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Upper Bound for the Bethe–Sommerfeld
Threshold and the Spectrum of the Poisson
Random Hamiltonian in Two Dimensions
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Abstract. We consider the Schrödinger operator on R
2 with a locally

square-integrable periodic potential V and give an upper bound for the
Bethe–Sommerfeld threshold (the minimal energy above which no spec-
tral gaps occur) with respect to the square-integrable norm of V on a
fundamental domain, provided that V is small. As an application, we
prove the spectrum of the two-dimensional Schrödinger operator with
the Poisson type random potential almost surely equals the positive real
axis or the whole real axis, according as the negative part of the single-
site potential equals zero or not. The latter result completes the missing
part of the result by Ando et al. (Ann Henri Poincaré 7:145–160, 2006).

1. Introduction

1.1. Bethe–Sommerfeld Threshold

We consider the Schrödinger operator H on R
2 given by

H = −Δ + V,

and assume the following:
(V1) V ∈ L2

loc(R
2; R).

(V2) V is periodic with respect to some lattice Γ (of rank 2).
Under (V1) and (V2), it is well known that H|C∞

0 (R2) is essentially self-adjoint
and we denote the unique self-adjoint extension by the same letter H. It is
also well known that the spectrum of H consists of finitely or infinitely many
closed intervals (energy bands) (see, e.g. [13]). The Bethe–Sommerfeld conjec-
ture says the number of the spectral gaps is finite when the space dimension
d ≥ 2. This conjecture is proved by Skriganov [14,15] and Popov and Skrig-
anov [11] in two-dimensional case, by Skriganov [16,17] in three-dimensional
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case, and by Helffer and Mohamed [3] in four-dimensional case. Skriganov [16]
also proves the conjecture in arbitrary dimension when the period lattice is
rational. In the above results they assume some smoothness or boundedness
for the periodic potential. Karpeshina [4] proves the conjecture in the case V
is singular (e.g. V ∈ L2

loc), in two- or three-dimensional case. Parnovski [9]
also proves the conjecture in arbitrary dimension for smooth V , and Veliev
[18] also gives an important contribution on this matter. For the detail, see
the references in the above papers.

In the present paper, we shall give a refinement of Karpeshina’s result [4]
for singular potentials in two-dimensional case, as follows:

Theorem 1.1. Assume (V1) and (V2). Let Ω be a fundamental domain of Γ
(see Sect. 2.1). Then, there exist positive constants ε = ε(Γ) and c = c(Γ) such
that

σ(−Δ + V ) ⊃ [c‖V ‖L2(Ω),∞)

for any V ∈ L2
loc(R

2; R) periodic with respect to Γ and ‖V ‖L2(Ω) ≤ ε.

It is easy to see that the constants ε(Γ) and c(Γ) satisfy the scaling prop-
erties

ε(αΓ) = ε(Γ)/α, c(αΓ) = c(Γ)/α (1)

for any α > 0, where αΓ = {αγ : γ ∈ Γ} is the scaled lattice. Theorem 1.1
gives an upper bound for the Bethe–Sommerfeld threshold (the minimal energy
above which no spectral gaps occur) with respect to ‖V ‖L2(Ω), for small V .
To our knowledge, the upper bound of this type seems not obtained in the
preceding literature. The closest result is the one by Skriganov [14, Theorem
2,3], which implies the conclusion of Theorem 1.1 with L2-norm just replaced
by L∞-norm.1

The proof of Theorem 1.1 is based on Karpeshina’s book [4]. We use the
perturbation theory of the Bloch Laplacian −Δk on the Bloch wave subspace
with quasi-momentum k. We prove that for a fixed small positive number μ
and for any sufficiently large energy E, there always exists a quasi-momentum
k such that E is a simple eigenvalue of −Δk and

|E − E′| ≥ μ for E′ ∈ σ(−Δk)\{E}. (2)

The condition (2) is called the μ-non diffraction condition,2 which enables us
to apply the perturbation theory for simple eigenvalues. Further, we prove that
for sufficiently large E there exists a quasi-momentum k satisfying (2) and the
resolvent estimates

‖(−Δk − z)−1‖ ≤ C, ‖V (−Δk − z)−1‖HS ≤ C‖V ‖L2(Ω)

for z on the circle {z ∈ C : |z−E| = μ/2}, where C is a constant independent
of E, z, V , and ‖ · ‖ denotes the operator norm, ‖ · ‖HS the Hilbert-Schmidt

1 We can prove this statement by [14, Theorem 2,3] combined with a simple scaling argument
as in the beginning part of the proof of Theorem 1.1.
2 The name ‘diffraction’ comes from the condition for the diffraction of the plane wave inside
the crystal, given by von Laue. For the detail, see [4].
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norm. By a standard perturbative argument using the resolvent expansion
with respect to A = V (−Δk − z)−1, we prove the value of the branch of the
free band function λ0 with λ0(k) = E changes at most O(‖V ‖L2(Ω)) by the
perturbation by V , provided that ‖V ‖L2(Ω) is small. Combining this with the
fact the Bethe–Sommerfeld conjecture trivially holds for V = 0, we conclude
Theorem 1.1 holds.

The difference between our method and Karpeshina’s is the following:
Karpeshina uses the resolvent expansion with respect to

˜A = (−Δk − z)−1/2V (−Δk − z)−1/2,

and obtains the estimate for ˜A using some decomposition of the Fourier space
dependent on the Fourier coefficients of V (see, e.g. [4, (3.6.3)]). This method
is applicable to more singular potentials than L2

loc, but, however, also makes it
difficult to see the dependence of the Bethe–Sommerfeld threshold with respect
to ‖V ‖L2(Ω). The use of our operator A clarifies this point and also makes the
proof simpler with the aid of a Chebyshev-like lemma (Lemma 4.2). Besides,
our definition of the diffraction set is slightly different from Karpeshina’s. In
Karpeshina’s definition, the number μ in (2) decays as R increases, but ours
does not. This change gives us better resolvent estimates.

It is natural to ask whether an analogue of Theorem 1.1 holds in higher
dimensions. However, as Karpeshina points out in [4, Section 4.1], there is a
qualitative difference between the two-dimensional case and the higher dimen-
sional case. As is well known, the density of states for the free Laplacian is a
constant times λd/2−1

+ , which is a constant if d = 2, and is an increasing func-
tion if d ≥ 3. This fact makes it difficult to use the non-degenerate perturbation
method when d ≥ 3. In order to avoid this difficulty in the three-dimensional
case, Karpeshina analyzes the perturbation of the degenerated eigenvalues by
comparing them with those of some modelling operators. However, the method
again depends on the distribution of the Fourier coefficients of each V , and
the bound for the threshold with respect to L2-norm is unknown at present.
Further study is necessary in this direction.

1.2. Spectrum of the Schrödinger Operators with Poisson Type Random
Potentials

We give an application of Theorem 1.1 to the spectral theory of the random
Schrödinger operators. We consider the random Schrödinger operator on R

d

(d = 1, 2, 3, . . .)

Hω = −Δ + Vω, Vω(x) =
∞
∑

j=1

f(x−Xj(ω)),

where ω ∈ X and (X,F ,P) is a probability space, and f is a real-valued
function called the single site potential. We assume the following:
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(A1) f is a real-valued, measurable function satisfying

∑

n∈Zd

⎛

⎜

⎝

∫

n+[− 1
2 , 1

2 )d

|f(x)|pdx

⎞

⎟

⎠

1/p

< ∞,

where
{

p > 2 (d ≤ 3),
p > d/2 (d ≥ 4).

(A2) The random points {Xj(ω)}∞
j=1 are the Poisson configuration with inten-

sity measure ρdx, where ρ is a positive constant and dx is the Lebes-
gue measure. That is, the following conditions hold(see [1, Assumption
(H3)]):
(i) For any E1, E2, . . . , En ⊂ R

d disjoint Borel sets on R
d, the random

variables #{j : Xj(ω) ∈ Ek}, k = 1, 2, . . . , n are mutually indepen-
dent. Here we denote the cardinality of a set A by #A.

(ii) If E ⊂ R is a Borel set with finite Lebesgue measure |E| =
∫

E
dx,

P(#{j : Xj(ω) ∈ E} = n) =
(ρ|E|)n

n!
e−ρ|E|, n = 0, 1, 2, . . . .

Hω describes the motion of electrons in amorphous materials where atoms are
distributed randomly. Under the conditions (A1) and (A2), the operators Hω

are essentially self-adjoint on C∞
0 (Rd) almost surely, and measurable on X

[2, Proposition V.3.2, Corollary V.3.4]. And {Hω}ω∈X is an ergodic family of
self-adjoint operators on (X,F ,P). It is well known that there exists a mea-
surable set X0 ⊂ X with probability one and a closed set Σ ⊂ R such that
σ(Hω) = Σ for every ω ∈ X0 (see e.g.[2, Proposition V.2.4]).

Put

f+(x) = max{f(x), 0}, f−(x) = max{−f(x), 0}.
A naive observation tells us
(∗) if the negative part f− of f vanishes, then the spectral set Σ = [0,∞); if

not, then Σ = R.
There are some discussions on the assertion (∗) in [5] and [10, Theorem 5.34],
which does not, however, seem to be fully convincing to us. The assertion (∗)
is also stated in [7] and [8] without proof.

When the dimension d 
= 2, (∗) is rigorously proved in [1] under the
assumption (A1) and (A2). However, in the case d = 2, f+ = 0 and f− 
= 0,
their theorem [1, Theorem 1.2] needs the following additional condition:

1
4π

∫

R2

f−(x)dx 
∈ N, (3)

for some technical reasons explained later.
Surprisingly, we can get rid of the above technical condition (3) using our

Theorem 1.1.
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Theorem 1.2. Suppose d = 2 and the assumptions (A1), (A2) hold.

(i) If f− = 0 (as an element of L1(R2)), then Σ = [0,∞).
(ii) If f− 
= 0, then Σ = R.

The part (i) is already proved in [1, Theorem 1.2]. Notice that we do not
require the condition (3) in the part (ii). Thus, Theorem 1.2 completes the
missing part of the proof of the statement (∗) in [1].

Let us explain why the condition (3) appears and how we use Theo-
rem 1.1 in the proof of Theorem 1.2. The most fundamental tool to determine
the spectral set Σ is the technique of the the admissible potential, developed
by Kirsch and Martinelli [6]. This method asserts the union of the spectrum
of some special potentials (admissible potentials) forms a dense subset of Σ.
For example, [1] use the family of admissible potentials AF given by

AF =

⎧

⎨

⎩

n
∑

j=1

f(x− uj) : u1, . . . , un ∈ R
d, n = 1, 2, . . .

⎫

⎬

⎭

, (4)

and prove Σ =
⋃

W∈AF
σ(−Δ +W ). By using this fact, it is easy to show that

Σ ⊃ [0,∞), since the admissible potential W ∈ AF is relatively compact with
respect to the negative Laplacian. In order to show “Σ = R” when f− 
= 0, they
aim to deduce a contradiction, supposing that there exists b ∈ R\Σ. Then, for
every n = 1, 2, . . ., the number

γ(n) = #

⎧

⎨

⎩

eigenvalue of − Δ +
n
∑

j=1

f(· − uj) less than b

⎫

⎬

⎭

is continuous with respect to u1, . . . , un ∈ R
d, so is a constant dependent only

on n. They consider the limiting behavior of γ(n) as n → ∞ in the following
two extremal cases. When u1 = · · · = un, the Weyl asymptotics yields

γ(n) =

{

nd/2 τd

(2π)d

∫

Rd(f−(x))d/2dx(1 + o(1)) (d ≥ 2),

o(n) (d = 1),

where τd is the volume of the d-dimensional unit ball. On the other hand,
taking the limit |uj − uk| → ∞ for every j 
= k, we have

γ(n) = nγ(1).

If d 
= 2 or d = 2 and (3) holds, then the two limiting behaviors are different
and we reach a contradiction. Moreover, if d = 2, f+ 
= 0 and f− 
= 0, then we
can replace f(x) by f̃(x) = f(x) + f(x− a) for some a ∈ R

2 so that f̃ satisfies
(3). Thus, the only remaining case is d = 2, f+ = 0, f− 
= 0 and (3) does not
hold.
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Instead of AF , we use the periodic admissible potentials AP defined by

AP =
⋃

Γ

{

W (x) =
J
∑

j=1

∑

γ∈Γ

f(x− xj − γ) :

xj ∈ R
d (j = 1, . . . , J), J = 1, 2, . . .

}

, (5)

where
⋃

Γ denotes the union over the all lattices Γ in R
d. Then the proof

proceeds as follows: Assume d = 2, f+ = 0 and f− 
= 0. Then

f̂(0) =
1
2π

∫

R2

f(x)dx < 0.

We define admissible potentials VK ∈ AP (K = 1, 2, . . .) by

VK(x) =
∑

γ∈Γ

f
(

x− γ

K

)

for some fixed lattice Γ. After a short computation using the Fourier series of
VK and the scaling x = y/K, we obtain

−Δx + VK(x) = K2(−R0 − Δy + ˜WK(y)),

where ˜WK is Γ-periodic with respect to y and

R0 = − 2π
|Ω| f̂(0) > 0, ‖˜WK‖L2(Ω) → 0 as K → ∞.

Here we use Theorem 1.1 for the operator −Δy + ˜WK , and conclude

σ(−Δ + VK) ⊃ [K2(−R0 +R),∞)

for some 0 < R < R0 and sufficiently large K. This implies Σ = R. This proof
is nothing to do with the non-integer condition (3).

The rest of the paper is organized as follows: In Sect. 2, we review some
basic facts in the Bloch theory. In Sect. 3, we prove Theorem 1.1. In Sect. 4,
we prove some geometric lemmas used in the proof of Theorem 1.1, and in
Sect. 5, we prove Theorem 1.2.

2. Bloch Theory

In this section, we shall introduce some basic notation for the lattice, and
briefly review the matrix representation of the Bloch theory in the two-dimen-
sional case. For the detail, see, e.g. [13].

A lattice Γ in R
2 and its fundamental domain Ω are given by

Γ =
2
⊕

j=1

Zej , Ω =

⎧

⎨

⎩

2
∑

j=1

cjej : −1/2 ≤ cj < 1/2

⎫

⎬

⎭

for some basis {ej}2
j=1 of R

2. The basis {e∗
j}2

j=1 satisfying ej · e∗
j′ = 2πδjj′

(· is the Euclidean inner product, δjj′ is the Kronecker delta) is called the dual
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basis of {ej}2
j=1. The dual lattice Γ∗ of Γ and its fundamental domain Ω∗ are

given by

Γ∗ =
2
⊕

j=1

Ze∗
j , Ω∗ =

⎧

⎨

⎩

2
∑

j=1

cje
∗
j : −1/2 ≤ cj < 1/2

⎫

⎬

⎭

.

A Γ-periodic function is naturally identified with a function on Ω. For u ∈
L2(Ω), the Fourier series of u is given by

u(x) =
∑

n∈Γ∗
unein·x, un =

1
|Ω|

∫

Ω

u(x)e−in·xdx.

Let Γ be a lattice in R
2,Γ∗ the dual lattice of Γ, and Ω and Ω∗ are

the fundamental domains of Γ and Γ∗, respectively. Let V ∈ L2
loc(R

2; R) be a
Γ-periodic potential. Define an operator H on L2(R2) by

H = −Δ + V, D(H) = H2(R2),

where H2(R2) denotes the usual Sobolev space and D(·) denotes the operator
domain. It is well known that H is self-adjoint, semi-bounded from below and
decomposed as the constant fiber direct integral

H �
⊕
∫

Ω∗

Hkdk, Hk = −Δk + ˜V ,

where � means the unitary equivalence. The operator −Δk (k ∈ Ω∗) is a
self-adjoint operator on l2(Γ∗) defined by

−Δku(n) = |n+ k|2u(n) (n ∈ Γ∗),

D(−Δk) =

{

u ∈ l2(Γ∗) :
∑

n∈Γ∗
|n|4|u(n)|2 < ∞

}

.

The operator ˜V is defined by

˜V u(n) =
∑

m∈Γ∗
Vn−mu(m),

where Vn−m is the Fourier coefficient of V given by

Vn =
1

|Ω|
∫

Ω

V (x)e−in·xdx.

The operator Hk is self-adjoint, lower semi-bounded on l2(Γ∗) with the domain
D(Hk) = D(−Δk), and has compact resolvent. We enumerate the eigenvalues
of Hk in an ascending order counting multiplicity

λ1(k) ≤ λ2(k) ≤ · · · ≤ λj(k) ≤ · · · → ∞,

and call λj(k) the band function. The band function λj(k) is continuous on
Ω∗, real-analytic in the region λj(k) 
= λj′(k) for any other j′, and can be
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Figure 1. The isoenergetic surface SR in the k-plane

extended as a Γ∗-periodic function. The spectrum σ(H) is represented as

σ(H) =
∞
⋃

j=1

Ij , Ij =
⋃

k∈Ω∗
{λj(k)}.

3. Proof of Theorem 1.1

In this section, we prove Theorem 1.1 following the strategy of Karpeshina [4]
and clarify the dependency of the threshold on ‖V ‖L2(Ω). The main ingredient
of the proof consists of the geometrical consideration of the band function of
the free Laplacian −Δ, especially its isoenergetic surface.

We quote some terminology from Karpeshina’s book [4] in a slightly mod-
ified form. First, we identify the product set Γ∗ ×Ω∗ with R

2 by the one-to-one
correspondence

Γ∗ × Ω∗ 
 (n, k) �→ ξ = n+ k ∈ R
2. (6)

Define the isoenergetic surface

SR = {(n, k) ∈ Γ∗ × Ω∗ : |n+ k| = R}.
SR is identified with the circle SR = {ξ ∈ R

2 : |ξ| = R} via (6) (we use the same
symbol for the subset of Γ∗ × Ω∗ and the subset of R

2, by abuse of notation).
The k-plane projection of SR and the ξ-plane image of SR are shown in Figs. 1
and 2. Via (6), SR becomes a measure space with the length measure dl = Rdθ,
where θ is the angular coordinate on SR given by ξ = (R cos θ,R sin θ). We
denote the length of a measurable subset S of SR by l(S).

For μ > 0, define the μ-diffraction set TR,μ by

TR,μ =
{

(n, k) ∈ SR :
∣

∣|n+ k|2 − |n′ + k|2∣∣ < μ for some n′ 
= n
}

.

Then the k-plane projection of TR,μ is a neighborhood of the intersection points
of the k-plane projection of SR (see Fig. 1). Define the μ-non diffraction set
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Figure 2. The isoenergetic surface SR in the ξ-plane

SR,μ by

SR,μ = SR\TR,μ.

For a given lattice Γ, we denote

L = max
k∈∂Ω∗

|k|, L0 = min
k∈∂Ω∗

|k|, (7)

where ∂Ω∗ is the boundary of the fundamental domain Ω∗ of the dual lattice
Γ∗. The values L and L0 are the outside diameter of Ω∗ and the inside diam-
eter, respectively.

We show the following two lemmas in the next section:

Lemma 3.1. For a lattice Γ in R
2, define L and L0 by (7). Then, there exists

a constant C0 > 0 dependent only on L,L0 and |Ω∗| such that

l(TR,μ) ≤ C0
√
μR (8)

for every R,μ with R ≥ L and 0 < μ ≤ μ0, where μ0 = min(L2
0, 1).

Put

μ1 = min(μ0, (2π/C0)2) (9)

and assume 0 < μ < μ1. Lemma 3.1 implies

l(SR,μ) ≥ (2π − C0
√
μ)R > 0 (10)

for every R ≥ L, so SR,μ is a non-empty set. For (n, k) ∈ SR,μ, R
2 = |n+ k|2

is a simple eigenvalue of −Δk and separated from other eigenvalues of −Δk

at least by the distance μ. Thus, the circle

CR,μ = {z ∈ C : |z −R2| = μ/2}
is contained in the resolvent set ρ(−Δk).

Lemma 3.2. Let Γ be a lattice, L and L0 given by (7), μ1 given by (9), and μ
satisfying 0 < μ < μ1. Then, for any R ≥ 2L and any M > 0, there exists a
subset SR,μ,M of SR,μ such that the following (i), (ii) hold:
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(i) Let NR,μ,M be the μ/(8R)-neighborhood of SR,μ,M , that is, the set of all
(m, j) ∈ Γ∗ × Ω∗ such that

|(n+ k) − (m+ j)| ≤ μ

8R
(11)

for some (n, k) ∈ SR,μ,M . Then, for every (m, j) ∈ NR,μ,M , the circle
CR,μ is contained in the resolvent set ρ(−Δj), the value |m + j|2 is a
simple eigenvalue of −Δj and the only point of σ(−Δj) inside CR,μ.
Moreover, the estimates

‖(−Δj − z)−1‖ ≤ 7
μ
, (12)

‖˜V (−Δj − z)−1‖HS ≤ M‖V ‖L2(Ω) (13)

hold for every (m, j) ∈ NR,μ,M , every z ∈ CR,μ and every real-valued
Γ-periodic function V ∈ L2

loc(R
2), where ‖ · ‖ denotes the operator norm

and ‖ · ‖HS the Hilbert-Schmidt norm.
(ii) The length of SR,μ,M is estimated below as

l(SR,μ,M ) ≥ l(SR,μ) − C1

M2
R, (14)

where C1 is a positive constant dependent only on Γ and μ.

Now we assume Lemma 3.1 and 3.2 hold and prove Theorem 1.1. The
proof is similar to that of [4, section 2, 3], but we study the dependency on
‖V ‖L2(Ω) carefully.

Proof of Theorem 1.1. First we show that it is sufficient to show there exist
constants R0 > 0 and ε0 > 0 such that

σ(−Δ + V ) ⊃ [R0,∞) (15)

for every Γ-periodic V with ‖V ‖L2(Ω) ≤ ε0. Suppose such (R0, ε0) exists and
take Γ-periodic V with ‖V ‖L2(Ω) ≤ ε0. Then, there exists a positive integer K
such that

ε0
(2K)2

< ‖V ‖L2(Ω) ≤ ε0
K2

.

We have by the scaling x = Ky

−Δx + V (x) =
1
K2

(−Δy +W (y)) , W (y) = K2V (Ky).

The potential W is Γ-periodic and we have by the Γ-periodicity of V

‖W‖L2(Ω) = K2‖V ‖L2(Ω) ≤ ε0.

Thus, we can apply (15) for the potential W and conclude

σ(−Δ + V ) ⊃ [R0/K
2,∞) ⊃ [(4R0/ε0)‖V ‖L2(Ω),∞).

Thus, the conclusion of Theorem 1.1 holds with ε = ε0 and c = 4R0/ε0.
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Next, we may assume the zeroth Fourier coefficient V0 = 0. In fact,
if (15) is proved for such case, then for any Γ-periodic V with ‖V ‖L2(Ω) ≤
min(ε,

√|Ω|R0) we have |V0| ≤ R0 and

σ(−Δ + V ) ⊃ [R0 + V0,∞) ⊃ [2R0,∞).

Let us find ε0, R0 satisfying the above conditions under the assumption
V0 = 0. Take μ with 0 < μ < μ1, and take M such that 2π−C0

√
μ−C1/M

2 >
0. By (10) and (14), SR,μ,M is not empty for every R ≥ 2L. Let NR,μ,M as in
Lemma 3.2. Take a Γ-periodic real-valued function V satisfying

‖V ‖L2(Ω) ≤ ε1, ε1 =
1

2M
. (16)

For (m, j) ∈ NR,μ,M , put

A = A(j, z) = −˜V (−Δj − z)−1;

then

‖A‖ ≤ ‖A‖HS ≤ 1/2 (17)

by (13) and (16). Take a real parameter α with |α| ≤ 1. For z ∈ CR,μ, consider
the resolvent expansion

(

−Δj + α˜V − z
)−1

= ((I − αA)(−Δj − z))−1

= (−Δj − z)−1
∞
∑

p=0

αpAp.

By (12) and (17), the sum converges in the norm topology uniformly with
respect to z ∈ CR,μ, (m, j) ∈ NR,μ,M and |α| ≤ 1, and also continuous with
respect to all the parameters.3 This implies CR,μ ⊂ ρ(−Δj −α˜V ) for (m, j) ∈
NR,μ,M and |α| ≤ 1. Then, the spectral projection Pj,α of the self-adjoint
operator −Δj − α˜V corresponding to the spectrum inside CR,μ is given by

Pj,α = − 1
2πi

∫

CR,µ

(−Δj + α˜V − z)−1dz

= Pj,0 − 1
2πi

∞
∑

p=1

αp

∫

CR,µ

(−Δj − z)−1A(j, z)pdz. (18)

Let us show the right-hand side of (18) belongs to the trace class. Put

A0(j, z) = (I − Pj,0)A(j, z)(I − Pj,0)

= −(I − Pj,0)˜V (−Δj − z)−1(I − Pj,0).

Since (I − Pj,0)(−Δj − z)−1 has no singularity inside CR,μ, we have
∫

CR,µ

(−Δ − z)−1A0(j, z)pdz = 0

3 The topology of the set NR,µ,M is given via the correspondence (6), so the continuity with

respect to (m, j) means the continuity with respect to η = m + j.
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for p = 1, 2, . . .. By (18), we obtain

Pj,α = Pj,0 −Qj,α,
(19)

Qj,α =
1

2πi

∞
∑

p=1

αp

∫

CR,µ

(−Δj − z)−1(Ap −Ap
0)dz.

The (a, b)-component of the matrix Pj,0
˜V Pj,0 is δajδbjVj−j = 0, since V0 = 0.

Thus, Pj,0
˜V Pj,0 = 0 and we have

A−A0 = (I − Pj,0)˜V Pj,0 + Pj,0
˜V (I − Pj,0). (20)

Moreover, since the trace norm of the one-rank operatorXu = λ(ψ, u)φ (‖ψ‖ =
‖φ‖ = 1) is |λ|, we have

‖(I − Pj,0)˜V Pj,0‖2
tr = ‖Pj,0

˜V (I − Pj,0)‖2
tr ≤ ‖˜V Pj,0‖2

tr = ‖V ‖2
L2(Ω)/|Ω|,

where ‖ · ‖tr denotes the trace norm. Then we have by (20)

‖A−A0‖tr ≤ 2‖V ‖L2(Ω)/
√

|Ω|,
and moreover

‖Ap −Ap
0‖tr ≤

p
∑

q=1

‖Ap−q(A−A0)A
q−1
0 ‖tr ≤ p22−p‖V ‖L2(Ω)/

√

|Ω|, (21)

since ‖A0‖ ≤ ‖A‖ ≤ 1/2 by (17). By (12), (17), and (21), the series (19) and
also ˜V times (19) uniformly converge in the trace class and

‖Qj,α‖tr ≤ C2‖V ‖L2(Ω), (22)

‖˜V Qj,α‖tr ≤ C3‖V ‖L2(Ω), (23)

where C2 and C3 are some positive constants dependent only on μ and Γ. Now
we assume

‖V ‖L2(Ω) ≤ ε2, ε2 = min (ε1, 1/(2C2)) . (24)

Then by (22)

‖Qj,α‖tr ≤ 1
2
,

1
2

≤ trPj,α ≤ 3
2
,

since trPj,0 = 1. Thus, Pj,α must be a one-rank projection operator, and
−Δj + α˜V has unique eigenvalue μj,α inside CR,μ. Then we can apply the
analytic perturbation theory for simple eigenvalues and find normalized eigen-
functions vj,α (|α| ≤ 1) of −Δj + α˜V for the eigenvalue μj,α. The function
α �→ μj,α is differentiable with respect to α for |α| < 1 and continuous for
|α| ≤ 1. Then, by the Feynman–Hellmann theorem

∂μj,α

∂α
= (˜V vj,α, vj,α)l2(Γ∗) = trPj,α

˜V Pj,α = tr ˜V Pj,α

= − tr
(

˜V Qj,α

)

, (25)
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since tr ˜V Pj,0 = Vj−j = 0. From (23) and (25), we have

|μj,0 − μj,α| ≤ |α|C3‖V ‖L2(Ω)

for every |α| ≤ 1. Since μj,0 = |m+ j|2, we conclude
∣

∣|m+ j|2 − μj,1

∣

∣ ≤ C3‖V ‖L2(Ω)

for (m, j) ∈ NR,μ,M and Γ-periodic V satisfying (24).
Put λ(η) = μj,1 for η = m+j. Then λ(η) is a continuous function defined

on

D =
{

η ∈ R
2 : |η − ξ| ≤ η

8R

}

for some ξ = n+ k, (n, k) ∈ SR,μ,M ,
∣

∣|η|2 − λ(η)
∣

∣ ≤ C3‖V ‖L2(Ω), (26)

and the value λ(η) coincides with the value of some band function for −Δ+V .
Since |ξ| = R ≥ 2L and 0 < μ < μ1 < L, the function |η|2 takes the maximum

(R+ μ/8R)2 = R2 +
μ

4
+

μ2

64R2
> R2 +

μ

4
, (27)

and the minimum

(R− μ/8R)2 = R2 − μ

4
+

μ2

64R2
< R2 − μ

5
(28)

at some boundary point of D. Finally, we assume

‖V ‖L2(Ω) ≤ ε0, ε0 = min(ε2, μ/(6C3)). (29)

The estimates (26), (27), (28) and (29) imply σ(−Δ + V ) ⊃ [R2 − μ/30, R2 +
μ/12] for every R ≥ 2L. Thus, σ(−Δ + V ) ⊃ [2L,∞) for any Γ-periodic V
satisfying (29). �

4. Geometric Lemmas

We shall prove the lemmas in the previous section. The proof needs a detailed
analysis of the geometrical structure of the band functions. In the proof, we
use the following simple lemma several times. We omit the easy proof:

Lemma 4.1. Let S be a measurable set of R
2 such that the Lebesgue measure |S|

is positive and finite. Let Γ be a discrete set in R
2 such that (S+γ)∩(S+γ′) = ∅

for every γ, γ′ ∈ Γ with γ 
= γ′, where S + γ = {s + γ : s ∈ S}. Let f be a
non-negative measurable function on U =

⋃

γ∈Γ(S + γ) such that

f(γ) ≤ Cf(x+ γ)

for every x ∈ S and γ ∈ Γ, where C is a positive constant independent of x
and γ. Then,

∑

γ∈Γ

f(γ) ≤ C

|S|
∫

U

f(x)dx.
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R

t t

2

t t

2 t0
t

Figure 3. The isoenergetic surface SR and the strip (30)
in ξ-plane. The value lR,μ(t) is the sum of the length of two
thick-lined arcs

Proof of Lemma 3.1. Let (n, k) ∈ SR and put ξ = n+k. By the correspondence
(6), the μ-diffraction set TR,μ is identified with

⋃

q∈Γ∗\{0}

{

ξ ∈ R
2 : |ξ| = R,

∣

∣R2 − |ξ − q|2∣∣ < μ
}

.

Since |ξ| = R, we have

|R2 − |ξ − q|2| < μ ⇔
∣

∣

∣

∣

ξ · q

|q| − |q|
2

∣

∣

∣

∣

<
μ

2|q| . (30)

The right-hand side of (30) defines a strip of width μ/|q|, orthogonal to the
vector q and including the point q/2 in its center. By the rotational symme-
try, the length of the intersection of the circle {|ξ| = R} and the strip (30)
is determined by R,μ and t = |q| (see Fig. 3). We denote the length lR,μ(t).
Clearly,

l(TR,μ) ≤
∑

q∈Γ∗\{0}
lR,μ(|q|). (31)

We assume

0 <
√
μ ≤ L0, R ≥ L. (32)

Since q ∈ Γ∗\{0} satisfies t = |q| ≥ 2L0 >
√
μ, we have (t − μ/t)/2 > 0.

Figure 3 tells us

lR,μ(t) =

⎧

⎪

⎨

⎪

⎩

0 (t1 < t),
2R arccos g(t) (t2 ≤ t ≤ t1),
2R(arccos g(t) − arccos f(t)) (

√
μ ≤ t < t2),
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where

f(t) =
1

2R

(

t+
μ

t

)

, g(t) =
1

2R

(

t− μ

t

)

,

and t1 = R +
√

R2 + μ and t2 = R +
√

R2 − μ are solutions of g(t) = 1 and
f(t) = 1, respectively.

We divide the sum (31) into two parts,

l1 =
∑

2L0≤|q|≤t2−L

lR,μ(|q|), l2 =
∑

t2−L<|q|≤t1

lR,μ(|q|).

First we consider l1. For
√
μ ≤ t ≤ t2 − L,

lR,μ(t) = 2R

f(t)
∫

g(t)

1√
1 − s2

ds ≤ 2μ
t

· 1
√

1 − f(t)2
. (33)

By a simple calculation using (32), we can prove there exists C1 = C1(L0, L)
> 0 such that

1
√

1 − f(t)2
≤ C1
√

1 − (t/(2R))2

for 2L0 ≤ t ≤ t2 − L. By (33)

l1 ≤
∑

2L0≤|q|≤t2−L

C1μ

|q|√1 − (|q|/(2R))2
.

We can also prove that there exists C2 = C2(L0, L) > 0 such that

C1μ

|q|√1 − (|q|/(2R))2
≤ C2μ

|j + q|√1 − (|j + q|/(2R))2

for 2L0 ≤ |q| ≤ t2 −L and j ∈ Ω∗. Since {Ω∗ + q}2L0≤|q|≤t2−L are disjoint sets
contained in {L0 ≤ |η| ≤ 2R}, Lemma 4.1 implies

l1 ≤ C2

|Ω∗|
∑

2L0≤|q|≤t2−L

∫

Ω∗+q

μ

|η|√1 − (|η|/(2R))2
dη

≤ 2πC2

|Ω∗|

2R
∫

0

μ
√

1 − (t/(2R))2
dt = C3μR, (34)

where C3 = 2π2C2/|Ω∗|.
Next we consider l2. First,

l2 ≤ max√
μ≤t≤t1

lR,μ(t) · #{q ∈ Γ∗ : t2 − L < |q| ≤ t1}. (35)

It is easy to see that there exists C4 = C4(L0, L, |Ω∗|) > 0 such that

#{q ∈ Γ∗ : t2 − L < |q| ≤ t1} ≤ C4R. (36)
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By differentiation, we can check the maximum value is either lR,μ(
√
μ) or

lR,μ(t2) (see also Fig. 3). By (32) and (33), we have

lR,μ(
√
μ) ≤ 2

√
μ

1 − μ/R2
≤ C5

√
μ, (37)

where C5 = C5(L0, L) > 0. Next, put arccos g(t2) = θ. Then

cos θ = g(t2) = f(t2) − μ

Rt2
= 1 − μ

Rt2
,

since f(t2) = 1. Thus, we have

lR,μ(t2) = 2Rθ ≤ 2R tan θ = 2R

√

1
g(t2)2

− 1

= 2R

√

1
(1 − μ/(Rt2))2

− 1 ≤ C6
√
μ, (38)

where C6 = C6(L0, L) > 0. From (35), (36), (37) and (38), we conclude

l2 ≤ C7R
√
μ,

where C7 = max(C5, C6) · C4. This inequality and (34) imply (8) holds with
C0 = C2 + C7, for R and μ satisfying (32) and μ ≤ 1. �

In the proof of Lemma 3.2, the following lemma, similar to the Chebyshev
inequality in the probability theory, plays a crucial role:

Lemma 4.2. Let (X,m) be a measure space with the total measure m(X) posi-
tive and finite. Let f be a non-negative square-integrable function on X. Then,
for every M > 0, we have

m ({x ∈ X : f(x) > M}) ≤ 1
M2

∫

X

f(x)2dm(x).

Proof of Lemma 3.2. In this proof, we denote general positive universal con-
stants (the constants independent of all the parameters) by C for simplicity,
so C may change line by line. Take μ and R satisfying

0 < μ < μ1, R ≥ L, (39)

where μ1 is given in (9). Let (n, k) ∈ SR,μ and (m, j) ∈ Γ∗ × Ω∗ satisfying
(11). Put ξ = n+ k and η = m+ j; then the eigenvalues of −Δk and −Δj are
{|ξ + q|2}q∈Γ∗ and {|η + q|2}q∈Γ∗ , respectively. By definition,

|ξ| = R, |ξ − η| ≤ μ

8R
, (40)

∣

∣|ξ|2 − |ξ + q|2∣∣ ≥ μ (41)

for every q ∈ Γ∗\{0}. Then we easily have by (39) and (40)

R2 − 1
4
μ ≤ |η|2 ≤ R2 +

17
64
μ. (42)
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Moreover, we have by (39), (40), and (41)

{

|η + q|2 ≥ R2 +
(

1 − √
2/4

)

μ if |ξ + q|2 ≥ |ξ|2 + μ,

|η + q|2 ≤ R2 − (47/64)μ if |ξ + q|2 ≤ |ξ|2 − μ.
(43)

The inequalities (42) and (43) show that |η|2 = |m + j|2 is the only, simple
eigenvalue of −Δj inside CR,μ, and moreover

inf
q∈Γ∗

min
z∈CR,µ

∣

∣z − |η + q|2∣∣ ≥
(

1 −
√

2
4

)

μ− μ

2
≥ μ

7
. (44)

This shows the inequality (12).
Next we estimate the Hilbert-Schmidt norm of ˜V (−Δj − z)−1 for

z ∈ CR,μ. Since the (a, b)-component of the matrix ˜V (−Δj − z)−1 is
Va−b(|b+ j|2 − z)−1, we have

‖˜V (−Δj − z)−1‖2
HS =

∑

a,b∈Γ∗
|Va−b|2

∣

∣|b+ j|2 − z
∣

∣

−2

=
‖V ‖2

L2(Ω)

|Ω|
∑

q∈Γ∗

∣

∣|η + q|2 − z
∣

∣

−2
(45)

by the Plancherel theorem. In the sequel, we denote Rs =
√
R2 + s for a real-

number s. Since η = m + j and |m + j|2 is the only eigenvalue in CR,μ, the
sum in (45) is estimated as

∑

q∈Γ∗

∣

∣|η + q|2 − z
∣

∣

−2 ≤ 49
μ2

+
∑

|ξ+q|≥Rµ

(

(|ξ + q| − μ/(8R))2 −R2 − μ/2
)−2

+
∑

|ξ+q|≤R−µ

(

R2 − μ/2 − (|ξ + q| + μ/(8R))2
)−2

,

(46)

by (40) and (44). We denote the right-hand side of (46) by F (ξ,R). We also
divide two sums in (46) into four parts, (1) |ξ + q| > Rμ + L, (2) Rμ + L ≥
|ξ+ q| ≥ Rμ, (3) R−μ ≥ |ξ+ q| ≥ R−μ −L, (4) R−μ −L > |ξ+ q|, and denote
them F1(ξ,R), F2(ξ,R), F3(ξ,R), and F4(ξ,R), respectively. By definition,

F (ξ,R) =
49
μ2

+
4
∑

p=1

Fp(ξ,R). (47)

First estimate F1(ξ,R). For |ξ + q| > Rμ + L and y ∈ Ω∗, we have

(

(|ξ + q| − μ/(8R))2 −R2 − μ/2
)−2 ≤ C

(

(|ξ + q + y|)2 −R2 − μ/2
)−2

(48)
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by (39). Since {ξ+ q+ Ω∗}|ξ+q|>Rµ+L are disjoint sets contained in {ξ′ ∈ R
2 :

|ξ′| ≥ Rμ}, we have by Lemma 4.1

F1(ξ,R) ≤ C

|Ω∗|
∫

|ξ′|≥Rµ

(|ξ′|2 − (R2 + μ/2)
)−2

dξ′

≤ C

|Ω∗|μ
−1. (49)

Similarly, we have

F4(ξ,R) ≤ C

|Ω∗|μ
−1. (50)

It is not easy to estimate F2(ξ,R) and F3(ξ,R) directly, so we use
Lemma 4.2 in the following way: We shall prove there exists some positive
constant C0 = C0(L,L0, |Ω∗|, μ) such that

∫

|ξ|=R

F (ξ,R)Rdθ ≤ C0R (51)

for every R ≥ 2L,4 where θ is the angular coordinate on {|ξ| = R}. Suppose
(51) is proved. For any M > 0, put

SR,μ,M = {ξ ∈ SR,μ : F (ξ,R) ≤ M2|Ω|}.
Then the conclusion of Lemma 3.2 follows from (45), (46) and Lemma 4.2.

Let us estimate

I2(R) =
∫

{|ξ|=R}

F2(ξ,R)Rdθ.

Using Rμ ≤ |ξ + q| ≤ Rμ + L, we can prove
(

(|ξ + q| − μ/(8R))2 −R2 − μ/2
)−2 ≤ C

(|ξ + q|2 −R2 − μ/2
)−2

.

Thus,

I2(R) ≤ C
∑

q∈Γ∗
IR,q, (52)

IR,q =
∫

|ξ|=R

(|ξ + q|2 −R2 − μ/2
)−2

χRµ≤|ξ+q|≤Rµ+LRdθ,

where χS denotes the characteristic function of the set S.
Let us write down the integral IR,q explicitly. When ξ moves on the cir-

cle {|ξ′| = R}, ξ + q moves on the circle {|ξ′ − q| = R}. So IR,q depends
on how the circle {|ξ′ − q| = R} intersects the annulus {Rμ ≤ ξ′ ≤ Rμ + L}
(see Fig. 4). By the rotational symmetry, IR,q depends only on R,μ and t = |q|.
Put t1 = Rμ +R and t2 = Rμ + L−R. Then, clearly

IR,q = 0 (t > t1 + L or t = 0).

4 Remember we assume (39). The assumption R ≥ 2L is used only for I3(R).
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Figure 4. The orbit of ξ + q as ξ moves on SR

In other cases, we set q = (t, 0) and calculate the integral IR,q by the change
of variable from θ to ρ = |ξ + q|. Then ρ2 = R2 + 2Rt cos θ + t2 and

IR,q =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

∫ Rµ+L

t−R
g(ρ)dρ (t1 + L ≥ t > t1),

∫ Rµ+L

Rµ
g(ρ)dρ (t1 ≥ t ≥ t2),

∫ t+R

Rµ
g(ρ)dρ (t2 > t > 0),

where

g(ρ) =
4Rρ

(ρ+Rμ/2)2(ρ−Rμ/2)2

· 1
√

(t+R+ ρ)(t+R− ρ)(ρ− t+R)(ρ+ t−R)
.

Since Rμ ≤ ρ ≤ Rμ + L in all cases and
√
μ < L ≤ R ≤ Rμ ≤ √

2R, we have

4Rρ
(ρ+Rμ/2)2

√
t+R+ ρ

<
2√
R
.

Thus, we have

g(ρ) <
2√
R

· 1
(ρ−Rμ/2)2

√

(t+R− ρ)(ρ− t+R)(ρ+ t−R)
. (53)

We shall divide the sum (52) into six parts, (i) t1 +L ≥ |q| ≥ t1, (ii) t1 >
|q| ≥ t1 −L/2, (iii) t1 −L/2 > |q| ≥ Rμ +L/2, (iv) Rμ +L/2 > |q| ≥ t2 +L/2,
(v) t2 + L/2 > |q| > t2, (vi) t2 ≥ |q| ≥ 2L0, and estimate each sum. In fact,
the parts (i) and (ii) are treated similarly, so are (iii) and (iv), and so are (v)
and (vi). Thus, we consider only the part (i), (iii), and (vi) for brevity.
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First consider the part (i) t1 + L ≥ |q| ≥ t1. In this case t + R − ρ ≥
R, ρ+ t−R ≥ 2R, so by (53) and the change of variable s =

√
ρ− t+R,

IR,q ≤
√

2
R3/2

Rµ+L
∫

t−R

1
(ρ−Rμ/2)2

√
ρ− t+R

dρ

≤ 4
√

2
R3/2

∞
∫

0

1
(s2 +Rμ −Rμ/2)2

ds

=
√

2π
R3/2(Rμ −Rμ/2)3/2

. (54)

Since

1
Rμ −Rμ/2

=
Rμ +Rμ/2

μ/2
≤ 4

√
2R
μ

, (55)

we have from (54) and (55)

IR,q ≤ C

μ3/2
(t1 ≤ |q| ≤ t1 + L).

It is easy to verify

#{q ∈ Γ∗ : t1 ≤ |q| ≤ t1 + L} ≤ CLR/|Ω∗|.
Thus, we have

∑

t1≤|q|≤t1+L

IR,q ≤ CL

|Ω∗| · R

μ3/2
. (56)

Next consider the part (iii) t1 − L/2 > |q| ≥ Rμ + L/2. In this case, we
use the estimates t+R−ρ ≥ R/2, ρ+ t−R ≥ R, and ρ− t+R ≥ t1 − t. Thus,
we have from (53)

IR,q ≤ C

R3/2

1√
t1 − t

Rµ+L
∫

Rµ

1
(ρ−Rμ/2)2

dρ. (57)

The integral is estimated as
Rµ+L
∫

Rµ

1
(ρ−Rμ/2)2

dρ ≤ 1
Rμ −Rμ/2

≤ 4
√

2R
μ

(58)

by (55). Thus, we have

IR,q ≤ C

μ
· 1
R1/2

√

t1 − |q| (Rμ + L/2 ≤ |q| < t1 − L/2).

Let us apply Lemma 4.1. It is easy to see
1

t1 − |q| ≤ C

t1 − |q + y|
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for y ∈ (1/2)Ω∗. Since q + (1/2)Ω∗ ⊂ {ξ′ : Rμ ≤ |ξ′| ≤ t1}, we have
∑

Rµ+L/2≤|q|<t1−L/2

IR,q ≤ C

μR1/2|Ω∗|
∫

Rµ≤|ξ′|≤t1

1
√

t1 − |ξ′|dξ
′

≤ C

μR1/2|Ω∗|

t1
∫

Rµ

t√
t1 − t

dt

≤ C

|Ω∗| · R
μ
. (59)

Last, we consider the part (vi) t2 ≥ |q| ≥ 2L0. Then ρ+ t−R ≥ 2L0, ρ−
t+R ≥ R and

IR,q ≤ C√
L0R

t+R
∫

Rµ

1√
t+R− ρ(ρ−Rμ/2)2

dρ. (60)

We have the interval of the integral (60) into Rμ ≤ ρ ≤ (Rμ + t + R)/2 and
(Rμ + t+R)/2 ≤ ρ ≤ t+R. For Rμ ≤ ρ ≤ (Rμ + t+R)/2, we use

Rμ −R =
μ

Rμ +R
≤ L2

0

2R
≤ L

2

and we have

t+R− ρ ≥ t− (Rμ −R)
2

≥ 3
4
L0. (61)

So by (58)
(Rµ+t+R)/2

∫

Rµ

g(ρ)dρ ≤ C

L0R

(Rµ+t+R)/2
∫

Rµ

1
(ρ−Rμ/2)2

dρ

≤ C

L0μ
.

For (Rμ + t+R)/2 ≤ ρ ≤ t+R, we have ρ−Rμ/2 ≥ (3/4)L0 by (61) and

t+R
∫

(Rµ+t+R)/2

g(ρ)dρ ≤ C

L
5/2
0 R

t+R
∫

(Rµ+t+R)/2

1√
t+R− ρ

dρ

=
C

L
5/2
0 R

·
√

t− (Rμ −R)
2

≤ C
√
L

L
5/2
0 R

≤ C

L3
0

.

Thus, we have

IR,q ≤ C

L0

(

1
μ

+
1
L2

0

)

(t2 ≥ |q| ≥ 2L0).
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Since

#{q ∈ Ω∗ : t2 ≥ |q| ≥ 2L0} ≤ C
L2

|Ω∗| ,

we have
∑

t2≥|q|≥2L0

IR,q ≤ CL2

L0|Ω∗|
(

1
μ

+
1
L2

0

)

. (62)

Summing up the inequalities (56), (59), (62), and the similar inequalities
for the rest parts, we conclude

I2(R) ≤ C2R (63)

for R ≥ L, where C2 = C2(L,L0, |Ω∗|, μ) is some positive constant.
We can similarly prove

I3(R) =
∫

|ξ|=R

F3(ξ,R)Rdθ ≤ C3R (64)

for R ≥ 2L, for some positive constant C3 = C3(L,L0, |Ω∗|, μ) (we assume
R ≥ 2L to avoid R−μ −L being negative). And then (47), (49), (50), (63) and
(64) imply the desired inequality (51). �

5. Proof of Theorem 1.2

In the last section, we consider the random Schrödinger operators Hω of the
Poisson type introduced in Sect. 1.2, and prove Theorem 1.2. First we prove
the family AP introduced in (5) is actually the “admissible potentials”.

Lemma 5.1. Let AP as in (5). Put

Σ =
⋃

W∈AP

σ(−Δ +W ). (65)

Then, σ(Hω) = Σ almost surely.

Proof. By [1, Theorem2.1],

σ(Hω) =
⋃

WF ∈AF

σ(−Δ +WF ) (66)

almost surely, where AF is given in (4). We show the right-hand side of
(65) and that of (66) coincide. For a given WF ∈ AF , we define WP,k(x) =
∑

n∈Zd WF (x− kn)(k = 1, 2, . . .). Clearly, WP,k ∈ AP . Notice that C∞
0 (Rd) is

a common operator core for −Δ+WP,k and −Δ+WF . By (A1) and [12, Theo-
rem VIII.25], −Δ+WP,k converges to −Δ+WF in the strong resolvent sense.
For given λ ∈ σ(−Δ + WF ), we can find a sequence λk ∈ σ(−Δ + WP,k)
such that λk → λ, by [12, Theorem VIII.24]. Thus, σ(−Δ + WF ) ⊂
⋃

WP ∈AP
σ(−Δ +WP ). Conversely, we can approximate any WP ∈ AP by the

functions WF,k ∈ AF and obtain σ(−Δ +WP ) ⊂ ⋃

WF ∈AF
σ(−Δ +WF ). �
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Proof of Theorem 1.2. In the case f− = 0 or f+ 
= 0, the statement follows
from [1, Theorem 1.2]. We assume f+ = 0 and f− 
= 0, and prove Σ = R. Let
f̂ be the Fourier transform of f , that is,

f̂(ξ) =
1
2π

∫

R2

f(x)e−ixξdx.

Notice that (A1) implies f ∈ L1(R2), so f̂ is a bounded, continuous function
on R

2 and f̂(0) is well defined. Moreover, f+ = 0 and f− 
= 0 imply

f̂(0) < 0. (67)

Let Γ be an arbitrary lattice and Γ∗ its dual. For a positive integer K, put

VK(x) =
∑

γ∈Γ

f
(

x− γ

K

)

. (68)

By (A1), the sum (68) converges, VK ∈ L2
loc(R

2), and VK ∈ AP . The period
lattice of VK is (1/K)Γ, so its Fourier series is given by

VK(x) =
∑

n∈Γ∗
bneiKn·x, bn =

K2

|Ω|
∫

(1/K)Ω

VK(x)e−iKn·xdx,

where Ω is the fundamental domain of Γ. Since the function e−iKn·x is (1/K)Γ-
periodic with respect to x, we have

bn =
K2

|Ω|
∑

γ∈Γ

∫

(1/K)Ω

f
(

x− γ

K

)

e−iKn·xdx

=
K2

|Ω|
∫

R2

f(x)e−iKn·xdx

=
2πK2

|Ω| f̂(Kn).

Thus, we have

VK(x) =
2πK2

|Ω|
∑

n∈Γ∗
f̂(Kn)eiKn·x.

Put

R0 = − 2π
|Ω| f̂(0),

WK(x) =
2πK2

|Ω|
∑

n∈Γ∗\{0}
f̂(Kn)eiKn·x.

Then R0 > 0 by (67) and we have

VK = −R0K
2 +WK .
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Since the functions {eiKn·x}n∈Γ∗ are orthogonal in L2( 1
K Ω), we have

‖WK‖2
L2( 1

K Ω) =
(2π)2

|Ω| K2
∑

n∈Γ∗\{0}
|f̂(Kn)|2. (69)

Since W1 ∈ L2(Ω) by (A1), we have
∑

n∈Γ∗ |f̂(n)|2 < ∞. Then (69) implies

1
K2

‖WK‖2
L2( 1

K Ω) → 0 as K → ∞. (70)

Take a positive number R with R < R0. By Theorem 1.1, we can take a
small number ε such that

σ(−Δ + V ) ⊃ [R,∞) (71)

for every Γ-periodic potential V with ‖V ‖L2(Ω) < ε. By the scaling x = y/K,
we have

− Δx +WK(x) = −K2Δy +WK(y/K) = K2(−Δy + ˜WK(y)), (72)

where ˜WK(y) = WK(y/K)/K2. The potential ˜WK(y) is Γ-periodic and by
(70)

‖˜WK‖2
L2(Ω) =

1
K2

‖WK‖2
L2( 1

K Ω) → 0.

By (71) and (72), we see that for sufficiently large K

σ(−Δ +WK) ⊃ [K2R,∞).

Thus, we have

Σ ⊃ σ(−Δ + VK) ⊃ [(−R0 +R)K2,∞)

for sufficiently large K, so Σ = R. �

Remark. If f̂ satisfies

|f̂(n)| ≤ C|n|−δ

for some C > 0, δ > 2 and every n ∈ Γ∗\{0}, the proof can be done without
Theorem 1.1. In this case ‖WK‖∞ → 0, and σ(−Δ+VK)∩[−R0K

2,∞) cannot
have an open gap of width larger than 2‖WK‖∞. Thus, there is no spectral
gap on the real line.
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