ we wish to consider, a natural

quiver is provided by the McKay quiver. This is defined in terms of the rep-
resentation theory data of Γ. The vertex set Q0 is identified with the group ̂Γ
of irreducible (one-dimensional) representations ρr of Γ; the trivial represen-
tation is denoted ρ0. The number of arrows going from node s to node r is
a
(1)
sr , where in general a

(i)
sr is defined as the multiplicities in the tensor product

decomposition
∧i

Q ⊗ ρr =
⊕

s∈̂Γ

a(i)
sr ρs with a(i)

sr = dimC HomΓ

(

ρs,
∧i

Q ⊗ ρr

)

(2.1)

of the fundamental three-dimensional representation Q of Γ ⊂ SL(3, C), with
weights rα, α = 1, 2, 3 obeying r1 + r2 + r3 ≡ 0; explicitly a

(1)
rs = δr,s+r1 +

δr,s+r2 + δr,s+r3 . To this quiver we associate an ideal of relations 〈R〉 defined



1006 M. Cirafici et al. Ann. Henri Poincaré

by a
(2)
rs ; for a Calabi–Yau singularity one has a

(2)
rs = a

(1)
sr and a

(3)
rs = δrs. A

representation of this quiver is a Γ-module which is described by an isotopical
decomposition V =

⊕

r∈̂Γ Vr ⊗ ρ∨
r whose factors correspond to the nodes in

the quiver, and a set of linear maps B ∈ HomΓ(V,Q ⊗ V ) corresponding to
the arrows. By Schur’s lemma these morphisms decompose as

B =
⊕

r∈̂Γ

(

B
(r)
1 , B

(r)
2 , B

(r)
3

)

(2.2)

where B
(r)
α ∈ HomC(Vr, Vr+rα

). The ideal of relations 〈R〉 imposes conditions
on the linear maps given by the orbifold generalized ADHM equations

B
(r+rα)
β B(r)

α = B
(r+rβ)
α B

(r)
β for α, β = 1, 2, 3. (2.3)

The McKay quiver is at the heart of the McKay correspondence. This
is a statement connecting the representation theory data encoded in the orb-
ifold group Γ with the smooth geometry of the natural crepant resolution
X = HilbΓ(C3). It can be seen at different levels: as a characterization of the
homology and intersection theory of the resolved geometry in terms of the rep-
resentation theory data of Γ, as a dictionary between the K-theory of HilbΓ(C3)
and the irreducible representations of Γ, or ultimately (and more deeply) as an
equivalence between the derived category of quiver representations of Q and
the derived category of coherent sheaves on HilbΓ(C3).

In the following we will construct enumerative invariants based on the
McKay quiver and use the McKay correspondence to translate our results into
geometrical terms.

3. Stacky Gauge Theories and Their Instanton Moduli Spaces

We now introduce the concept of a stacky gauge theory and study a moduli
space of geometrical objects which are naturally associated with the noncom-
mutative Donaldson–Thomas enumerative problem. A stacky gauge theory is
a sequence of deformations of an ordinary gauge theory on C

3 whose observ-
ables are determined by Γ-equivariant torsion free OC3-modules on C

3, i.e.
Γ-equivariant instantons.

We think of these gauge theories as describing the low-energy dynam-
ics of D-branes on orbifolds of the form C

3/Γ in a certain “orbifold phase”.
In practice they are realized in the following way. One starts with ordinary
maximally supersymmetric Yang–Mills theory on C

3; for the moment we dis-
cuss the U(1) gauge theory, but below we also consider the non-abelian U(N)
gauge theory in its Coulomb branch. This theory is firstly deformed into a
noncommutative gauge theory. Next it is topologically twisted by selecting
an appropriate combination of the supercharges, shifted by inner contraction
with the vector field generating the toric isometries of C

3, as the BRST oper-
ator. Then the gauge theory localizes onto torus-invariant noncommutative
instantons which were thoroughly studied in [17]. These configurations are
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characterized by algebraic operator equations on a Fock space H which have
the ADHM form

[

Zα, Zβ
]

= 0,
3

∑

α=1

[

Zα, Z†
α

]

= 3 and
[

Zα, Φ
]

= εα Zα, (3.1)

for α, β = 1, 2, 3. The operators Zα mix noncommutative coordinates with
gauge field degrees of freedom, Φ is the Higgs field, and εα are equivariant
parameters for the natural action of the torus T

3 on C
3. These equations can

be solved by harmonic oscillator algebra via the standard creation and anni-
hilation operators a†

α, aα on H for α = 1, 2, 3. Generic instantons are obtained
from these solutions via partial isometric transformations and correspond to
subspaces of the Fock space generated by monomial ideals I ⊂ C[z1, z2, z3] as
HI = I(a†

1, a
†
2, a

†
3)|0, 0, 0〉. These ideals are classified by plane partitions π; the

number of boxes of π is the instanton charge k = |π|.
One now considers the orbifold action of Γ which is a diagonal subgroup

of the torus group T
3 ⊂ SL(3, C). Then the Fock space of the noncommutative

gauge theory is a Γ-module which decomposes as

H =
⊕

r∈̂Γ

Hr with Hr = spanC

{|n1, n2, n3〉
∣

∣ n1 r1 + n2 r2 + n3 r3 ≡ r
}

.

(3.2)

As a result the operators Zα decompose as

Zα =
⊕

r∈̂Γ

Z(r)
α with Z(r)

α ∈ HomC

(Hr, Hr+rα

)

(3.3)

and the first of the instanton equations (3.1) becomes

Z
(r+rβ)
α Z

(r)
β = Z

(r+rα)
β Z(r)

α . (3.4)

These holomorphic operator equations are analogous to the matrix equations
(2.3). Partial isometries decompose accordingly and the resulting noncommu-
tative instantons are labelled by ̂Γ-coloured plane partitions π =

⊔

r∈̂Γ πr,
where (n1, n2, n3) ∈ πr if and only if n1 r1 + n2 r2 + n3 r3 ≡ r.

These gauge theories are associated with a class of moduli spaces which
are obtained in the following way. We interpret the noncommutative deforma-
tion as a desingularization of certain framed moduli spaces of sheaves. These
moduli spaces are obtained by applying Beilinson’s theorem to a class of tor-
sion free sheaves E of rank N and topological charge ch3(E) = k on the compact
toric orbifold P

3/Γ. This procedure allows us to describe the original sheaf E as
the single non-vanishing cohomology of a complex. This complex is character-
ized by two vector spaces V and W of dimensions k and N which are cohomol-
ogy groups associated with the original sheaf E and which are Γ-modules, along
with a set of tautological bundles. The latter bundles are constructed from
the representation theory of Γ via the McKay correspondence and character-
ize the homology of HilbΓ(C3). In particular the Γ-module W is associated with
the fiber of E at infinity. After a rather technical construction one discovers
that the relevant moduli spaces can be described in terms of representations of
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a quiver. This quiver is the framed McKay quiver associated with the orbifold
singularity C

3/Γ. The nodes of this quiver are the vector spaces Vr in the iso-
topical decomposition of V into irreducible representations of Γ. The structure
of the arrows and relations is precisely that discussed in the previous section.

The only difference now is in the physical interpretation. The dimen-
sion k of V represents the instanton number while the dimensions kr of the
individual factors Vr in the decomposition are associated with multi-instan-
tons which transform in the irreducible representation ρr (note that this does
not imply that each instanton separately is associated with the representation
ρr). The new ingredients are the framing nodes which arise from the isotop-
ical decomposition of the vector space W =

⊕

r∈̂Γ Wr ⊗ ρ∨
r into irreducible

representations. The framing nodes label boundary conditions at infinity. The
gauge fields are required to approach a flat connection at infinity which are
classified by the irreducible representations ρr. At infinity the gauge sheaf is
associated with a representation ρ of the orbifold group Γ and the dimen-
sions dimC Wr = Nr label the multiplicities of the decomposition of ρ into
irreducible representations, with the constraint

∑

r∈̂Γ

Nr = N. (3.5)

The arrows from the framing nodes correspond to linear maps I ∈ HomΓ(W,V );
by Schur’s lemma these morphisms decompose as

I =
⊕

r∈̂Γ

I(r) (3.6)

where I(r) ∈ HomC(Wr, Vr).
This construction gives a correspondence between a sheaf E (with some

technical conditions on its cohomology) preserving certain boundary conditions
at infinity and a collection of maps between vector spaces whose algebraic con-
tent can be repackaged into a framed McKay quiver. From the complex derived
via Beilinson’s theorem one can express the Chern character of the original tor-
sion free sheaf E in terms of data associated with the representation theory of
the orbifold group via the McKay correspondence as

ch(E) = −ch
(

(

V ⊗ R(−2)
)Γ

)

+ ch
(

(

V ⊗ ∧2
Q∨ ⊗ R(−1)

)Γ
)

− ch
(

(

(V ⊗ Q∨ ⊕ W ) ⊗ R)Γ
)

+ ch
(

(

V ⊗ R(1)
)Γ

)

. (3.7)

The set of tautological bundles

R =
⊕

r∈̂Γ

Rr ⊗ ρr (3.8)

when understood geometrically form an integral basis for the K-theory group
K(X) of vector bundles on the resolved space X = HilbΓ(C3). Furthermore
there is a canonical construction which gives two bases Vm and Rr of H4(X, Z)
and H2(X, Z) dual to the bases of exceptional surfaces and curves in the res-
olution X in terms of linear combinations of Chern classes of the tautological
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bundles. In the algebraic framework the tautological bundles map to projective
objects in the category of quiver representations.

The contribution of each instanton will be assembled into a partition
function and weighted by the exponential of the U(N) instanton action

Sinst =
gs

6

∫

X

Tr FA ∧ FA ∧ FA +
1
2

∫

X

ω ∧ Tr FA ∧ FA

+
1

2gs

∫

X

ω ∧ ω ∧ Tr FA, (3.9)

where gs is the topological string coupling constant. The exterior products of
field strengths FA can be expressed in terms of the Chern character ch(E) in
(3.7). Similarly the Kähler form ω on X and its exterior product ω ∧ ω can
be both expanded in the basis of cohomology determined by the tautological
bundles.

The detailed description of the moduli space depends however on the
appropriate choice of stability conditions. This boils down to the choice of
a stability parameter that enters in the definition of the moduli space. The
precise value of that parameter is what will determine which chamber in the
moduli space of vacua of the string theory we are working in. To understand
properly this issue we now consider a somewhat different perspective via a
quantum mechanics associated with the quiver.

4. Instanton Quantum Mechanics and Noncommutative
Donaldson–Thomas Data

It is customary in instanton computations to use collective coordinates to
study the local structure of the moduli space. This corresponds to taking the
point of view of the fractional D0-branes which characterize the instantons, in
contrast to the point of view of the D6-brane gauge theory we have been con-
sidering so far. For this, we will linearize the complex obtained via Beilinson’s
theorem to construct a local model for the instanton moduli space. This is a
rather powerful perspective since to apply toric localization we only need to
understand the neighbourhood of each fixed point.

As we have seen the study of instantons on C
3/Γ amounts to an

equivariant decomposition of the spaces and maps involved. One considers
the set of bosonic fields (2.2) together with (3.6). Upon the introduction of the
appropriate supermultiplets, the quantum mechanics is characterized by the
generalized ADHM equations (2.3) together with the equations

3
∑

α=1

(

B(r−rα)
α B(r−rα)

α
† − B(r)

α
† B(r)

α

)

+ I(r) I(r) † = λ(r), (4.1)

where λ(r) > 0; this extra equation is analogous to the second instanton equa-
tion of (3.1). The set of equations (2.3) arises as an ideal of relations in the
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path algebra of the McKay quiver, while (4.1) can be traded for a stability con-
dition. This matrix model is topological and it localizes onto the fixed points
of its BRST operator. In the Coulomb phase, these points are classified by
N -vectors of plane partitions 
π = (π1, . . . , πN ) with |
π| =

∑

l |πl| = k boxes,
where each box carries an appropriate Γ-action. Since the orbifold group Γ
is a subgroup of the torus group T

3, the fixed points onto which the matrix
quantum mechanics localizes are the same as in the case of the affine space
C

3, the only difference being that one now has to keep track of the Γ-action.
A local model for the moduli space near a fixed point of the toric action

is realized by an equivariant version of the instanton deformation complex

HomΓ(V�π, V�π) ��

HomΓ(V�π, V�π ⊗ Q)
⊕

HomΓ(W�π, V�π)
⊕

HomΓ(V�π, V�π ⊗ ∧3 Q)

��
HomΓ(V�π, V�π ⊗ ∧2 Q)

⊕
HomΓ(V�π, W�π ⊗ ∧3 Q)

(4.2)

from which we can extract the character at the fixed points

CharΓ�π(t1, t2, t3)

=
(

W∨
�π ⊗ V�π − V ∨

�π ⊗ W�π + (1 − t1) (1 − t2) (1 − t3) V ∨
�π ⊗ V�π

)Γ
, (4.3)

where tα = e i εα for α = 1, 2, 3. This yields all the data we need for the
construction of noncommutative Donaldson–Thomas invariants.

5. Enumerative Invariants

To our framed quiver we can associate the representation space

MΓ(k,N)=HomΓ(V,Q ⊗ V ) ⊕ HomΓ(V,
∧3

Q ⊗ V ) ⊕ HomΓ(W,V ), (5.1)

where k = (kr)r∈̂Γ and N = (Nr)r∈̂Γ. We use the Γ-equivariant decomposition
of the matrix equations (2.3) to define “moment maps” μΓ

C
whose zero locus

correspond to the ideal of relations in the instanton quiver path algebra. These
equations define a subvariety (μΓ

C
)−1(0) ⊂ HomΓ(V,Q⊗V )⊕HomΓ(V,

∧3
Q⊗

V ). This allows us to define the Donaldson–Thomas quiver moduli space as
the quotient stack

MΓ(k,N) =
[

(

(μΓ
C)−1(0) × HomΓ(W,V )

)

/

Gk

]

, (5.2)

where the group

Gk =
∏

r∈̂Γ

GL(kr, C) (5.3)

acts by basis change automorphisms of the Γ-module V . We regard this stack as
a moduli space of stable framed representations in the sense of [4, Section 7.4]
when the stability parameter μ(k) = μ defined there takes the value μ = 0.
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Noncommutative Donaldson–Thomas invariants are now defined follow-
ing Behrend [24] as the weighted topological Euler characteristics

NCμ=0(k,N) = χ
(

MΓ(k,N) , ν
)

=
∑

n∈Z

n χ
(

ν−1(n)
)

, (5.4)

where ν : MΓ(k,N) → Z is a Gk-invariant constructible function. Our choice
of setting the stability parameter μ = 0 implies that every object in the cate-
gory of quiver representations with relations is 0-semistable. These invariants
enumerate Γ-equivariant torsion free sheaves on C

3 via the McKay correspon-
dence; for ideal sheaves they coincide with the orbifold Donaldson–Thomas
invariants defined in [25].

We can construct a partition function for these invariants from the local
structure of the instanton moduli space. Neglecting the Γ-action, the two vec-
tor spaces V and W can be decomposed at a fixed point 
π = (π1, . . . , πN ) of
the U(1)N × T

3 action on the instanton moduli space as [17]

V�π =
N
∑

l=1

el

∑

(n1,n2,n3)∈πl

tn1−1
1 tn2−1

2 tn3−1
3 and W�π =

N
∑

l=1

el, (5.5)

where el = e i al with al the Higgs field vacuum expectation values for l =
1, . . . , N . Each partition carries an action of Γ. However this action is offset
by the Γ-action of the factor el which corresponds to the choice of a boundary
condition on the gauge field at infinity. Recall that the decomposition of W
corresponds to imposing boundary conditions at infinity, which are classified
by irreducible representations of the orbifold group Γ. In this context each
U(1) factor in the Coulomb phase is associated with a vacuum expectation
value of the Higgs field al which corresponds to a certain irreducible represen-
tation of Γ. Even if the maximal symmetry breaking pattern U(N) → U(1)N

is fixed, one still has to specify in which superselection sector one is working.
This sector is characterized by choosing which of the eigenvalues al are in a
particular irreducible representation of Γ. The number of eigenvalues of the
Higgs field in the representation ρ∨

r is precisely Nr = dimC Wr. Therefore, the
decomposition of V�π can be also written as

V�π =
N
⊕

l=1

⊕

r∈̂Γ

(

El ⊗ ρ∨
b(l)

) ⊗ (Pl,r ⊗ ρ∨
r ) =

N
⊕

l=1

⊕

r∈̂Γ

(

El ⊗ Pl,r

) ⊗ ρ∨
r+b(l)

(5.6)

where El is the Γ-module generated by el, and we have introduced the bound-
ary function b(l) which to each sector l corresponding to a module El associates
the weight of the corresponding representation of Γ; if the vacuum expecta-
tion value el transforms in the irreducible representation ρs, then b(l) = s.
Here Pl,r are vector spaces which appear in the Γ-module decomposition of
the sum

∑

(n1,n2,n3)∈πl
tn1−1
1 tn2−1

2 tn3−1
3 . From this formula one can derive a

relation between the instanton numbers and the number of boxes in a partition
associated with a given irreducible representation; it is given by



1012 M. Cirafici et al. Ann. Henri Poincaré

kr =
N
∑

l=1

|πl,r−b(l)|. (5.7)

The contribution of an instanton to the gauge theory fluctuation deter-
minant can be now derived from the local character (4.3) of the moduli space
near a fixed point; it is given by (−1)K(�π;N), with

K(
π;N) =
N
∑

l=1

∑

r∈̂Γ

|πl,r| Nr+b(l)

−
N
∑

l,l′=1

∑

r∈̂Γ

|πl,r|
(

|πl′,r+b(l)−b(l′ )−r1−r2 | − |πl′,r+b(l)−b(l′ )−r1 |

− |πl′,r+b(l)−b(l′ )−r2 | + |πl′,r+b(l)−b(l′ )|
)

. (5.8)

The fixed point values of the instanton action (3.9) in these variables can be
written as

Sinst(
π;N)

=− 1
2gs

∑

m,r,s∈̂Γ

ςm

(

Ns δrs−(

a(2)
rs −a(1)

rs

)

N
∑

l=1

|πl,s−b(l)|
)

∫

X

c2(Vm) ∧ c1(Rr)

+
∑

n,r,s∈̂Γ

ϕn

(

(

Ns δrs−(

a(2)
rs −a(1)

rs

)

N
∑

l=1

|πl,s−b(l)|
)

∫

X

c1(Rn) ∧ ch2(Rr)

+
(

a(2)
rs − 3δrs

)

N
∑

l=1

|πl,s−b(l)|
∫

X

c1(Rn) ∧ c1

(OX(1)
) ∧ c1(Rr)

)

− gs

∑

r,s∈̂Γ

(

(

Ns δrs − (

a(2)
rs − a(1)

rs

)

N
∑

l=1

|πl,s−b(l)|
)

∫

X

ch3(Rr)

+
(

a(2)
rs − 3δrs

)

N
∑

l=1

|πl,s−b(l)|
∫

X

c1

(OX(1)
) ∧ ch2(Rr)

+
(

a(2)
rs − 3δrs

)

N
∑

l=1

|πl,s−b(l)|
∫

X

c1(Rr) ∧ ch2

(OX(1)
)

)

+
gs

|Γ|
∑

s∈̂Γ

N
∑

l=1

|πl,s−b(l)|, (5.9)

where ϕn (resp. ςm) are chemical potentials for the D2-branes (resp.
D4-branes) determined by the expansion of ω (resp. ω ∧ ω) into the basis
of tautological bundles Rn (resp. Vm). Note that the choice of boundary con-
dition enters not only explicitly in the dimensions Nr, but also implicitly in
the plane partitions.
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Finally, the partition function for noncommutative Donaldson–Thomas
invariants of type N is in full generality given by

ZC3/Γ (N) =
∑

�π

(−1)K(�π;N) e −Sinst(�π;N). (5.10)

The instanton action is naturally rephrased in terms of intersection indices
on the homology of the crepant resolution X = HilbΓ(C3), via the McKay
correspondence. However it is computed via the instanton numbers that char-
acterize the noncommutative Donaldson–Thomas invariants, which are the
relevant variables in the noncommutative crepant resolution chamber. See [18]
for various explicit examples and applications of this formalism.

6. BPS Invariants

The noncommutative invariants described in the previous section are related
to the quiver generalized Donaldson–Thomas invariants DTμ(k) ∈ Q defined
by Joyce and Song in [4] through

NCμ(k,N) =
∞
∑

m=1

∑

k1,...,km �=0
k1+···+km=k, μ(ki)=μ(k)

(−1)m

m!

×
m
∏

i=1

(

(−1)ki·N−〈k1+···+ki−1,ki〉 (ki · N − 〈k1 + · · · + ki−1,ki〉
)

DTμ(ki)
)

(6.1)

where the skew-symmetric bilinear form 〈−,−〉 : N
|Γ|
0 × N

|Γ|
0 → Z given by

〈k,k′ 〉 =
∑

r,s∈̂Γ

(

a(1)
sr − a(1)

rs

)

kr k′
s (6.2)

is the antisymmetrization of the Euler–Ringel form of the quiver Q. In the
case of semi-small crepant resolutions, the forms (6.2) vanish and this equa-
tion yields a useful relationship between the corresponding partition functions

1 +
∑

k : μ(k)=μ

NCμ(k,N)pk = exp
(

−
∑

k : μ(k)=μ

(−1)k·N (k · N) DTμ(k)pk
)

(6.3)

where pk :=
∏

r∈̂Γ pkr
r . This shows that the structure captured by the non-

commutative invariants is encoded, perhaps more fundamentally, in the quiver
generalized Donaldson–Thomas invariants. Furthermore from these invariants
one can define the quiver BPS invariants BPSμ(k) ∈ Q as

BPSμ(k) =
∑

m≥1 : m|k

Mö(m)
m2

DTμ(k/m), (6.4)

which are conjectured to count BPS states; here Mö : N → Q is the Möbius
function. Our formalism provides a solid ground to assess this conjecture since
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all these invariants are in principle computable from the noncommutative Don-
aldson–Thomas partition functions. These computations are reduced to the
combinatorial problem of counting plane partitions while keeping track of the
Γ-action. Again see [18] for some explicit examples. Physically (6.4) was inter-
preted in [26] as an effective degeneracy which allows to treat the constituents
of multi-centered bound states as Maxwell–Boltzmann particles.

Let us briefly discuss the D-brane interpretation of this picture. The non-
commutative invariants depend on a pair of vectors of integers (k,N). The
vector k labels the instanton numbers and contains the information about
which instanton configuration is associated with a given representation of Γ,
though not directly but in the way we have explained in the previous section.
On the other hand the vector N labels boundary conditions for the gauge
sheaf. If for simplicity we consider the U(1) theory then the framing of the
McKay quiver only adds one extra node. This node, corresponding to the
D6-brane, can be connected to any of the nodes of the original quiver. Since
each node corresponds to an irreducible representation, this choice reflects how
the information about the boundary condition is encoded in the quiver. In the
language of [13] the position of the extra nodes determines how cyclic modules
are based and, therefore, the particular enumerative problem. In our picture
the reason for this is clear: the choice of the reference node corresponds to a
superselection sector in the space of states of the worldvolume gauge theory.
In particular, the numerical value of the noncommutative Donaldson–Thomas
invariants will be different in each sector. However thanks to the formulas
(6.1) and (6.3) all these invariants are equivalent, i.e. they can all be expressed
in terms of the same set of invariants DTμ=0(k) which are independent of the
boundary conditions; the dependence on the vector N is completely encoded
in the prefactors. This is in perfect agreement with our physical expectations
of the noncommutative invariants NCμ=0(k,N).

7. Combinatorics of Orbifold Partitions and Refined Invariants

The counting of BPS states at orbifold singularities has an underlying com-
binatorial problem. This is essentially the classical melting crystal problem
of [27] with two modifications. Firstly there is a colouring of each partition
which is uniquely specified by the orbifold action, secondly each configuration
has the sign weight (5.8). There are two ingredients that enter into the colour-
ing of a partition: the orbifold action directly on the instanton vector spaces
Pl,r and the overall shift determined by the boundary conditions, see (5.6).
This produces in general a quite intricate combinatorial problem depending
on the boundary conditions. Despite the sign factor, which would appear to
cancel BPS state contributions corresponding to coloured partitions of dif-
ferent shape but equal colour charges, this combinatorial prescription is still
related to a three-dimensional melting crystal model but with an additional
weighting parameter. Note that, exactly as it happens in [18], the stacky gauge
theory formalism predicts a form for the BPS states partition function which
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is different from those considered in the literature, for example in [25]. In par-
ticular, while generically in the mathematics literature one is interested in a
combinatorial partition function and is therefore natural to introduce param-
eters associated with the colouring of the partition, here we do not have any
freedom and the combinatorial configurations have to be weighted by the inst-
anton action. Physically this is a consequence of the fact that the correct BPS
generating function is a sum over sectors of fixed BPS charge. We discuss the
relation between the two kinds of partition functions.

We use our formalism to define “refined” invariants by adapting the com-
binatorial arguments of [7,23]. For fixed boundary conditions, our partition
functions have the schematic forms [18]

ZC3/Γ(N) =
∑

�π

(−1)K(�π;N) qch3(E�πb
)

b2
∏

n=1

Q
ch2(E�πb

)n

n

b4
∏

m=1

U
c1(E�πb

)m

m , (7.1)

where 
πb :=
(

π1,r−b(1), . . . , πN,r−b(N)

)

r∈̂Γ
. The product over the variables

Qn = e −ϕn (resp. Um = e −ςm/2gs) corresponds to the number of genera-
tors b2 (resp. b4) of the resolved homology H2(X, Z) (resp. H4(X, Z)); when
X = HilbΓ(C3) is a semi-small crepant resolution one has c1(E�πb

) = 0. The
parameter q = e −gs is weighted by the third Chern characteristic class of the
fixed-point sheaf E�πb

expressed in terms of coloured partitions in (5.9); in the
case X = C

3 and N = 1 this would correspond to the total number of boxes
|π| in the plane partition π.

This counting can be equivalently recast in terms of two-dimensional
partitions obtained by slicing a three-dimensional partition π. The two-
dimensional partitions interlace each other. If we think of drawing a plane
partition π in the space (x, y, z), then this slicing can be done in such a way
that the two-dimensional partitions π(a) live on planes x − y = a with a ∈ Z

and
∑

a∈Z
|π(a)| = |π| [23]. This definition is independent of the colouring

of the partition. To “refine” our counting we can weigh the slices with a ≥ 0
and a < 0 differently, but independently of the colouring of the partition, with
parameters q1 and q2, respectively. The resulting partition function has the
schematic form

Zref
C3/Γ(N) =

∑

�π

(−1)K(�π;N)
(

∞
∏

a=1

q
ch3(E�πb(a−1))

1 q
ch3(E�πb(−a))

2

)

×
b2
∏

n=1

Q
ch2(E�πb

)n

n

b4
∏

m=1

U
c1(E�πb

)m

m . (7.2)

We write the counting weights as

q1 = q λ and q2 = q λ−1. (7.3)

The “classical” limit is λ = 1, q1 = q2 = q. In [23] the extra parameter
λ makes the graviphoton background non-selfdual, and so accounts for the
second SU(2) factor of the spatial rotation group of R

4, i.e. for the spin con-
tent of the D6–D4–D2–D0 bound states on X; in [7] it is identified with the
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square root of the Lefschetz motive of the affine line C in motivic Donaldson–
Thomas theory [5]. As shown in [18], there exists a simple change of variables
(q,Qn, Um) �→ (pr)r∈̂Γ from the large radius parameters in (7.1) to orbifold
parameters pr which weigh plane partitions πr of colour r with

∏

r∈̂Γ

pr = q. (7.4)

Then the refined partition function (7.2) takes the form

Zref
C3/Γ(N) =

∑

�π

(−1)K(�π;N) λ2s�π

∏

r∈̂Γ

p
∑N

l=1 |πl,r−b(l)|
r , (7.5)

where the spin content s�π of the Γ-equivariant instantons on C
3 is captured

by the sum over intersection indices

s�π =
1
2

∞
∑

a=1

∑

r,s∈̂Γ

N
∑

l=1

(

∣

∣πl,r−b(l)(a − 1)
∣

∣ − ∣

∣πl,r−b(l)(−a)
∣

∣

)

×
(

1
|Γ| +

(

a(1)
sr − a(1)

rs

)

∫

X

ch3(Rs)

+
(

a(1)
sr − 3δrs

)

∫

X

(

c1(Rs) ∧ ch2

(OX(1)
) − c1

(OX(1)
) ∧ ch2(Rs)

)

)

,

(7.6)

which in several cases can be worked out explicitly by using the calculations
of [18]. The refined noncommutative invariants generated by this partition
function will be denoted NCref

μ=0(k,N ;λ); the ordinary (unrefined) invariants
are recovered in the classical limit λ = 1 as NCμ=0(k,N) = NCref

μ=0(k,N ; 1).
In the affine case X = C

3, this partition function is a higher-rank version
of the refined MacMahon function [23] in the Coulomb branch given by

Zref
C3 (N) =

∑

�π

(−1)N |�π| λ
∑

a∈N
(|�π(a−1)|−|�π(−a)|) q|�π|

=
∞
∏

n=1

n
∏

k=1

(

1 − (−1)N n λ2k−n qn
)−N

, (7.7)

which refines the partition functions of [17]. It would be interesting to further
examine the physics behind these combinatorial definitions, for example their
relations to the introduction of probe branes in our orbifold construction, and
how this construction is related to the quiver BPS invariants, perhaps along
the lines of [13].

8. Virtual Instanton Quivers and Charges

In our formalism there is a natural basis of quantum BPS states given by the
basis of fractional D0-branes, bound to either a single D6-brane or to multiple
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D6-branes. This basis is identified with the simple representations of the quiver
Dr and each basis element naturally corresponds to a node of the quiver. To
this basis we must add the generators of D6-brane charge. We will describe
this lattice of charges via the McKay correspondence. The correspondence sug-
gests to endow this lattice with the intersection pairing in Kc(X). With this
procedure we associate to any instanton quiver a “virtual” quiver. Physically
this virtual quiver can be obtained from the instanton quiver matrix quan-
tum mechanics by introducing gauge invariant mass terms for all the oriented
2-cycles and then decoupling the relevant fields by taking their masses to be
large.

Our quivers have the generic form of a collection of nodes associated with
fractional branes that may be connected with auxiliary framing nodes, which
represent the D6-branes and contain all the relevant information about the
boundary conditions. To this structure we can naturally associate a lattice
Λ, which we call the lattice of fractional brane charges. We take the frac-
tional D0-branes as generators for this lattice; this would appear to iden-
tify Λ as the lattice of K-theory charges K(X), but below we shall argue
that it is more appropriate to use the dual K-theory group Kc(X) of com-
plexes of vector bundles on the resolution X which are exact outside the
exceptional locus. Therefore, our charges are naturally labelled by the irre-
ducible representations r ∈ ̂Γ of the orbifold group associated with the
original nodes of the quiver and we will denote them as γr. We then add
an extra generator for each framing node, corresponding to the D6-brane
charge and denoted •, and call the corresponding generators γ∞. For sim-
plicity we will usually consider configurations with total D6-brane charge
equal to one, i.e. a single D6-brane labelling trivial boundary conditions at
infinity. We will collectively denote the set of generators with γI where the
index I runs over the irreducible representations r ∈ ̂Γ and the framing
nodes •.

We would like to endow the lattice Λ thus defined with a skew-symmetric
bilinear intersection pairing (−,−) : Λ × Λ → Z. A natural choice would be
a pairing dictated by the arrow structure of the quiver, in analogy with the
construction of [21]. We will see below that a proper pairing actually takes
into account the relations of the McKay quiver as well.

Consider for example the singularity C
3/Z3. The McKay quiver is deter-

mined by the tensor product decomposition (2.1), which in this case is given
by [18]

a(1)
rs =

⎛

⎝

0 0 3
3 0 0
0 3 0

⎞

⎠ and a(2)
rs =

⎛

⎝

0 3 0
0 0 3
3 0 0

⎞

⎠ (8.1)

with a
(2)
rs = a

(1)
sr . Therefore, the instanton quiver, in the case of trivial bound-

ary condition, has the form
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W0 •

��
V0 ◦

���� ��
V1 ◦ ������ ◦ V2

		 

��

(8.2)

with representation provided by the vector spaces Vr, r = 0, 1, 2 that enter in
the decomposition of V into dual irreducible representations of Γ.

The first matrix in (8.1) contains the information about the arrow struc-
ture; the matrix element a

(1)
rs is the number of arrows from node r to node s.

Then we get a skew-symmetric pairing by setting

(γr, γs) = a(1)
rs and (γs, γr) = −a(2)

sr . (8.3)

Thus the matrix of charge pairings is the antisymmetrization of the matrix
a
(1)
rs . The extension of this definition to include the framing vertices is imme-

diate. For example for the U(1) gauge theory with trivial boundary condition
one sets

(γ∞, γ0) = − (γ0, γ∞) = 1 (8.4)

and (γ∞, γr) = 0 = (γr, γ∞) for r �= 0. In this case the skew-symmetric pairing
between charges is given by the matrix

(γI , γJ ) =

⎛

⎜

⎜

⎝

0 1 0 0
−1 0 3 −3
0 −3 0 3
0 3 −3 0

⎞

⎟

⎟

⎠

. (8.5)

This pairing is non-degenerate because the matrix (8.5) has determinant equal
to 9.

However in the general case we have to modify this pairing, because
a generic McKay quiver has oriented 2-cycles (i.e. closed paths of the
form ◦ �� ◦ ) which translate into a partial symmetry of the matrix a

(1)
rs .

In order to have a totally skew-symmetric pairing these 2-cycles have to be
removed. We will now see that the McKay quivers have a natural skew-sym-
metric pairing associated via the McKay correspondence with the intersection
theory of the resolved singularity.

It is always possible to associate to the instanton quiver a “virtual” quiver
which is 2-acyclic, because one has naturally associated to it a perfect inter-
section pairing on Kc(X) given on a basis Sr dual to Rr by the index [18]

(S∨
r , Ss) :=

∫

X

ch
(S∨

r ⊗ Ss

) ∧ Todd(X) = a(2)
rs − a(1)

rs . (8.6)
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The rationale behind this choice of pairing is that we can identify the complexes
of vector bundles Sr on X with states of D-branes which naturally correspond
to fractional 0-branes (equivalently Γ-equivariant instantons on C

3), and after
the framing with BPS bound states of D-branes. It is, therefore, more physical
and expected to reproduce in the large radius limit the geometrical pairing
between electrically and magnetically charged D-branes. We shall denote this
pairing in the fractional brane lattice Λ as

〈γr, γs〉 = a(2)
rs − a(1)

rs , (8.7)

which can be extended in the obvious way to include also framing nodes repre-
senting D6-branes. This pairing coincides with (6.2) for the basis of fractional
D0-branes given by γr = (δrs)s∈̂Γ for all r ∈ ̂Γ. We define the virtual quiver
associated to a Calabi–Yau orbifold singularity C

3/Γ as the quiver whose nodes
are the same as those of the McKay quiver but whose adjacency matrix is given
by the pairing (8.7).

The resulting virtual quiver is always 2-acyclic: for a Calabi–Yau sin-
gularity one has a

(2)
rs = a

(1)
sr , and therefore, the new pairing 〈−,−〉 is the

antisymmetrization of the matrix a
(1)
rs , which automatically removes any ori-

ented 2-cycles in the quiver which arise from the symmetric part of a
(1)
rs . We

will denote by ̂Λ the lattice of charges Λ with this new pairing between frac-
tional branes (extended to include framing nodes). There is no guarantee
that the new pairing is non-degenerate. We can cure the degeneracy prob-
lem by embedding the lattice ̂Λ into a larger symplectic lattice as explained in
[5, Section 2.6]. A natural choice is ̂Λ ⊕ ̂Λ ∨, where the dual lattice is defined
as ̂Λ ∨ = HomZ( ̂Λ, Z), endowed with the pairing

〈

(γI , νJ ) , (γK , νL)
〉

= 〈γI , γJ 〉 + νJ(γK) − νL(γI). (8.8)

In the following we will implicitly assume that the charge lattice and the pair-
ing are, if necessary, enlarged in this way.

For example, in the case of C
3/Z3 the pairing is still given by (8.5). Things

are however slightly different for other singularities such as C
3/Z6; neglecting

the framing nodes for a moment, in this case the adjacency matrix and the
matrix of relations of the McKay quiver are [18]

a(1)
rs =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

0 0 0 1 1 1
1 0 0 0 1 1
1 1 0 0 0 1
1 1 1 0 0 0
0 1 1 1 0 0
0 0 1 1 1 0

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

and a(2)
rs =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

0 1 1 1 0 0
0 0 1 1 1 0
0 0 0 1 1 1
1 0 0 0 1 1
1 1 0 0 0 1
1 1 1 0 0 0

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

. (8.9)
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On the other hand the pairing (8.7) between fractional branes is

〈γr, γs〉 =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

0 1 1 0 −1 −1
−1 0 1 1 0 −1
−1 −1 0 1 1 0
0 −1 −1 0 1 1
1 0 −1 −1 0 1
1 1 0 −1 −1 0

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

, (8.10)

which corresponds to the virtual instanton quiver

V0 ◦

��

��

V5 ◦

��

�� V1 ◦

��

��

V4 ◦

��

��

V2 ◦

��

��

V3 ◦

��

��

(8.11)

to which one can add the framing nodes.
The lattice ̂Λ just introduced is somewhat different from the physical

lattices associated with D-branes wrapping cycles in large volume compactifi-
cations. There is no immediate splitting into electric and magnetic charges in
the noncommutative crepant resolution. The usual electric-magnetic splitting
in large radius variables is described by an intersection pairing that always
takes the schematic form

〈〈(e,m), (e′,m′ )〉〉 = em′ − e′ m, (8.12)

which reflects the physical expectations of electrically and magnetically
charged particles; for example, two electrically charged particles are always
mutually local, and so on. These properties are somewhat hidden in our new
pairing dictated by the McKay correspondence, although it passes the obvious
physical requirement that a state is local with itself (the pairing then van-
ishes since it is skew-symmetric). It would be very interesting to study the
pattern of local and non-local charges associated with our pairing; unfortu-
nately this question is somewhat tricky as one has also to specify if a mod-
uli space is empty or not for each given orbifold singularity. This appears at
first sight to be a formidable problem and we hope to address it in a future
work.

For now let us note that there is a natural electric-magnetic splitting.
While the charge of the D6-brane is fixed to one, D0-branes are easily inter-
preted as regular instantons, i.e. configurations of instantons which are sym-
metric under the orbifold group action and which are, therefore, free to move
off the orbifold singularity. On the other hand D2-branes and D4-branes cor-
respond, respectively, to elements of H2(X, Z) and H4(X, Z) to which we can
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canonically associate a dual basis in cohomology given by the Chern classes
of the tautological bundles. Therefore, we can canonically associate to these
states the dual (now in the K-theory sense) elements Sr. Altogether this consti-
tutes a natural splitting between electric and magnetic charges which naively
corresponds to the usual electric-magnetic splitting in the cohomology lattice
H	(X, Z).

9. Motivic Invariants from Instanton Quivers

Our instanton quivers can be also used to set up the problem of comput-
ing motivic Donaldson–Thomas invariants for abelian quotient singularities,
which are closely related to the refined invariants described in Sect. 7 and will
naturally set up our discussion of wall-crossing in subsequent sections. There
are several results in the theory of motivic invariants on local threefolds, see
e.g. [28–33], following the seminal works [5,34]. We adapt these results to our
formalism and extend them to the Coulomb branch invariants

[

NCμ=0(k,N)
]

which depend on the choice of a boundary condition. The results of this sec-
tion can be straightforwardly extended also to the virtual quivers, although
for simplicity we will only consider the stable instanton quivers. We will begin
with some generalities. In what follows we will be rather sketchy in the formal
details (for which we refer the reader to the review [35]) and focus more on
computational aspects.

The idea behind enumerative problems is to count invariants associated
with moduli spaces of BPS states. There is however a meaningful way to asso-
ciate an enumerative problem with the moduli spaces themselves. For this,
one defines the abelian K-theory group of varieties which is generated by iso-
morphism classes of complex varieties M modulo the scissor relations [M] =
[Z] + [M\Z] whenever Z is a subvariety of M. The group structure is given
by [M] + [N] = [M � N]. A commutative ring structure comes from setting
[M] [N] = [M × N]; the class of the point is the unit 1 = [pt] for this mul-
tiplication. Of particular importance is the class of the affine line, the Lefs-
chetz motive L = [C], and its formal inverse L

−1 and square root L
1
2 . It then

follows from the scissor relations that the class of the complex one-torus is
[C∗] = [C\0] = L − 1.

One has [M] = [S] [F] whenever M
F−−→ S is a Zariski locally trivial

fibration. For example one can regard the variety GL(n, C) as a locally trivial
fibration over the n-torus (C∗)n; the fibre F is the stabilizer of a nonzero vector
in C

n and is isomorphic to GL(n − 1, C) × C
n−1. This implies the recursion

relation [GL(n, C)] = (Ln − 1) L
n−1 [GL(n − 1, C)] which is solved by

[

GL(n, C)
]

= L
1
2 n (n−1)

n
∏

k=1

(

L
k − 1

)

. (9.1)

The above definitions can be extended from varieties to stacks, and in par-
ticular to the moduli spaces of BPS states by formally inverting the motive
[GL(n, C)].
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For the BPS invariants associated with quivers the relevant moduli spaces
are obtained by cutting the moduli space of quiver representations by certain
matrix relations. These relations follow from the critical points of a superpo-
tential Wk, where the dimensions of the matrices are encoded as usual in the
dimension vector k of the quiver representations; in our case Wk is a cubic
polynomial. To the superpotential we associate the function fk := Tr Wk :
M(Q,k) → C, where M(Q,k) = HomΓ (V,Q ⊗ V ). Recall that we are study-
ing BPS states from a D-brane worldvolume gauge theory perspective in the
internal space. Equivalently one could take the point of view of [13,36] who
consider the low-energy effective N = 2 field theory for the BPS states on
R

4. The relations which characterize the instanton quiver are then precisely
the same as the F-term conditions, although of course in our case the use of
the terminology “superpotential” is not really correct. Yet this language is
useful since in our case we can think of the F-term relations as arising from
the affine case X = C

3 upon decomposition of the orbifold states into twisted
sectors. This approach is rather natural when thinking in terms of noncom-
mutative instantons. The flat space generalized ADHM equations yield the
critical points of a superpotential given by the holomorphic Chern–Simons
action TrZ1 [Z2, Z3]. In the orbifold case one splits the Hilbert space of BPS
states into twisted sectors corresponding to string states transforming as dif-
ferent characters of the orbifold action as in (3.2). One then decomposes the
trace into the twisted sectors as in (3.3) in the obvious way.

Recall that the arrows in the instanton quivers are associated with
multiplication of the characters of the orbifold group Γ; the node structure
corresponds to the characters while the arrow multiplicities follow from the
decomposition of the tensor product with the fundamental representation Q
of Γ, i.e. the representation Q = ρr1 ⊕ ρr2 ⊕ ρr3 , which contains the informa-
tion about the orbifold action on C

3, determines the arrow structure. This is
equivalent to saying that the individual terms in the superpotential can be
regarded as monomials (actually invariants) in the characters. Explicitly, the
superpotential is realized as a sum over the character lattice of Γ as

fk = TrWk =
∑

r∈̂Γ

Tr B
(r+r2+r3)
1

(

B
(r+r3)
2 B

(r)
3 − B

(r+r2)
3 B

(r)
2

)

. (9.2)

The motivic noncommutative Donaldson–Thomas invariant is essentially
the virtual motivic class of the critical locus of the function fk defined by

[

NCμ=0(k)
]

= L
1
2 k·k

[{dfk = 0}]

[Gk]
. (9.3)

In general, for a function g : M → C the virtual motive of the locus Z =
{dg = 0} can be expressed in terms of the motivic vanishing cycle introduced in
[37] as

[Z] = −L
− 1

2 dimC(M) [ϕg]. (9.4)

It is proven in [28] that, under favourable conditions including a certain toric
action, the motivic vanishing cycle can be written as a difference between the
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motivic classes of the generic fibre and of the fibre over the origin through

[ϕg] =
[

g−1(1)
] − [

g−1(0)
]

. (9.5)

In particular this holds in the case of the generalized ADHM equations for C
3.

As we have argued above, the orbifold case is obtained by simply decomposing
the affine space ADHM equations according to the twisted sectors as in (2.3).
We can, therefore, assume that the hypotheses of [28] hold also in our case.
In particular we may express the Donaldson–Thomas virtual class in terms of
ordinary motivic classes as

[

NCμ=0(k)
]

= L
1
2 χQ(k,k)

[

f−1
k (0)

] − [

f−1
k (1)

]

[Gk]
, (9.6)

where χQ is the Euler–Ringel form of the quiver Q, i.e. the bilinear form on
N

|Γ|
0 given by

χQ(k,k′ ) =
∑

r∈̂Γ

kr k′
r −

∑

r,s∈̂Γ

a(1)
sr kr k′

s. (9.7)

The final missing ingredient is the information about the boundary conditions
which is included in the framing; below we show that this simply amounts to
a minor modification of the above formalism.

We will now adapt the formalism of [30,31], which is based on [28], to our
instanton quivers. This basically amounts to a minor extension of the formal-
ism of [30] to framed quivers, in analogy to what was done in [31] for quivers
whose superpotential has a linear factor. The key concept is that of a cut : a
subset of arrows C ⊂ Q1 together with an N0-grading

grC(a) =
{

1, a ∈ C,
0, a /∈ C,

(9.8)

such that the superpotential Wk is homogeneous of degree one with respect
to grC. The degree zero part of Q, which is the quiver QC := (Q0,Q1\C), has
its own path algebra and its own category of representations. In particular we
have the representation space M(QC,k), and its subspace C(QC,k) consisting
of modules over the path algebra AC = CQC/〈∂aWk〉a∈C.

To compute the motivic Donaldson–Thomas invariants associated with
the instanton quivers, we first compute the difference [f−1

k (1)] − [f−1
k (0)]. For

this, regard the map fk = TrWk : M(Q,k) → C as a fibration. The stratifica-
tion C = C

∗ � 0 gives a relation between the fibre over 0 and the generic fibre
through

[M(Q,k)
]

=
[

f−1
k (0)

]

+ (L − 1)
[

f−1
k (1)

]

, (9.9)

where we used [C∗] = L − 1.
Similarly we can find another relation by considering the projection π :

M(Q,k) → M(QC,k). This is a trivial vector bundle of rank

d(k) := dimC M(Q,k) − dimC M(QC,k) = χQC
(k,k) − χQ(k,k), (9.10)

and therefore [M(Q,k)] = L
d(k) [M(QC,k)]. This allows us to compute the

class of f−1
k (0); the locus is a trivial fibration whose base consists now of two
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strata: C(QC,k) (since some F-term relations have already been imposed) and
M(QC,k)\C(QC,k). In the second stratum a linear condition has still to be
imposed on the superpotential thus reducing the dimension of the fibre by one.
Therefore,

[

f−1
k (0)

]

= L
d(k)

[C(QC,k)
]

+ L
d(k)−1

(

[M(QC,k)
] − [C(QC,k)

]

)

.

(9.11)

By merging (9.9) and (9.11) together one finds [30, Theorem 4.1]
[

f−1
k (0)

] − [

f−1
k (1)

]

= L
d(k)

[C(QC,k)
]

. (9.12)

We will now extend this construction to framed representations. Recall
that in our formalism (see also [13]) the framing nodes represent D6-branes
which are well-separated in R

4. For each D6-brane, instanton configurations
are constructed starting from the associated framing node and correspond to
monomials in the representation matrices obtained by acting on a reference
vector associated with the framing node. The framing is specified by a dimen-
sion vector N . In the framed case the definition of the motivic invariant is
slightly modified, since the framing factors do not appear in the superpoten-
tial. The relevant representation space is now

M(Q,k,N) = HomΓ (V,Q ⊗ V ) ⊕ HomΓ(W,V ). (9.13)

Note that the extra factor is just the affine variety C
N ·k. Therefore, if we

denote

YN ,k = f−1
k (0) ∩ M(Q,k,N) and WN ,k = f−1

k (1) ∩ M(Q,k,N)
(9.14)

then the relation (9.12) implies

[YN ,k] − [WN ,k] = L
d(k)

L
N ·k [C(QC,k)

]

. (9.15)

We now closely follow the approach of [28,31] to get a recursion equation
for the virtual motivic invariants; in this approach, we use suitable reduction
theorems [31,33] to express the refined invariants in terms of ordinary clas-
ses of certain reduced quiver representations. For each k define the subspace
Ml(Q,k,N) ⊂ M(Q,k,N) spanned by the matrices Bα of the quiver with
dimension vector l ≤ k, i.e. lr ≤ kr for each r ∈ ̂Γ. The definitions (9.15) carry
over to

Yl
N ,k = f−1

k (0) ∩ Ml(Q,k,N) and Wl
N ,k = f−1

k (1) ∩ Ml(Q,k,N).

(9.16)

In terms of these variables the motivic noncommutative Donaldson–Thomas
invariant is

[

NCμ=0(k,N)
]

= L
− 1

2 dimC M(Q,k,N)
L

1
2 k·k

[Yk
N ,k

] − [Wk
N ,k

]

[Gk]
, (9.17)

with dimC M(Q,k,N) − 1
2 k · k = −χQ(k,k) + N · k. We will now compute

this difference between motivic classes.
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Consider first the motive [Yl
N ,k]. Locally there is a Zariski fibration over

the quiver Grassmannian

Yl
N ,k −→ Gr(l,k) :=

∏

r∈̂Γ

Gr(lr, kr) (9.18)

which sends an element of Yl
N ,k to the array of subspaces Ur ⊂ Vr spanned by

the matrices Bα with dimension vector l such that Ur form a subrepresentation
of V . We have to compute the fibre of this map.

For this, it is convenient to pick a basis in the vector space V in which
the generalized ADHM matrices can be expressed as

Bα =
(

B̃α Bα

0 B̂α

)

for α = 1, 2, 3, (9.19)

whose image on vectors of the form

v = (vr)r∈̂Γ with vr =
(

v
(0)
r

0

)

(9.20)

generate the whole l-dimensional subspace Yl
N ,k; here v

(0)
r is an lr-dimensional

vector for each r ∈ ̂Γ. In this basis the computation simplifies. The Chern–
Simons action becomes

Tr Wk(Bα) = TrWl(B̃α) + TrWk−l(B̂α). (9.21)

Note that the submatrices Bα have disappeared; this implies that they cor-
respond to a trivial fibre of the form C

∑

r,s∈̂Γ a(1)
rs (kr−lr) ls . For a vanishing

superpotential there are only two possibilities
{

Tr Wl(B̃α) = TrWk−l(B̂α) = 0
}

or
{

Tr Wl(B̃α) = −Tr Wk−l(B̂α) �= 0
}

.

(9.22)

One can induce a product structure by projecting onto the factors (B̃,v(0))
and (B̂) (where in the second case we do not consider the span). This implies
that the first stratum corresponds overall to the fiber

[Yl
N ,l

]

L

∑

r,s∈̂Γ a(1)
rs (kr−lr) ls [YN ,k−l] L

−N ·(k−l). (9.23)

The last factor comes from [Yk−l] = [YN ,k−l] L−N ·(k−l), since the framing
just yields a trivial factor when we do not consider the span. The second stra-
tum is nearly identical. The only difference is that since now both terms are
non-vanishing (but equal) there is an additional C

∗-fibration (where the point
removed from C is precisely the origin where both terms vanish) which gives
an extra factor L − 1. Therefore, we have

(L − 1)
[Wl

N ,l

]

L

∑

r,s∈̂Γ a(1)
rs (kr−lr) ls [YN ,k−l] L

−N ·(k−l). (9.24)
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Altogether, by taking into account also the base of the Zariski fibration,
this gives

[Yl
N ,k

]

=
[

Gr(l,k)
]

L

∑

r,s∈̂Γ a(1)
rs (kr−lr) ls L

−N ·(k−l) [YN ,k−l]

×
(

[Yl
N ,l

]

+ (L − 1)
[Wl

N ,l

]

)

. (9.25)

Next we have to do a similar computation for the motive [Wl
N ,k]. Again

there is a Zariski fibration [Wl
N ,k] → Gr(l,k). We can pick a basis as above.

Now however the superpotential has to be set equal to 1 by definition of
[Wl

N ,k]. Therefore, there are three cases
{

Tr Wl(B̃α) = 1, Tr Wk−l(B̂α) = 0
}

,

{

Tr Wl(B̃α) = 0, Tr Wk−l(B̂α) = 1
}

,

{

Tr Wl(B̃α) = ζ, Tr Wk−l(B̂α) = 1 − ζ , ζ �= 0, 1
}

.

(9.26)

The computation proceeds as above; the only difference is the third case where
now the value of ζ is arbitrary in C\{0, 1} and, therefore, gives a factor of L−2.
These three cases give, respectively, the contributions

[Wl
N ,l

]

[YN ,k−l] L

∑

r,s∈̂Γ a(1)
rs (kr−lr) ls L

−N ·(k−l),

[Yl
N ,l

]

[WN ,k−l] L

∑

r,s∈̂Γ a(1)
rs (kr−lr) ls L

−N ·(k−l),

(L − 2)
[Wl

N ,l

]

[WN ,k−l] L

∑

r,s∈̂Γ a(1)
rs (kr−lr) ls L

−N ·(k−l).

(9.27)

Altogether one therefore finds
[Wl

N ,k

]

=
[

Gr(l,k)
]

L

∑

r,s∈̂Γ a(1)
rs (kr−lr) ls L

−N ·(k−l)

×
(

[Wl
N ,l

]

[YN ,k−l] +
[Yl

N ,l

]

[WN ,k−l] + (L − 2)
[Wl

N ,l

]

[WN ,k−l]
)

.

(9.28)

Finally, to compute the difference [YN ,k] − [WN ,k], we note that each term
stratifies as YN ,k =

⊔

l≤k Yl
N ,k and WN ,k =

⊔

l≤k Wl
N ,k. We can then go

back to the expression (9.15) to write

L
d(k)

L
N ·k [C(QC,k)

]

=
∑

l≤k

(

[Yl
N ,k

] − [Wl
N ,k

]

)

=
∑

l≤k

[

Gr(l,k)
]

L

∑

r,s∈̂Γ a(1)
rs (kr−lr) ls L

−N ·(k−l)
(

[Yl
N ,l

]

[YN ,k−l]

+ (L − 1)
[Wl

N ,l

]

[YN ,k−l] − [Wl
N ,l

]

[YN ,k−l] − [Yl
N ,l

]

[WN ,k−l]

− (L − 2)
[Wl

N ,l

]

[WN ,k−l]
)
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=
∑

l≤k

[

Gr(l,k)
]

L

∑

r,s∈̂Γ a(1)
rs (kr−lr) ls L

−N ·(k−l)

×
(

[Yl
N ,l

] − [Wl
N ,l

]

) (

[YN ,k−l] − [WN ,k−l]
)

. (9.29)

Now if we use (9.15) again as well as the definition (9.17) then we find

L
d(k)

L
N ·k [C(QC,k)

]

=
∑

l≤k

[

Gr(l,k)
]

L

∑

r,s∈̂Γ a(1)
rs (kr−lr) ls L

−N ·(k−l)
L

d(k−l)
L

N ·(k−l)

× [C(QC,k − l)
]

[Gl]
[

NCμ=0(l,N)
]

L
1
2 (−χQ(l,l)+l·N). (9.30)

We can simplify this last relation by expanding the class of the quiver
Grassmanian. One has

[

Gr(l,k)
]

=
[Gk]

[Gl] [Gk−l]
[

Cl·(k−l)
] =

[Gk]
[Gl] [Gk−l]

L
−l·(k−l) (9.31)

and by (9.1) the relevant classes are of the form

[Gk] =
∏

r∈̂Γ

[

GL(kr, C)
]

=
∏

r∈̂Γ

L
1
2 kr (kr−1)

kr
∏

jr=1

(

L
jr − 1

)

. (9.32)

Putting everything together we arrive at a recursion relation for the vir-
tual motivic noncommutative invariants given in terms of motives of moduli
of AC-modules by

L
d(k)

L
N ·k [C(QC,k)

]

=
∑

l≤k

[C(QC,k − l)
]

∏

r∈̂Γ

L
1
2 (2kr−lr−1) lr

kr
∏

jr=kr−lr+1

(

L
jr − 1

)

× L
− 1

2 χQ(l,l)−χQ(k−l,l)
L

d(k−l)
L

− 1
2 N ·(k−l)

[

NCμ=0(l,N)
]

. (9.33)

Let us now study a couple of explicit examples and their associated com-
binatorial problems. Consider again the C

3/Z3 singularity. In this case the
superpotential has the form

fk = Tr
(

B
(2)
3

(

B
(1)
1 B

(0)
2 − B

(1)
2 B

(0)
1

)

+ B
(2)
1

(

B
(1)
2 B

(0)
3 − B

(1)
3 B

(0)
2

)

+B
(2)
2

(

B
(1)
3 B

(0)
1 − B

(1)
1 B

(0)
3

)

)

. (9.34)
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The matrices B
(2)
α , α = 1, 2, 3 form a cut. After removing them from (8.2), the

quiver QC takes the form

W0 •

��
V0 ◦

���� ��
V1 ◦ ������ ◦ V2

(9.35)

and the combinatorial problem that one is left with is the enumeration of sets
of matrices obeying the reduced coupled equations

B
(1)
1 B

(0)
2 = B

(1)
2 B

(0)
1 , B

(1)
2 B

(0)
3 = B

(1)
3 B

(0)
2 and B

(1)
3 B

(0)
1 = B

(1)
1 B

(0)
3 . (9.36)

This is the (framed) Beilinson quiver for P
2; the representations of this quiver

correspond to (framed) coherent sheaves on the projective plane which classify
BPS states of D4-branes wrapping P

2 in the large radius limit. Thus while
the recursion relation (9.33) is still a difficult problem, it reduces the com-
putation of the motivic noncommutative invariants to something considerably
easier since in this case the path algebra of the “cut” quiver QC has no oriented
cycles. Geometrically one can understand this result by saying that the motivic
invariants near the orbifold point are captured by retraction to the zero section
of the crepant resolution X = HilbZ3(C3) ∼= OP2(−3) of the C

3/Z3 singular-
ity (although of course this is not literally true since the stability conditions
are still associated with the noncommutative crepant resolution). This is just
another manifestation of the McKay correspondence. In [18, Section 8.4] an
analogous relation between the derived categories of coherent sheaves on P

2

and on X is described; it demonstrates that certain holomorphic objects near
the orbifold point come from representations of the Beilinson quiver for P

2.
Next we consider the example of the C

3/Z2×Z2 orbifold. The correspond-
ing crepant resolution is semi-small, so for each arrow of the C

3/Z2×Z2 quiver
connecting a pair of nodes there is a dual arrow in the opposite direction. The
quiver Q is

V0 ◦

����

��
V3 ◦

��

�� ��
V1 ◦

��

��

�� ◦ V2



��

��

(9.37)
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and a possible choice of cut QC is given by

V0 ◦

����

��
V3 ◦

��
V1 ◦

��

��

�� ◦ V2

��

(9.38)

If we introduce the motive

Vk := L
d(k)

[C(QC,k)
]

[Gk]
(9.39)

then the recursion relation (9.33) becomes

L
1
2 N ·k

Vk =
∑

l≤k

L
− 1

2 (k−l)·N
Vk−l L

χQ(k−l,l)
L

− 1
2 χQ(l,l)

[

NCμ=0(l,N)
]

. (9.40)

Since the Euler–Ringel form χQ is symmetric in this case, it satisfies

− χQ(k − l, l) − 1
2

χQ(l, l) =
1
2

χQ(k − l,k − l) − 1
2

χQ(k,k). (9.41)

Introducing variables p = (pr)r∈̂Γ weighting the (non-framing) nodes of the
quiver, we find the relation

∑

k≥0

L
1
2 χQ(k,k)

L
1
2 N ·k

Vk pk

=
∑

k≥0

∑

l≤k

L
− 1

2 N ·(k−l)
Vk−l L

1
2 χQ(k−l,k−l)

[

NCμ=0(l,N)
]

pk−l pl.

(9.42)

As in [28] the sums decouple and one arrives finally at the motivic BPS par-
tition function

Zmot
C3/Z2×Z2

(N) :=
∑

k≥0

[

NCμ=0(k,N)
]

pk

=

∑

k≥0 L
1
2 χQ(k,k)

L
1
2 N ·k

Vk pk

∑

m≥0 L
1
2 χQ(m,m) L− 1

2 N ·m Vm pm
. (9.43)

Motivic partition functions such as (9.43) should be compared with their
refined counterparts (7.5) under the identifications (5.7) and the refined/moti-
vic correspondence λ = L

1
2 [7,32].

It would be interesting to find a closed form for the motivic partition
functions in this case, precisely as is the situation for the ordinary (unrefined)
invariants. Presumably such formulas come from suitable generalizations of
the partition function [28, Proposition 1.1]

∞
∑

k=0

[Ck]
[

GL(k, C)
] qk =

∞
∏

n=1

∞
∏

m=0

(

1 − L
1−m qn

)−1 (9.44)
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for the class of the variety Ck of commuting pairs of k × k complex matri-
ces, which could be used to perform the sums involving the motives (9.39).
Analogous closed expressions are computed in [31,33] for the abelian orbifolds
C

2/Zn×C of type An−1 by retraction to C
2/Zn. The generalized McKay quiver

is again symmetric, and now contains a loop at each node [18]. In this case the
recursion and reduction formulas can be evaluated explicitly via two natural
cuts: firstly by taking C to be the set of vertex loops so that C(QC,k) con-
sists of modules over the preprojective algebra of the standard affine McKay
quiver for the four-dimensional singularity C

2/Zn and generalizing the parti-
tion function (9.44), and then further cutting with the collection of all dual
arrows C′ so that (QC)C′ coincides itself with the affine Dynkin diagram of
type Ân−1. Thus in this case the process of dimensional reduction reduces the
problem to that of representations of the simply-laced extended Dynkin quiver
of type Ân−1, analogously to the reduction to the Beilinson quiver for P

2 that
we encountered above.

10. Wall-Crossing Formulas from McKay Data

To the generators of the charge lattice Λ we associate sets of invertible oper-
ators {XI} and their inverses which includes operators {Xr} corresponding to
the irreducible representations ρr, r ∈ ̂Γ and {X∞} corresponding to the fram-
ing nodes. These operators generate the quantum torus algebra associated with
the basis of fractional branes; this is the associative noncommutative algebra
over C defined by the relations

XI XJ = λ2(γI ,γJ ) XJ XI (10.1)

where λ is the spin weighting parameter introduced in (7.3). Similarly, for
the lattice ̂Λ we can define a quantum torus T

∗
̂Λ

by the same set of operators
{XI} = {Xr,X∞} but with the new commutation relations

XI XJ = λ2〈γI ,γJ〉 XJ XI . (10.2)

For an instanton quiver with trivial framing the non-trivial relations are gen-
erally

Xr Xs = λ2a(2)
rs −2a(1)

rs Xs Xr and X∞ X0 = λ2 X0 X∞. (10.3)

Now all the information about the quantum torus algebra is encoded in the
group theory associated with the orbifold singularity. In fact, the generators Xr

are the “quantum” analogs of the K-theory generators Sr, since their algebra
is determined entirely by the intersection pairing on Kc(X). For an arbitrary
charge vector γ =

∑

r∈̂Γ gr γr ∈ ̂Λ, gr ∈ Z the corresponding operator is

Xγ = λ−∑

r<s gr gs (a(2)
rs −a(1)

rs )
�
∏

r∈̂Γ

Xgr
r , (10.4)

which can be extended to include also the framing nodes; here the product
is taken in increasing order with respect to a suitable lexicographic ordering
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on the character lattice. Since the intersection form 〈−,−〉 on ̂Λ is non-degen-
erate, there are no central elements in the quantum torus algebra when the
deformation parameter λ is not a root of unity.

We can now put all of our ingredients together to construct a quantum
monodromy operator [21] associated with the virtual instanton quiver as

M(λ) =
�
∏

θρ

Ψ
(

λ2sρ Xρ;λ
)Ωref

2sρ
(ρ)

, (10.5)

where the product is over all the (ordered) framed representations of the orb-
ifold group Γ. The quantum dilogarithm function Ψ(x;λ) is defined as the
Pochhammer symbol (−λx;λ2)∞, i.e. the (convergent) infinite product

Ψ(x;λ) =
∞
∏

n=0

(

1 + λ2n+1 x
)

. (10.6)

Here sρ is the spin content of the BPS states associated with the (generally
reducible) representation ρ, and Ωref(ρ;λ) =

∑

n Ωref
n (ρ) (−λ)n ∈ Z(λ) is the

corresponding refined index of states; the product over BPS states is ordered
according to increasing central charge phases θρ of the states. We conjecture
that the conjugacy class of this operator, in analogy with the construction of
[21], is constant upon crossing a wall of marginal stability where the phases θρ

and θρ′ for two linearly independent ρ, ρ′ become aligned. We will discuss later
on how to rephrase this operation, and hence the combinatorics of the wall-
crossing jumps, in purely group theory terms via the theory of cluster algebras
associated with the quiver. All the data involved in this operator, including
the commutation relations, are purely group theoretical and explicitly known
once the orbifold singularity is chosen, except for the BPS multiplicities, the
spins of the states, and their central charges.

We can however take a further step and try to identify the central charges
and their phases, at least in the context of stacky gauge theories; at this stage
though it is far from clear that this ordering of states coincides with the order-
ing of string theory BPS states, due to the caveats already expressed in [18].
Motivated by considerations of Π-stability, it is natural to define a quiver cen-
tral charge function Zω,B : Λ → C via the McKay correspondence as the total
charge of a D6–D4–D2–D0 bound state on X; it is linear on the charge lattice
Λ and is given by integrating the (twisted) Mukai vector of the corresponding
coherent sheaf E to get

Zω,B(E) =
∫

X

e −B− i ω ∧ ch(E) ∧
√

Todd(X). (10.7)

This definition is intended with the following prescription. The Chern char-
acter of a torsion-free sheaf E on X is computed as in (3.7) while the Todd
class, as well as the complexified Kähler moduli B + iω, are expressed via the
basis of H	(X, C) given by the Chern classes of the set of tautological bundles
(3.8). This prescription can be carried out quite explicitly in several cases by
using the calculations of [18]. Of course the explicit result will depend on the
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particular orbifold singularity; for example with trivial boundary conditions
at infinity one generically finds for the real and imaginary parts

ReZω,B(E)

= ˜ch0(E)
( 1

24
(

c1 c2 − 2c3
1

) − c1

4

∑

m∈̂Γ

ςm c2(Vm)
)

+
∑

r,s∈̂Γ

ks

[

〈γs, γr〉
(

˜ch1(Rr)
( 1

24
(

2c2 − c2
1

) − 1
2

∑

m∈̂Γ

ςm c2(Vm)
)

+
ch(1)

1

2
˜ch2(Rr) + ˜ch3(Rr)

)

+6δrs
˜ch

(1)

3

+
(

(γs, γr)−3δrs

)

(

− c1 ch(1)
1

2
˜ch1(Rr)+ch(1)

1
˜ch2(Rr)+ch(1)

2
˜ch1(Rr)

)

]

,

(10.8)

Im Zω,B(E) = −ω3

6
˜ch0(E) +

∑

n∈̂Γ

ϕn c1(Rn)
[

1
24

˜ch0(E)
(

2c2 − c2
1

)

+
∑

r,s∈̂Γ

ks

(

〈γs, γr〉
( c1

2
˜ch1(Rr)+ ˜ch2(Rr)

)

−(γs, γr) ch(1)
1

˜ch1(Rr)
)]

.

(10.9)

Here ˜ch denotes the twisted Chern character ˜ch(E) = e −B ∧ch(E), ci := ci(X)
are the Chern classes of the tangent bundle of X, and ch(1)

i := chi(OX(1)).
The central charge is thus determined by twisted intersection indices,

whose dependence on the geometric moduli is fixed by the McKay correspon-
dence. Note that the central charge computed according to this prescription is
linear in the D-brane charges N = ch0(E) and ks, as expected. Furthermore, it
is consistent with the known definitions of stability parameters used to analyse
BPS states associated with quivers, such as θ-stability. In particular, the usual
slope function μ = μω,B(E) defined by the imaginary part (10.9) depends on
both stable and virtual instanton quiver lattice pairings between fractional
D0-branes, as well as the D2-brane (but not D4-brane) chemical potentials.
For a polarization ω → ∞, these would determine stability conditions near the
large radius point in the Kähler moduli space. In this region our wall-crossing
conjecture may thus be refined by saying that the quantum monodromy M(λ)
is constant under variation of Zω,B ∈ {r e i θ | r > 0, 0 < θ ≤ 1}. Again, hav-
ing fixed once and for all the orbifold singularity, all the data in (10.7)–(10.9)
are expressed in terms of representation theory and the physical properties
of the instanton one is considering, i.e. the choice of boundary condition and
the specification via the plane partitions πl,r of the instanton configurations.
Moreover, the BPS degeneracies Ωref(k,N ;λ) are computed in the noncom-
mutative crepant resolution chamber by the formalism of Sect. 7 where they
can be identified with the refined invariants NCref

μ=0(k,N ;λ). Note that the
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stability condition μ = 0 is equivalent to the vanishing of (10.9) in the large
radius chamber.

In the “classical” limit, where the quantum (or motivic) parameter λ → 1,
this formalism rewrites the wall-crossing formula which was derived by Kontse-
vich and Soibelman within a local approach based on Lie algebras. In this case
instead of the operators XI considered before we introduce the Lie algebra gen-
erated by the elements eI := limλ→1 XI

/(

λ2−1
)

which obey the commutation
relations

[eI , eJ ] = (−1)〈γI ,γJ 〉 〈γI , γJ 〉 eγI+γJ
, (10.10)

where eγI+γJ
is the generator associated with the charge γI +γJ . In particular

we can define the group-like operator

Uρ = exp

( ∞
∑

n=1

en ρ

n2

)

(10.11)

which generates symplectomorphisms of the classical complex torus ̂Λ ∨ ⊗ C
∗.

Using this operator we can formulate a representation theory version of the
Kontsevich–Soibelman conjecture: the operator

K =
�
∏

θρ

UΩ(ρ)
ρ (10.12)

is constant upon crossing walls of marginal stability. Here the operators are
ordered with the phase of the central charge as determined in (10.7)–(10.9)
increasing. The degeneracy Ω(ρ) ∈ Z represents the index of BPS states with
charge given by the (reducible) representation ρ of Γ (recall that in our nota-
tion this may include framing nodes • which represent the D6-brane charge).
Once again, except for the degeneracies Ω(ρ), all the information entering into
the operator (10.12) is completely determined via the McKay correspondence
by the (virtual) instanton quiver and, therefore, by the orbifold singularity.
Moreover, by using the formalism developed in [18] the BPS degeneracies
Ω(k,N) are known at least in one chamber, the one corresponding to the
noncommutative crepant resolution where they can be identified with the
invariants NCμ=0(k,N). From this conjecture one can naturally deduce wall-
crossing behaviours for the noncommutative Donaldson–Thomas invariants
from the associated Lie algebra elements DTμ=0(k) ek by using (6.1), (6.3) and
the combinatorial formula of [4, Theorem 7.17]; in particular, for semi-small
crepant resolutions the invariants themselves are independent of the slope sta-
bility conditions.

The connection between the quantum and classical monodromy operators
(10.5) and (10.12) can be elegantly formulated by similarly relating the motivic
wall-crossing formulas with the McKay correspondence. In this case the moti-
vic quantum torus is generated by elements êI associated with the irreducible
representations of the orbifold group, and obeying the twisted multiplication
rule

êI êJ = L
1
2 〈γI ,γJ〉 êγI+γJ

. (10.13)
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The quantum analog of the operator Uρ introduced in (10.11) can be now
defined via the motivic quantum dilogarithm

Uρ �−→ Ψ
(

êρ ; L
1
2
)

. (10.14)

The motivic wall-crossing formula is the statement that the quantum
monodromy associated with these operators, i.e. the appropriately ordered
product, is invariant and chamber independent. The corresponding behav-
iours of the motivic Donaldson–Thomas invariants are deduced via the element
NCμ=0(k,N) :=

[

NCμ=0(k,N)
]

êk of the motivic quantum torus algebra [29].

11. Cluster Algebras and the McKay Correspondence

Given a 2-acyclic quiver we can construct its cluster algebra and the asso-
ciated quantum algebras [21,38] (see [39] for a review). This is the algebra
generated by the operators XI and their (quantum) mutations by monodromy
operators; a related approach has been pursued in [40]. Roughly speaking if
two quivers are related by a mutation, then they correspond to different BPS
chambers separated by a wall of marginal stability and their noncommutative
Donaldson–Thomas invariants (more precisely the motivic algebra elements
NCμ=0(k,N)) are linked by the composition of a monomial transformation
with conjugation by a quantum dilogarithm operator [5]. The cluster algebras
can be interpreted as K-theory invariants associated with categories of quiver
representations, and are in this way related to the categorification described
in Sect. 9.

Let Q be a 2-acyclic quiver associated with a lattice of charges ̂Λ and the
quantum torus T

∗
̂Λ
. This quiver is obtained from the virtual instanton quiver

associated with an orbifold singularity via the McKay correspondence as we
have explained in the previous sections. A mutation of this quiver at the node
K, mutK(Q), is obtained by reversing all the arrows incident to the node K and
modifying the arrows between I and J �= I for all the other vertices different
from K, according to the rule depicted schematically as

Q mutK(Q)

I
l ��

m
���

��
��

��
J

K

n

���������

I
l+m n �� J

n
����

��
��

�

K

m

���������

I
l �� J

n
����

��
��

�

K

m

���������

I
l−m n ��

m
���

��
��

��
J

K

n

���������

(11.1)

where l, m and n are integers, and the notation I
l �� J denotes l arrows

from I to J if l ≥ 0 and −l arrows from J to I if l ≤ 0.
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The mutation mutK(Q) is an involution that corresponds to a change of
the quiver and, therefore, to a change of basis for the lattice ̂Λ which is reflected
in a redefinition of the generators XI of T

∗
̂Λ
. As in [39], we neither mutate nor

draw arrows between framing vertices •; the elements X∞ then play the role
of coefficients in the corresponding cluster algebra. For K = r ∈ ̂Γ one has

X′
I := mutr(XI) = (−λ)−〈γI ,γr〉 [〈γI ,γr〉]+ XI (−Xr)[〈γI ,γr〉]+ , I �= r,

X′
r := mutr(Xr) = X−1

r ,
(11.2)

where [n]+ := max{n, 0} for n ∈ Z. The quantum version of this operator is
obtained by composing with conjugation by the quantum dilogarithm operator

XI �−→ AdΨ(Xr;λ)(XI) := Ψ(Xr;λ)−1 XI Ψ(Xr;λ). (11.3)

Explicitly, we can write for a quantum cluster mutation at vertex K = r the
transformation

mutλr (XI)=Ψ(Xr;λ)−1 mutr(XI)Ψ(Xr;λ)=mutr
(

Ψ(X−1
r ;λ)−1 XI Ψ(X−1

r ;λ)
)

.

(11.4)

As demonstrated in [21], the quantum monodromy operator (10.5) can typi-
cally be written (up to conjugation) as a product of quantum mutation oper-
ators (11.4). Once again this operation is completely rephrased in terms of
representation theory data, that is explicitly determined once the orbifold sin-
gularity (and therefore the virtual quiver) is given.

For simplicity, from now on we neglect the framing and the D6-brane
charge in the lattice; it is straightforward to incorporate them back. From [38],
we know that for the quantum dilogarithm the relation λ−〈γr,γs〉 Xr Xs =
λ−〈γs,γr〉 Xs Xr implies

Ψ(X−1
r ;λ)−1 Xs = Xs Ψ(λ2〈γr,γs〉 X−1

r ;λ)−1. (11.5)

In particular, in our case, since the pairing between fractional branes is deter-
mined by the intersection pairing on Kc(X), one has

Ψ(λ2〈γr,γs〉 X−1
r ;λ)−1 Ψ(X−1

r ;λ)

= Ψ(λ2a(2)
rs −2a(1)

rs X−1
r ;λ)−1 Ψ(X−1

r ;λ)

=

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

a(2)
rs −a(1)

rs
∏

i=1

(

1 + λ2i−1 X−1
r

)

if a
(2)
rs > a

(1)
rs ,

1 if a
(2)
rs = a

(1)
rs ,

a(1)
rs −a(2)

rs
∏

i=1

(

1 + λ1−2i X−1
r

)−1

if a
(2)
rs < a

(1)
rs .

(11.6)

Note that the non-trivial products have
∣

∣a
(2)
rs − a

(1)
rs

∣

∣ terms.
Let us consider an explicit example of the action of a quantum mutation

on our instanton quivers. For the virtual quiver (8.11) of C
3/Z6, let us mutate
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at the vertex V2 to get the quiver

V0 ◦

��

��

V5 ◦

��

�� V1 ◦

����

��
V4 ◦

��

�� V2 ◦

  

V3 ◦

�� !!

(11.7)

The action of the classical mutation on the quantum torus generators is given
by

mut2(X0) = λ−1 X0 X2 = Xγ0+γ2 ,

mut2(X1) = λ−1 X1 X2 = Xγ1+γ2 ,

mut2(X2) = X−1
2 ,

mut2(X3) = X3,

mut2(X4) = X4,

mut2(X5) = X5,

(11.8)

where we have used the twisted multiplication rule

Xγr+γs
= λ−〈γr,γs〉 Xr Xs (11.9)

to make the change of basis in the quantum torus explicit. The quantum muta-
tion is, therefore, given by:

mutλ2 (X0) = λ−1 X0 X2 (1 + λ X2),

mutλ2 (X1) = λ−1 X1 X2 (1 + λ X2),

mutλ2 (X2) = X−1
2 ,

mutλ2 (X3) = X3 (1 + λ−1 X2)−1,

mutλ2 (X4) = X4 (1 + λ−1 X2)−1,

mutλ2 (X5) = X5.

(11.10)

This example illustrates that the rules of quantum mutations are completely
determined by the representation theory data associated with the singularity:
one can literally see the structure of the third column of the intersection matrix
(8.10) in mutλ2 (Xr).

To understand completely the quantum cluster algebra one should con-
tinue to compose quantum mutations. Of course, having changed basis in the
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quantum torus, the intersection pairing has changed as well and is still deter-
mined by the arrow structure of the mutated quiver. It is shown in [38] that
the new pairing 〈−,−〉′ can be obtained from the old pairing 〈−,−〉 through

〈γr, γs〉′

=

⎧

⎪

⎪

⎨

⎪

⎪

⎩

−〈γr, γs〉 if K ∈ {r, s},

〈γr, γs〉 if 〈γr, γK〉 〈γK , γs〉 ≤ 0, K /∈ {r, s},

〈γr, γs〉 +
∣

∣〈γr, γK〉∣∣ 〈γK , γs〉 if 〈γr, γK〉 〈γK , γs〉 > 0, K /∈ {r, s}.

(11.11)

Again all the subsequent pairings are determined by the singularity structure
and in particular the form of the quantum mutation operator is completely
determined, although doing so in practice might prove to be rather challenging.
In a given chamber of the Kähler moduli space, these compositions should be
compared with the adjoint actions AdM(λ)(Xr) of the corresponding quantum
monodromy operators (10.5), which can in principle be computed explicitly
by using the quantum dilogarithm identities (11.5)–(11.6).

Note that our mutations are concerned with the cluster algebra structure.
From this perspective a mutation corresponds to a change of basis in the lattice
of charges. Changing basis vectors alters the possible bound states that the
fractional branes can form and hence also affects the spectrum of BPS states;
it is intriguing that such a transformation in the noncommutative crepant res-
olution chamber induces an analogous basis change in the large radius limit
via the McKay correspondence. It would be interesting to understand how this
formalism is related to some notion of Seiberg duality on our instanton matrix
quantum mechanics, which would be a statement about representations of the
quiver, analogously to the discussion of e.g. [41–43]; this would tie in nicely
with the tilted derived equivalences between the noncommutative crepant res-
olution and large radius chambers described in [18, Section 5.9]. It would seem
that the correct setup to apply Seiberg-like dualities is the one of the virtual
instanton quivers. However, they do not seem to have an immediate geometric
interpretation in terms of tilting objects in the derived category of coherent
sheaves on X.

12. Discussion

In this paper we have taken one step further the discussion initiated in [18] and
clarified some loose ends. We have also used this chance to present the material
of [18] in a simple form, by introducing the basic features of stacky gauge the-
ories without all the necessary intricacies. Indeed while the formalism relies on
a quite long construction which lies at the interface of noncommutative field
theory, algebraic geometry and representation theory, at the end of the day
it can be simply restated as an instanton counting problem, albeit with some
stringy inputs. The approach can be summarized by saying that the stacky
gauge theory path integral localized onto certain configurations weighted by
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an instanton action. These configurations correspond to certain enumerative
invariants, which depend on the instanton number k and a choice of bound-
ary condition labelled by a vector N , which can be computed using a framed
instanton quiver. Each of the aforementioned quantities is explicitly comput-
able and the interested reader will find plenty of examples in [18]. In this note
we have investigated various ways in which this formalism can be extended,
refraining from extensive computations of the invariants. For example the BPS
invariants admit a combinatorial “refinement”, much as ordinary Donaldson–
Thomas invariants, which is obtained by a modification of the instanton action
to include spin degrees of freedom. Indeed on can take a step further and con-
sider motivic invariants

[

NCμ=0(k,N)
]

. The stacky gauge theory setup implies
that one has to work in a superselection sector determined by the boundary
condition vector N . The resulting invariant turn out to have a quite intricate
dependence on the chosen boundary conditions.

Interestingly the stacky gauge theory seems to imply the existence of
another object, the (framed) virtual instanton quiver, which is obtained by
endowing the lattice of fractional brane charges with the natural K-theory pair-
ing. We interpret this virtual quiver as a limit of the instanton quiver where
certain bi-fundamental fields are decoupled. We suggest that this quiver has
a special status in the study of BPS invariants. Indeed once it is introduced,
the wall-crossing formula as well as all the machinery of quantum cluster alge-
bras is completely determined by representation theory data via the McKay
correspondence. In particular this appears to be the correct setting to study
Seiberg-like dualities at the level of the instanton quantum mechanics. Unfor-
tunately having decoupled bi-fundamental fields has most likely taken us in
some other region of the moduli space. The hope is that one could use the
McKay correspondence to constrain the BPS spectrum of the virtual quiver
quantum mechanics, possibly along the same lines in which the instanton sums
in N = 4 super Yang–Mills on a four-dimensional ALE space are determined
by the characters of the associated affine Kac–Moody algebra. We feel these
speculations deserve further investigations.
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