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Abstract. We prove optimal high-frequency resolvent estimates for self-
adjoint operators of the form G' = (iV + b(z))* + V(z) on L*(R™),n > 3,
where the magnetic potential b(z) and the electric potential V () are long-
range and large. As an application, we prove dispersive estimates for the
wave group ¢’V in the case n = 3 for potentials b(x), V(z) = O(|z|~279%)
for |z| > 1, where ¢ > 0.

1. Introduction and Statement of Results

The purpose of the present paper is to study the high frequency behaviour of
the resolvent of self-adjoint operators on L?(R™),n > 3, of the form

G = (iV +b(z))* + V(z),

where b(z) = (b1(x),...,by(z)) is a vector-valued magnetic potential and V'
is an electric potential, b; and V' being real-valued functions. To describe the
class these functions belong to, we introduce the polar coordinates r = |z|,w =
L € 8"~1. They are of the form b(x) = bX(x) +b%(z),V(z) = VE(z)+ V3 (2),

||

where b% and VI are C'(RT),R* = (0, +0c0), functions with respect to the
radial variable r. We suppose that there exist constants Cy,Cp, > 0,0 < § < 1
so that for all (r,w) € RT x S~ we have:

]VL(rw)| < Cy,

0,V (rw) < Cyus(r),

’Vs(rw)| < C’V<r>*1*5,

’(i)be(rw)’ < CyrtFys(r), k=0,1,
|bs(rw)| < Cyns(r),

~ o~ o~ o~
— = =
G s W N =
— — O Y —
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where ¢s(r) = 1710 (r) 720 ns(r) = rO(r)~172°. Finally, we suppose that the
function b° (rw) is continuous in 7 uniformly in w. More precisely, we assume
that the function gs(r,w) = b (rw)/ns(r) satisfies
Ve > 0360 = 0(e) > 0 so that |gs(r + 0o, w) — gs(r,w)| < €
forallr>0,0<o<1,we8" (1.6)

Our first result is the following:

Theorem 1.1. Under the assumptions (1.1)—(1.6), for every &’ > 0 there exist a
positive constant C = C(d8',0) independent of Cy and Cyp, and a positive con-
stant Ao = No(07,0,Cy,Cy) so that for A > 1,0 < e < 1,0 < |aq],|as] < 1,
we have the estimate

H —HE 90 (G = M2 i) 902 ()"

1465’
2

L2—L2 < Calmltleal=, (L.7)

Moreover, if in addition we suppose that b5 = 0 and the functions b = b* and
V=vliyvys satisfy

2VL (rw) ' < Crips(r (1.8)
|VS )| < (1.9)
|0Fb(rw)| < Cr~ ’%/;5 ) k=01, (1.10)

then for &', \,e as above and |a1| |aa] < 1, we have the estimate

00 (G — N2 i) 2002 (z)~ < ONlealtle=l=2 9 17)

L2—[>2

3+5

H 3+5

In fact, some of the conditions above can be weakened. Indeed, using
Theorem 1.1 we prove the following:

Corollary 1.2. Let b € L>*(R™;R"™),V € L*(R™;R) satisfy
(2)°b(z)| + |V(z)| < C, VxR, (1.12)
with some constants C' > 0,0 < § < 1. Suppose also that there exists a con-
stant ro > 1 so that b = bY + b5,V = VE + VS with functions b* b €
LR R"),VE VS € L®R™;R),b" and VI belonging to C([ro,+00))
with respect to the radial variable r, and satisfying
|8, b (rw)| + |9, VE(rw)| + [b° (rw)| + |V (rw)| < Or~'70 (1.13)

for all v > ro,w € S"~ L. Finally, we suppose that the functions b"(rw) and
b%(rw) are continuous with respect to v uniformly on [0,4+oc) x S"~L. Then
the estimate (1.7) holds true.

These resolvent estimates are sharp in A in the sense that we have the
same for the free Laplacian. The estimate (1.7) is well known to hold for non-
trapping compactly supported perturbations of the Laplacian (in which case
it can be derived from the propagation of the singularities, e.g. see [12]) and
in particular when b,V € C§°(R™),n > 2. It is also proved in many situa-
tions for operators of the form —A, 4+ V under the non-trapping condition,
where A, denotes the (negative) Laplace-Beltrami operator on an infinite
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volume unbounded Riemannian manifold (e.g. see [11,12]). Note that with-
out the non-trapping condition we have in general resolvent estimates with
O (e7),y > 0, in the right-hand side (see [2]). The estimate (1.7) is well
known for operators —A + V on R" for short-range potentials V € L>°(R").
In the case when the magnetic potential is not identically zero, it can also
be easily proved for small short-range magnetic potentials (e.g. see [6]). For
large short-range magnetic potentials b(x) and electric potentials V(z) the
estimate (1.7) is proved in [8] (see Proposition 4.3) in all dimensions n > 3,
provided b(z) is a continuous function. For large long-range magnetic and elec-
tric potentials the estimate (1.7) is proved in [10], provided b,V € C*°(R") and
92b(x), 02V (z) = Oq ((z)~271%1) ;6 > 0. In fact, the method of [10] requires
this condition for |a| < 2, only. Note also that resolvent estimates like (1.7)
play crucial role in the proof of uniform local energy, smoothing, Strichartz
and dispersive estimates for the wave and the Schrédinger equations, which
in turn explains the big interest in proving such kind of estimates in various
situations. Therefore, the sharpness in A is important as a loss in A > 1 in the
resolvent estimate produces a loss of derivatives in the applications mentioned
above.
Clearly, we also have the following:

Corollary 1.3. Let b = b" +b%,V = VE + V5, where b= € C*(R™;R"),b° €
COR™R"),VE e CHR™R), VS € L*(R";R) satisfy

[VE@)| + (@) > [oevi()| < ¢, (1.14)
|a|=1
V()| < Cla)'7°, (1.15)
> (@) oent (z)] < C, (1.16)
lal<1
% (2)] < C(z) ™72, (1.17)

Ve > 030 = 60(¢) > 0 so that |bs(w + 0y) — bs(x)} < elx)170
forallz,y € R", |y| <1, (1.18)

with some constants C > 0 and 0 < 6 < 1. Then the estimate (1.7) holds true.

As mentioned above, this result is proved in [8] in the case bL' = 0, VL =0
by a different method. Here we extend it to more general perturbations and
provide a simpler proof.

Our strategy for proving (1.7) is based on the observation that if (1.7)
holds for an operator G of the form above, it still holds if we perturb G
by a small short-range magnetic potential and a large short-range electric
potential. Thus, we first prove (1.7) in the case b° = 0,V* = 0. The method
we use to do so is inspired from [2] where similar ideas were used to study the
high-frequency behaviour of the resolvent of the Laplace-Beltrami operator on
unbounded Riemannian manifolds perturbed by an electric potential (see also
[11]). The presence of a magnetic potential, however, makes the analysis much



98 F. Cardoso et al. Ann. Henri Poincaré

more technical and harder. In the general case when b° and V' are not identi-
cally zero, we use the condition that b° is continuous in 7 to approximate it by
smooth in 7 long-range magnetic potentials having properties similar to those
of b%. Thus we decompose our perturbation as a large long-range part, small
first-order short-range part and a large zero-order short-range part. Finally,
we apply the argument above.

We will use Theorem 1.1 to prove dispersive estimates for the wave group
etV for self-adjoint operators G as above in the case n = 3. More precisely,
we are interested in generalizing the following three-dimensional dispersive
estimate

< Cuelt|™, Vt#£0, (1.19)

TG x|

for every a,e > 0, where GGy denotes the self-adjoint realization of the free
Laplacian —A on L*(R?) and x, € C®(R), xa(\) = 0 for A < a,x,(A\) = 1
for A > a+1. We suppose that the magnetic potential b is C*(RT) with respect
to the radial variable r, while no regularity is assumed on the electric potential
V. We also suppose that there exist constants C' > 0 and 0 < § < 1 such that

L1—L

|V (rw)]| + |b(rw)| < C(r)=279, (1.20)
lb(rw)| < Cr® for =<1, (1.21)
|0,b(rw)| < Cr=1+0 () =172, (1.22)

Clearly, the conditions of Theorem 1.1 are fulfilled (with b° = 0,V = 0) for
b and V satisfying (1.20), (1.21) and (1.22), so the estimates (1.7) and (1.11)
are valid. When n = 3 we have the following

Theorem 1.4. Under the assumptions (1.20), (1.21) and (1.22), there exists a
constant a > 0 so that the following dispersive estimate holds

o,

for every e > 0. Moreover, for every &' > 0 there exists a constant a > 0 so
that we have the estimate

eit\/éGflfeXa(\/a) <z>73/275"

< Ct|™h, vt #£0, (1.23)

L1—L

< C.slt|™h, Vt#0, (1.24
I Al #0, (1.24)

for every e > 0.

Remark. In fact, one can show that the estimates (1.23) and (1.24) hold true
for every a > 0. Indeed, according to the results of [9] the condition (1.20)
guarantees that the operator G has no embedded strictly positive eigenvalues,
which in turn implies that the resolvent estimates (1.7) and (1.11) are valid
for every A\g > 0 with constants C' > 0 depending on \g.

The estimates (1.23) and (1.24) are not optimal-for example, in (1.23)
there is a loss of one derivative. The desired result would be to prove the
dispersive estimate

‘ eWéG—l—exa(@)‘ <Ot VE#£0, (1.25)

Ll —L >
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for every € > 0 and some a > 0. When b = 0 and for a large class of rough
potentials V' the estimate (1.25) follows from [7]. In higher dimensions n > 4
an analogue of (1.25) is proved in [1] for Schwartz class potentials V' and in
[3] for potentials V € C"2° (R"),4 < n < 7, while in [13] dispersive estimates
with a loss of 252 derivatives are proved for potentials V € L>(R"),V (z) =

0 (<ac>_"+ ) ,0 > 0. Proving (1.25) when the magnetic potential b(z) is

not identically zero, however, is a difficult and an open problem even if b is
supposed small and smooth. Our conjecture is that (1.25) should hold for b €
CYR3) and V € L*(R3),V(z) = O ((z)=27°), 8 > 0, while in higher dimen-
sions n > 4 we expect to have an optimal dispersive estimate (that is without
loss of derivatives) similar to (1.25) for b € C’ (R”) and V € C’ (R”)
Note that dispersive estimates for the wave group with a loss of % derlvatlves
have been recently proved in [4] in all dimensions n > 3 for a class of potentials
be CHR") and V € L>°(R"). Note also that an estimate similar to (1.24) is
proved in [5] for a class of small potentials b and V' still in dimension three.
Theorem 1.1 plays a crucial role in the proof of the dispersive estimates
(1.23) and (1.24). For example, one can not use Corollary 1.3 instead, since a
function b(z) satisfying the conditions (1.20), (1.21) and (1.22) is not neces-
sarily continuous in x. Finally, we expect that Theorem 1.4 can be extended

to all dimensions n > 3 for potentials b(z),V(z) = O ((x)_ =n _5).

2. Resolvent Estimates

Throughout this section C will stand for constants independent of Cy and Cj,
while C will stand for constants which may depend on Cy and Cp. Both C
and C may vary from line to line. Clearly, it suffices to prove the resolvent
estimates for 0 < ¢’ < 6. We will first consider the case b = 0,V° = 0, so
b=0bl and V = VE. Let ay = ay = 0. Clearly, in this case (1.7) follows from
the a priori estimate

sl (2.1)

<ox H%’ ) 712 (G — A2

th,

for every f € H? (R") It suffices to consider the case “+” only. To prove (2.1)
we will pass to polar coordinates (r,w) € Rt x S"71. Recall that L?(R") =
L? (RY x 871 r(=D/2drdw). Set X = (R x 8" 1, drdw) ,u = r(*=1/2f,

P=X\"%0"02(G - A2 4je) pm(n1)/2,

It is well known that
Aw — Cn

7‘<n71)/2A7‘7(n71)/2 _ 872 + -
r

7 (2.2)

where
(n—1)(n—-3)
4

Cp =
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and A, denotes the (negative) Laplace-Beltrami operator on S”~! written in
the coordinates w. It is easy to see that (2.1) follows from the estimate

/(r)/? H < C)\H (r)~Y2P ‘ 2.3
Y I Iy
where the norm in the left-hand side is defined as follows:
2
Oy = [y + o072
H% x Vs (r B Vs () “Dyu .
) 1/2 —1A1/2 ’
LR o’
where D, = iA710,,A, = —A"2A,,. Throughout this section || - || and (-, )
will denote the norm and the scalar product in the Hilbert space L?(S™"~1).
Hence ||ul|Z2x) = J5° lu(r,)||2dr. Using (2.2) one can easily check that the

operator P can be written in the form:

P =D 472Ny + A 2W(r,w) — 1 +icA~>

+A” 1211}7 i(rw)D, + Dybj (rw))
- _12 (rw)Qj(w, Dy) + Qj(w, Dy)bj(rw)) ,
W =V (rw) + |b(rw)|* —i(n — 1)r* ijbj(rw)

where A, = Ay + A2, wj = /1, Dy = A 10y,Qj(w,Dy) = AT
Q;(w,dy),Q;(w,&) € C(T*S"~!) are real-valued, independent of r and A,
and homogeneous of order 1 with respect to &. Decompose W as WL + W5,
where

Wt =V(rw) + |b(rw)|2,

WS = —i(n—1)r 1 Z w;b;
It is easy to see that the assumptions (1.1), (1.2) and (1.4) imply
(W (r,w)| < C, (2.4)
0, WE(r,w) < Cs(r), (2.5)
(WS (r,w)| < Cos(r). (2.6)

E(r)=— <(7“_21~\w -1+ )\_QWL) u(r, w), u(r, w)> + HDru(r,w)H2

-2\ _1ZRe (rw)Q; (w, Dy)u(r, w), u(r,w)) .
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It is easy to see that the condition f € H*(R") implies that E(-) € L'(R™).
We have the identity

dE(r)
dr

2 L,z _, JOWE
—*<T Awu(r,w),u(r,w)>—)\ <(“)7"

E'(r) =

r

—ONT 1ZR < rw)/r)Qj(w,Dw)u(r,w),u(r,w)>

urw),uro))

o\t ZRe <wj 8bj§:w)u(r,w),Dru(r, w)>

j=1
+2AIm <]5u(r,w),Dru(r, w)> ,

where
P=P—icA 2 - \2W5,

and we have used that Im (b;D,u, D,u) = 0. Observe now that by (1.4) we
have

‘8bg;ﬂw)‘ < G (1), (2.7)

Hence, using (2.5), (2.7) and (2.8), we obtain

E'(r) > % <T_21N\wu(r, w),u(r,w)> —yr~3 z": 1Q; (w, Dy )u(r, w)|?
j=1
el 2Dt )| 0,0 [k utrw)| 220, (29)
Vv > 0 independent of A and r, where
M(r) = ’<]5u(r, w), Dyu(r, w)>‘ .

Since [|Q; (w, Dy)ul < C||AY ull < C|AY/*ul|, taking ~ small enough we can
absorb the second term in the right-hand side of (2.9) by the first one and
obtain

1
E'(r)> =
(r) > -

<r72/~\wu(r,w),u(r,w)> -2t Hw;/QDTu(T, w)”2

Hz/)ému T, w)H2 — 2AM (7). (2.10)
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Using that A, > 0, we deduce from (2.10)

- 7E’(t)dt

<A H%”D u

le/z

LQ(X)

+2) [ M(t)dt. (2.11)
L2(X)
0

We also have

—E(r) < <<7‘_21~Xw -1+ )\_QWL) u(r, w), u(r, w)>

Y I Qi(w, Du)ulr,w)| ffu(r, w)|
j=1

< <<7"_2/~\w - ;) w(r, w), ulr, w)>

+OOY) [ R 2utr w) | futryw))
<2 <r_2Kwu(r, w)7u(r,w)> , (2.12)
provided A is taken large enough. Let now ¢(r) > 0 be such that [~ ¢(r)dr <

+00. Multiplying both sides of (2.11) by ¢ and integrating from 0 to 00, we
get

2

71/} Pdr < O(A me u
0

o]

L2 (X) L2 (X)

+CX [ M(r)dr. (2.13)
/

By (2.11) and (2.12), we also obtain

2

oMY ng/%ru

/w JIE() dr <2 /2 R 2 ’
0

L*(X) L2(X)

Hq/}1/2

+CA / M(r (2.14)
L3(X) J

In particular, (2.13) and (2.14) hold with ¢ = vs (1) for any 0 < §’ < 4. It is
easy also to check that

5 U 0)] < 0@ 0)
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so we can use (2.14) to obtain

7%“ /drw/ (ﬁk<@%7%ﬁﬂﬂﬂw
0
0 wmu; Sl TR
le/z H . +C/\O/M(r)d,~_ (2.15)

Since ripgs (r) < 1, combining (2.10) and (2.15) and absorbing the O(d’) term
by taking ¢’ small enough, we conclude

o o

L2(X)

<0 W

L2(X)
sz H 2( )+CA/M(r)dr. (2.16)
0

On the other hand, in view of (2.4) we can choose A big enough so that 1 —
A72WE > 1/2. Therefore, for A > 1 we have the inequality

71/)5/( r)dr 2 ||v3/ Dy
0

L2(X)
1/2 ‘ _2H /2, ~171/2 Hz 517
ey R R [ Ve AT
By (2.13), (2.16) and (2.17), we conclude
T N R O N Y e
H¢ H(X) Vs Dru 1;2(X)+ ¥ L2(X + Vs L2(X)
< O(A‘l)Hwé/zDru + O HW ‘
L2(X) 2(X)
—|—C’>\/M(7’)d7“. (2.18)
Set
Pt =P 4icA2 = P - A\ 2W5(r,w),
M(r) = }<Pti (r,w), Dyu(r, w)>| N(r) = [{Pu(r,w), Dyu(r,w))|.
In view of (2.6)7 we have
A/Mﬁ(r)dr < A/N(r)dr+0 Hw” ’ -
0 0
Al H 2p, 2.1
v [y Dnl|, (2.19)
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We also have

A [ e <x [ 3+ x (Julfs o + 1Dl - 220)

2
A +v Hwé/zDru . (2:21)

N(r)dr <7~ /2P ] \LQ(X)

L2(X)

0\8 o

for every v > 0 independent of A\. On the other hand, in view of (2.4) and
(2.6), we have

X2 [ullFzx) = Tm (Pu,w) s xy + (n = 1A Z b3 (rw)u, w) s

2

< [(Pu, ) gy |+ OA2) “¢;/2u] (2.22)

r2(x)’

Re (Pu,u)p>x) = |Dr U||L2(X) + H A u ’

L2(x)
+H((ATPWE 1) u, u>L2(X)

+2A7 1ZRe (w;b; (rw)Dru u>L2(X)
j=1

+2)7 1ZRe b;(rw)Q;ju, u>L2(X)

Y

Dl + [ K2 =2l

L2(X)

=00 (vl + [ B2

2
o Il

1 2 2
> 5 IDrullz2xy — 2 ullz2x) -
provided A is taken large enough, which in turn implies
IDrullfexy < dllulfecr + 2| (Pusu) o | (2.23)

Combining (2.20), (2.22) and (2.23), we get

/M )dr < CD\/Mti )dr 4+ O(A H?//l/2 ’ +6>\’<Puau>m(x)

L2 (X)

<CA/M'i )dr + Cy~ WHw 12 py, ‘

L2(X)

+(v+ 0\ me ‘ (2.24)

2(x)
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By (2.18), (2.19), (2.21) and (2.24), we conclude

[

< (0,07 + 0 i

H'(X)

+Cy A ngl/zPu‘

2.25
L2(x)’ (225)

H'(X)
where we have used that 15 < 15 for 6’ < §. Now, taking v small enough,
independent of A, Cy and C, and A big enough, we can absorb the first term in
the right-hand side of (2.25) to obtain (2.3). To prove (1.7) for all multi-indices
||, Jas| < 1 we will use the following

Lemma 2.1. If [b(x)| + |V (2)] < C' = Const, then for every s € R there exist
constants C > 0 independent of b and V' and Ny > 0 depending on C' so that
for A > Xg and 0 < |aq|, |ae| < 1 we have the estimate

H<x>*sagl (G +ix2) " 922 (a)® < CNlealFlazl=2 (2.96)

L2—12 —

Proof. Without loss of generality we may suppose that s > 0. Let us first see
that (2.26) is valid for the free operator Gy. This is obvious for s = 0. For
s > 0 we will use the identity

(Go +iX2) ™" (x)®
— (2)° (Go £ iX2) T+ (Go £ iAY) T [A, ()] (Go £iX%) 1. (2.27)

Since
(A, (2)°] = O (()*") 8 + O ((x)°7?),

we obtain from (2.27) (with |a| < 2)

H@rsag (Go + M?)‘l (z)°

< [[@ 02 @) (Go £ ix3) 7|

L2512 L2512
103 @oz (Gox i) Y| o2 (Goxa)7Y|
B1<1 . e
< NP2 00 |[(@) 00 (Go kix?) T @t (2.28)

Iterating (2.28) a finite number of times and taking into account that the
operator 092 commutes with the free resolvent, we get (2.26) for G. To prove
(2.26) for the perturbed operator we will use the resolvent identity

(G+iX) T = (Go+ir?) = (G+iN2) T (G —Go) (Go£iX) " . (2.29)
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By (2.29) we get

—1
ATlenl=leal gy =epe (G ix?) 03 (a)°

2 2
lon ],z | <1 L2—L

< § A\~ leal=laz
lon ],z <1

+C Z Z A~ el —laz]

‘<m>_58§1 (Go+i®) " o5 (a)*

L2—L2

(@) ~*o% (Gﬂ:iAQ)_lafl (x)*

||z <1181 |+1821<1 Lr—rL?

—s5 08 12\ 7! e s

x ||(z) a2 (Goj:z)\) 8% ()

L2—L>2
<o ?P+o0h
-1

™ A~ leal=1811 | /0 ot G+ i)\? 851 z)° 2.30
> @ op (GH) o L (230)

laal,|Bi]<1

Taking now A big enough we can absorb the second term in the right-hand
side of (2.30) and obtain (2.26). O

Let us see that (1.7) for all multi-indices «; and s follows from (1.7)
with ay = a3 = 0 and Lemma 2.1. To this end, we will use the resolvent
identity

(G =22 %ie) = (G=iN) T+ (W Fie—iN?) (G-iN) 7

F (A2 Fie—id2)? (G=id2) T (G=N +ie) T (G—iN)

Hence
_ 148 . \—1 _ 143"
H(x> (G-Nkie) " opra) |
< [loz (6 -x%) g
L2—1L?
+ox o (G - i)™ (G —ix2) " o
L2—L2 L2—>L2
+OX (@)= 0 (G- ixt) )t
L2—L?2
H — 1 G )\Qj:za) 1(95)‘%5/
L2—[?2
144" N2 =1 qg =128
><H<x> S(G-i) o) |
SC)\|a1\+|a2\72+C«)\\a1|+\a2| ‘< > 1+5 (G )\2i15) 1<x>71+75’
L2—L2

< O )\leal+lez|-1

We will now prove (1.7) in the general case. Let ¢ € C§°(R"), ¢ > 0, supp ¢ C
[0,1], [ ¢(c)do = 1, and given any 0 < 6 < 1, set
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Bo(rw) =0 ms(r) P[ astr'w)o (5 ) ar

=ns(r) /95 (r+ 0o, w)p(o)do,

R

by () == Bg(|z], ﬁ) In view of the assumption (1.6), given any € > 0 there
exists 8 > 0 so that for all z € R™ we have

150) — 0| < el [ o (1ol + 00, 5 ) =5 (1ol )'¢

< ens(|z]). (2.31)

It is also clear that (1.5) implies the bounds
|b;§(rw)’ < 6775(7“)7 (2.32)
0,03 (rw)| < Cetos(r)- (2:33)

We will use the above analysis and the fact that the constant C' in the right-
hand side of (1.7) depends only on the parameter ¢, provided 0 < §’ < ¢. In
view of (1.1), (1.2), (1.4), (2.32) and (2.33), we can apply the already proved
estimate (1.7) to the operator

G = —A+i(b" +b5) -V +iV- (bF +b5) + VL + |p"|?

to get the estimate

for A > Ao(€) > 0 with a constant C' > 0 independent of €, and A. On the
other hand, in view of (1.3), (1.5) and (2.31), the difference G — G is a first
order differential operator of the form

G—Gi=0(e{z) ) - V+ V-0 (e{z) 0+ 0 ((x)179).
Using this together with (2.34) and the resolvent identity
(G — N +ig)™?
=(G1 =N 4ie) ' = (G1 = N2 £ie) NG — G1)(G — N2 +ie) 1,

1468’
2

L2—L2 <Ol (2.34)

(Gr—N =+ 18)71 022 ()~

we obtain

1 _ 149"
2

(z)
5 (G — A2k ie)

G A2+ 15)

H 1+5

L2—L2

(@)%

‘@r%" (Gy — N2 i) ™" 9P ()™

-1

< |[@
+C Z E|ﬁ1|+|,32|
[B1]+]62|<1

x H<x>7%852 (G = X2 +ie)

L2—L?2
146

L2—L?2

-1 _ 148’
2

()

L2—1L?2
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<Coxl4cC Z |Bul+1B2] \ 81| -1

[B1]+]62|<1
1+5 B2 2 1 *%‘5/
XH<> 9% (G- N Lie) " (z) \LLLQ
gcx1+o(e+rl) H<> 5 (G Nkie) @y ||
2)-1 () 142
N Y @ Fere-oh e
[B2]=1
_ 143 .1 _ 149"
><(1—|—)\2H<x> T (G=NLig) (z) 2 LZHLZ)
<SCN 4O (e+ 27 H@)*“éé (G=Nxi) @ L @)

where we have used that ¢’ < § and Lemma 2.1. Taking ¢ > 0 small enough,
independent of A, and A big enough we can absorb the second term in the right-
hand side of (2.35) and obtain (1.7) in the general case when oy = as = 0.
For all multi-indices a7 and ag the estimate (1.7) follows from (1.7) with
a1 = az = 0 and Lemma 2.1 in the same way as above.

To prove (1.11) we will use the commutator identity

r2

Aw — Cp 1 Aw —Cn

We obtain from (2.36) that the operators G = r("=D/2Gr=(n=1/2 anq A =
r(n=1/2 Ap=(n=1)/2 gatisfy the identity

G- [rar,G] G+A+- [r&n,G+A] Q. (2.37)
We rewrite (2.37) as follows
G =M 4ict = {r@r,G X pig] ==X +is+ Q
which yields the identity

(G- rie) -1 [a (G- +¢5)_1]

—2 -1

= (=22 + i) (C? — A4 is) + (@fAQ + iz—:)_l Q (CN%AQ + ie)
(2.38)
Set
WE = VE(rw) + [b(rw) |,

WS =VS@w) —i(n—1)r 1211)] (rw)
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Observe now that

_1 a(TQWL) L (5s WS _ 7S
Q—ZT-F*(W + 0prW?> —rW 8T)

7 " 8(er)

3 Z Wi ( P+ 0 or )
j=1

i\ a(rb;)

+2r§( 0) + Q0,00 52 ).
It follows from the assumptions (1.4), (1.8), (1.9) and (1.10) that

10(r2WE)|  |o(rb) —g =
- < . .
S+ ‘ 2| () [ < Cuss(r) (2.39)

y (2.38) and (2.39) we obtain

2 <7“>_1¢5'(7“)1/2 (é—)\g+i£)_2¢5,(r)1/2<7">_1

S ‘

+ON) Y

+

+0(X)
+

L?2(X)—L2(X)

bar ()12 (é P is)il e ()12

L2(X)—L2(X)

by (1)V2D, (é A2+ is) o by ()12

L?2(X)—L2(X)

Wy ()12 (é A2+ z's)_l e ()12

L2(X)—L?(X)

x || (r)'/*D, (CN? -XT i€)_1 e (r)
+ON) Y
+

~ —1
x ([ ()2 A2 (G = N2 Fie) ()2

L2(X)—L2(X)

Yo ()2 (G =N i) ()

L2(X)—L2(X)

. (2.40)
L2 (X)—L*(X)
where we have used that vs < 1bs for & < 6. It is clear now that (1.11) with
a1 = ag = 0 follows from (1.7) and (2.40). Furthermore, it is easy to see
that when |a;| + |az| > 1 the estimate (1.11) follows from (1.7), (1.11) with
a1 = as = 0 and Lemma 2.1. Indeed, we have

_ 32 . Qo 3+5
[t (G- N aie) o),
. —1 3+
= H o (sz)‘Q) <‘T>3JE L2—L2
x |[@) (G- id2) (G = N ie) (G — N () L
_ . . -1 349"
R I I
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2
< O Hel=4) 372k () =55 (G = A2 ie) " (@)
k=0

(z)

L2—L?2

< O \lealtloz[=2
O

Proof of Corollary 1.2. We will first prove the assertion when b(0) = 0. We will
use Theorem 1.1 and the fact that the constant C in the right-hand side of (1.7)
depends only on the parameter §’, provided ¢’ < ¢ (an argument already used
above in the case when b® = 0,V = 0 and which is true in the general case).
Since b(0) = 0 and the function b is continuous in r, given any € > 0 there is
0 < 0 <1 sothat |b(x)] <efor|z| <. Let ( € CP(R),0< ¢ < 1,¢((r) =1
for |7] < 1/2,¢(7) = 0 for |7| > 1. We are going to apply Theorem 1.1 to the
operator

Gy = —A+i(l = )(|z]/0)b(x) - V +iV - b(z)(L — ¢)(|z]/6) + V() + [b(x)|” -

Let x € C°(R),0< x < 1,x(r)=0forr <rg+1,x(r) =1 for r > ro + 2.
Set

:ZEL(JJ) = x(Jz)b" (@), V*(x) = x(j«)V* (@),
b%(x) = (1= O)(|21/6) (%(2) + (1 = x)(|z])b* (x)) ,
V3(2) = V3 (2) + (1= x)(|l2)V (@) + (|l /0)(2 = ¢(|2]/0))[b(2) .

It is easy to see that the operator Gy is of the form
o A2~ ~
Gy = (iV+ 05 +5°) + VE+ VS,

and that the conditions of Corollary 1.2 imply that the functions bL ,ES, 1722
and VS satisfy (1.1)~(1.6) with possibly a new constant § > 0 independent of
€. Therefore, by Theorem 1.1 the operator G satisfies the estimate (1.7) with a
constant C' in the right-hand side independent of €. On the other hand, the dif-
ference G— G is a first order differential operator of the form O(e)-V+V-O(e)
with coefficients supported in |z| < 1. Taking € > 0 small enough, independent
of A, and proceeding in the same way as in the proof of (2.35) above, we obtain
that the operator G satisfies (1.7), too.

Turn to the general case. Set B(z) = b(x) — Vo(x), where p(z) =
¢(Jz])b(0) - z. Clearly, B(0) = 0 and according to the analysis above the esti-
mate (1.7) holds for the operator (iV + B)? 4+ V. On the other hand, we have
the identity

(19 40+ V =0 ((V 4 B)? 4 V) o719,

which yields (1.7) for the operator (iV + b)* + V, too. O
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3. Dispersive Estimates

Let ¢ € C§°((0,400)). It is easy to see that the estimates (1.23) and (1.24)
follow from the following semi-classical dispersive estimates (e.g. see Sect. 2 of

[3])-

Theorem 3.1. Under the assumptions of Theorem 1.4, there exist constants
C, hg > 0 such that for all 0 < h < hg,t # 0, we have the estimate

eit@@(h\/é)HLl SR (3.1)

Moreover, for every &' > 0 there exist C,hg > 0 such that for all 0 < h <
ho,t # 0, we have the estimate

eit@¢(h¢é)<x>*3/2*5’] SO (3.2)
Proof. We are going to use the formula
(/o) = (ri) 1 [P p(h) (RE) — Ry (0) A (33
0

where RE(\) = (G — A2 £40)~" are the three-dimensional outgoing and
incoming free resolvents with kernels given by

e:i:i)\|:1:7y\
[Ry W)z, y) =

drle —y|”

We also have the formula

eit\/ag@(h\/a) = (mi)~! /eit)‘ap(h)\) (RT(A) = R™(\) Ad), (3.4)
0

where RT(A\) = (G — X2 £i0)~! are the outgoing and incoming perturbed
resolvents satisfying the relation

R*(\) = Ry (A) = Ry (M LR*(N) = T*(N) = T{ () + T5°(1),  (3.5)
where
Ti(A) = Ry (MLRy (\),  T5 (V) = Ry (A LR*(A) LRy (\),
L=G—Gy=1ib(x) -V +iV-b(z)+ |b(z)]* + V(z).
In view of (3.3), (3.4) and (3.5) we can write

VG (/G — VT o(h/Go) = (imh)~ /m STV, (3.6)
0

where we have put @g(A) = Ap(A), T = T+ — T~. It is easy to see that the
estimates (3.1) and (3.2) follow from (3.6) and the following
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Proposition 3.2. The operator-valued functions T(\) : L' — L and
TN (x)=3/279" . [2 — L° are C' for X\ large enough and satisfy the esti-
mates (with k = 0,1)

|OXT(N)]| 1 e < CA, (3.7)
H@’;T(A)@)’?’/Q"s' <cC. (3.8)

L2—L~

Proof. We will need the following properties of the three-dimensional free resol-
vent.

Lemma 3.3. We have the estimates

| (e -Re )|, =on k=0, (3.9)
e Y e At By

(3.10)

oronRy (V)| +H<x>*3/2*5'aAR§(A)a$ L SOA ol =1

(3.11)

Moreover, if || = 1, given any v > 0 independent of \ the operator 0% RE(\)
can be decomposed as Kfa()\) + K20, where

KL (V) () /2 ()12 ke )] <CA (312
[t @) @ L, =0 1)
H’C;,a|‘Loo4,Loo + ||IC2,0¢||L1—>L1 S - (3'13)
Proof. The estimate (3.9) follows from the fact that the kernel of the operator
% (Bg (\) — Ry ()

is O(X), while (3.10) follows from the fact that the kernel of the operator
OFRF () is O (|z — y[*~!) uniformly in X. It is also easy to see that if |a| = 1,
the kernel of 929y RE(\) is O(\), which clearly implies (3.11). Furthermore,
observe that the kernel of % RS ()\) is equal to

a(x|x _ y| (ii/\eii/\w—m eii)\a:—y|>

ox™ |z —y| lz —yl?
9w — +iX|z—y| 1 — etirlz—yl — N —1
_ |z — ¥ (j:i)\e e — p(lz y|/72) )
Oz™ |z —y |z —y| [z =y
_ 9%z —ylp(lz —yl/7)

81‘04 |x—y|2 = Kfa(x7y)+K2,a($ay)a

where 7/ > 0 and p € C§°(R),0 < p < 1,p(0) =1 for |o] < 1,p(c) = 0 for
|o| > 2. Denote by Kfa(k) (resp. Ka,q) the operator with kernel Kfa (resp.
K ). Clearly, Kljfa = O,(N)|z — y|~!, which implies (3.12). On the other
hand, the left-hand side of (3.13) is upper bounded by
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c/ y‘” e o)y, < ¢ / |2[~2dz < C. (3.14)

lz]<y
Choosing v = v/C we get (3.13). O

Using Theorem 1.1 and Lemma 3.3 together with (1.20) and the fact that
the operator ¢ commutes with the free resolvent, we obtain

i |ty @) -2/
i ( iy LdkR-<A>> () -3/
Z

+
D

L2000

L2

e oW [

> |

+ o< |+|az|<1

XH )" 1/2— 6/28(12R:I:()\)<x>—3/2—6/’

O O\ R () /2012

L2,

L2—L?2
CEY ¥ e
+ k=00<|o|<L1

x H<:c>*3/2*5/2858’@*<A><x>*3/2*5’

L2 ][>

L2512
1
230 DD NN RS
£ k=0|a|=1

« H<x>73/276/28§Ri()\)<l,>73/275'

L2—]

L2—L2

1
+Cz Z H’C;,aHLoo_)Lm H(de*‘(A) — 3§R_()\)) <$>—3/2—5’

k=0 |o|=1

L2,

(3.15)

1
<C 9] H k —3/2-¢'
<y +0m) Y |otronm =2
k=0
for every v > 0. Taking v small enough we can absorb the second term in
the right-hand side of (3.15) and get (3.8). Let us see now that the operator
Ty = T;" — Ty satisfies (3.7). By Lemma 3.3 we have

1 k + k p—
> Ha*Tl(A)’ L Z ' d)\k LRO () e LR L e
k=0 —
dR$ (N _ dRy (N
+ 0 0
L0720 L0~
+ HRO (M) a Ry (A) A |,

(@) RE ()|

SCZZZ!

k=0 |a|<1

8/\R0 >73/275/2‘

L2— L~ H L1—IL2
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+CZ Z HRO 1/2—5/2‘

+ |a|<1

+C) Z > Ha’jRg(A)(I)fs/zfa/z’

(2) "0 0 R (V)|

L2—L> H L'—L2

(@)L ()|

L2— L~ H

T 50 |al=1 L1—L2
L T
+CZ > [k (e -ro )|
X(H;C;(,):IXILZLLI Kol e ) < CA. (3.16)

1, define the function
1, then b, := b;. The

Given a multi-index o = (aq, ag, a3) such that |af
bo as follows: by = (|b]> 4+ V) /2, and if |a| = 1,
operator Ty = T,F — Ty, satisfies

1
Z ||8§T2(>\)HL1—>L°°
k=0

< X

ki+ka+k3<1 L1
ar,a2,B1,082 .
< ¥ > AZemBB () AN, (3.17)
kitko+ks<l |ail,|ez],|B81],|82|<1,
[ar]+]az|<1,|B1]+]B82|<1

A

Ziol LRE(N d’wRi(A) d*s RE(N)
ANk d\ke d\ks

where
Azj,l?;ﬁl ,B2 (/\)
dMREN) 0 A RE(N) d* R ())
Zi dA?“ o o a5 gy 0 b 20— !
L1—L>

where ba, a, = ba, if g = 0,04, 0, = ba, if &y = 0. To bound these norms we
will consider several cases.

Case 1. a; = 81 = 0. By Theorem 1.1, Lemma 3.3 and (1.20), we have

A" REN) |\ 1/9ky—s/2
CdAR

070(270,52
kl,k2,k3

L2 Lo

< > 1/2—ko— 5/28§Q(j dlikz( )852<$>_1/2_k2_6/2

L2 L2
% <x>*1/2*k375/2 dksRO (\)
d\ks L1 L2
S O(A) <x>71/27k275/26?2Ri()\)1+k28‘52<x>71/27k275/2 SC)\
1212
(3.18)

Case 2. |ag| 4+ |61] > 1,k = 1if |ay| = 1 and ks = 1 if |1] = 1. This case is
treated in precisely the same way as Case 1.
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Case 3. k1 = ko = 0,ks = 1,|ay| = 1,2 = 0. By Theorem 1.1, Lemma 3.3
and (1.20), we have

Ag,b’,olﬁl,ﬁz < CZ H’Cl . * 1/275/2’

L2— Lo

X H(:c>‘1/2—6/23i(/\)852 <x>—1/2_5/2‘

L2—L2
x [[(@) 220k os R (V)|

L'—L2

+C HK;)al |’L°°—>L°°

> R (N)052bg, 5,05 0z Ry (M)
+

LY — L

< CoA+0() ||D Ry (N2, 6,07 OxRg ()

+

LY — Lo

AN LRE(N)022bs, 5,00 0\ RE (N

LY — Lo
(3.19)

In the same way as in the proof of (3.16) one can see that the second term in
the right-hand side of (3.19) is O(A). On the other hand, it is clear that the
third one is bounded by O(v).A(X). In other words, (3.19) yields

AR () < CoA+ O() AW (3.20)

Case 4. ky = 1,ky = k3 = 0,|01| = 1, f2 = 0. This case is treated in the same
way as Case 3.

Case 5. k1 = ks = 0,ko = 1, |a1] = |1] = 1,0 = B2 = 0. By Theorem 1.1,
Lemma 3.3 and (1.20), we have

,0,81, —1/2-6/2
A0 < €5 JKEa, 007ty

L2—[>

_3/9_5/0dR Y
> <l’> 3/2—46/2 d)\( )<x> 3/2—46/2
% H< —-1/2— 6/2,C:I: ( )‘

1, 1

L2—L>2

L1—L2

FC K5 o [l e

+
SNy 08 RE(N)
+

dA
L'— L~
dRE(N)
:I: o
+C||IC2IH1HL1~>L1 Z:‘:R 6 1ba1’ T
L1
« dR*(N)
+C HICQ,OQHLOO_%OO ||IC2,51||L1_,L1 Z:t
dA
+ LIHLOO

(3.21)
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By (3.9), (3.16) and (3.17), we have
H d(rR*(A) — R~ (V)

dA Ll —[o°
_|[d@EBs () = By (V) d7'(A)
- dA L1 —L dA Ll —L
<ony |4V < OX+ A(N). (3.22)
dA Ll — L

Similarly, one can easily see that the second and the third terms in the right-
hand side of (3.21) are bounded by CA + O(7).A()). Thus we obtain:

AGEEPEO(N) < CoA+ O() AN, (3.23)
Summing up the above inequalities we conclude:
AN) < CLA+O()A(N). (3.24)

Taking v > 0 small enough, independent of A\, we can absorb the second term
in the right-hand side of (3.24) and conclude that A(X) = O()\). This together
with (3.16) and (3.17) imply (3.7). O
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