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Decision Making Times in Mean-Field
Dynamic Ising Model

Yuri Bakhtin

Abstract. We consider a dynamic mean-field ferromagnetic model in the
low-temperature regime in the neighborhood of the zero magnetization
state. We study the random time it takes for the system to make a
decision, i.e., to exit the neighborhood of the unstable equilibrium and
approach one of the two stable equilibrium points. We prove a limit theo-
rem for the distribution of this random time in the thermodynamic limit.

1. Introduction

The asymptotic properties of exit from a small neighborhood of an unstable
equilibrium of a dynamical system under small white noise perturbation were
first studied rigorously in [14]. It was shown that as the noise intensity ε goes
to zero, the exit time τε behaves roughly as a−1 ln ε−1, where a is the local
expansion rate (Lyapunov exponent) at the equilibrium point. After that, sev-
eral authors worked on ramifications of these results, see [2–5,8,11].

It was shown in [8] and rediscovered in [2,3] that τε−a−1 ln ε−1 converges
to a limiting distribution that is a dilation and translation of ln |G|−1, where
G is a standard Gaussian random variable.

Understanding distributional asymptotics for the exit time was pivotal
in describing the vanishing noise asymptotics for noisy heteroclinic networks,
see [3,4]. These systems occur naturally in the context of neural dynamics and
sequential decision making, see, e.g., [17] and references therein. Exit times
for diffusion models have been used in psychology to describe reaction times
in decision tasks, see [18] and references therein, and it is natural to ask if
the limiting behavior of exit times described above is reproduced in statistical
mechanics models of neural computation.

In fact, the process of escape from an unstable equilibrium in statisti-
cal mechanics models, especially in the context of phase separation, has been
studied extensively and well understood, see, e.g., a recent book [16], papers
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[6,9,10], and references therein. The literature contains subtle results on the
geometry of clusters formed in the course of phase separation, and cases where
the instability is quadratic or quartic have been considered. However, the infi-
nite volume distributional limit of the correction to the main logarithmic term
has not been addressed in the literature. It cannot be derived directly from
previous results (to the best of our knowledge), and our goal is to close this
gap.

In this paper we choose to study one of the simplest statistical mechan-
ics models, the dynamic mean field ferromagnetic model, also known as the
Curie–Weiss model, in the low temperature regime with two minima of free
energy. We start the evolution of the system at the completely disordered state
with zero magnetization, where the number of plus spins equals the number of
minus spins. We stop the dynamics as soon as magnetization enters a neigh-
borhood of one of the stable equilibrium values and interpret that event as
a decision made by the system between the two choices. We show that as
the number N of spin variables (representing individual neurons in the neural
computation context) goes to infinity, the exit time behaves as lnN and the
correction to the main term converges to an affine transformation of ln |G|−1,
thus reproducing the above result for the diffusion in the neighborhood of an
unstable equilibrium.

We have to make some remarks concerning the proof. It is well known
that systems like the one under consideration can be approximated by dif-
fusion processes with diffusion coefficient of order of N−1/2. This suggests a
natural idea of a seemingly easy proof. However, if we try to use this approx-
imation directly, we would have to prove that two sequences of probability
distributions are asymptotic to each other (since the basic model and the
diffusion both depend on N). This convergence, which is more general than
weak convergence of a sequence of measures to a fixed measure (e.g., none of
the two sequences has to be tight), is known in the literature as merging or
proximity of two sequences of measures, see, e.g., [7] and references therein.
Unfortunately, currently there is no contentful theory of merging in trajectory
spaces.

Of course, we can modify this approach and try to rescale the solution of
our system appropriately, obtain a functional limit theorem for it, and derive
the asymptotics for the exit time from the exit asymptotics for the limiting
diffusion (the endpoints of the domain must be appropriately rescaled, too).
However, there is still an obstacle. The standard set of tools of functional
limit theorems for diffusions is essentially useful for proving weak convergence
of processes within a finite time horizon, whereas the exit times we are dealing
with require the time scale that grows at least logarithmically in N . That is
why the standard diffusion approximation results do not imply the desired
asymptotics of exit times straightforwardly.

So, to prove the result we do use the technique of diffusion approximation
and mimic the derivation of the asymptotics for the exit distribution in the
diffusion case, but it takes more effort to finish the proof due to the limitations
of the existing weak convergence techniques.
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2. The Model and the Main Result

First let us recall the mean-field ferromagnetic equilibrium Ising model also
known as Curie–Weiss model, see [12, Sect. IV.4]. Let us fix a large number
N and consider N spin variables. Each variable Xk, k = 1, . . . , N takes values
±1, and the energy assigned to a configuration (xk)N

k=1 is given by

E(x) = − 1
2N

N∑

i,j=1

xixj .

We then can fix an inverse temperature value β > 0 and consider the
Boltzmann–Gibbs distribution defined by E and β:

PN{Xk = xk, k = 1, . . . N} =
e−βE(x)

ZN
,

where

ZN =
∑

x∈{−1,1}N

e−βE(x)

is the partition function.
Since there is no geometry involved in this mean-field model and the

strength of interactions between two spins is the same for all pairs of spins,
one can describe the macroscopic behavior of the system by a single variable
called magnetization,

M(x) =
1
N

∑

i

xi ∈ [−1, 1].

Notice that

E(x) = −NM2(x)/2

Therefore,

PN

{
M(X) =

n

N

}
=

1
ZN

(
N

(N + n)/2

)
eN β

2 ·( n
N )2

if (N + n)/2 is integer.
Recall that (see, e.g., [12, Lemma I.3.2]) uniformly in k = 0, . . . , n,

1
N

ln
(

N

k

)
= h

(
k

N

)
+ O

(
ln N

N

)
,

where

h(x) = −x ln x − (1 − x) ln(1 − x), x ∈ [0, 1],

is the entropy of the Bernoulli distribution with probabilities x and 1 − x.
Therefore,

PN

{
M(X) =

n

N

}
=

1
ZN

e−NF (n/N)+O(ln N),
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where the free energy per spin F is defined by

F (m) = −β

2
m2 − h

(
1
2

+
m

2

)
.

It is easy to show that the sequence of distributions PN{M(X) ∈ ·} satisfies a
large deviation principle on [0, 1] with rate function J given by

J(m) = F (m) − min
[0,1]

F.

Differentiating F , we see that the minimizers of F satisfy

βm =
1
2

ln
1 + m

1 − m
, (2.1)

and, as elementary analysis shows, (i) for β < 1, a unique minimizer of F is
m = 0 (corresponding to completely disordered case), and F ′′(0) > 0 so that
F is approximately quadratic in the neighborhood of the minimizer; (ii) for
β > 1, there are two minimizers m = ±m∗, for some m∗ > 0; (iii) if β = 1
then 0 is still a unique minimizer, but contrary to the first case, F ′′(0) = 0,
and the leading term in the Taylor expansion of F at 0 is order 4.

In this paper, we are concerned with the low-temperature case (ii). In
that situation, point 0 is also a solution of (2.1), but it is an unstable equi-
librium of the system being the local maximum of the free energy F . We are
going to consider Glauber dynamics, a stochastic process of spin flips compati-
ble with Curie–Weiss model, and study it in the neighborhood of the unstable
equilibrium in the case β > 1.

We must study a {−1,+1}N -valued Markov process with intensities of
spin flips ci(x), i ∈ {1, . . . , N}, x ∈ {−1,+1}N defined by

P{Xi(t + Δt) �= Xi(t)|X(t) = x} = ci(x)Δt + o(Δt), Δt ↓ 0.

If we want the process X to be reversible w.r.t. the Gibbs distribution PN , it
is required that

ci(x) exp {−βE(x)}
does not depend on xi, see [15, Sect. IV.2]. Equivalently, it is required that

ci(x) exp {βxiM(x)}
does not depend on xi. There are many choices for rates ci, and there is no
physical reason to prefer one of them to others. In this paper we will work
with

ci(x) = exp {−βxiM(x)} , (2.2)

although our results should hold for a variety of other choices of ci(x).
Notice that if the spin xi is aligned with magnetization M(x), then the

resulting flipping rate of i-th spin is lower than that in the opposite situa-
tion where xi is misaligned with M(x). This is the result of the ferromagnetic
nature of the model which favors configurations with most spins aligned with
each other.

Suppose now that we observe only the magnetization, or, equivalently,
the number of +1-spins. Flipping a −1 spin means then a transition from the
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current magnetization m to m + 2/N . Since the number of −1 spins equals
N(1 − m)/2, we see that the total transition rate m �→ m + 2/N is given by
λ+(m,N), where

λ+(m,N) = N
1 − m

2
exp{βm}.

Flipping a +1 spin means a transition from the current magnetization m to
m − 2/N . Since the number of +1 spins equals N(1 + m)/2, we see that the
total transition rate m �→ m − 2/N is given by λ−(m,N), where

λ−(m,N) = N
1 + m

2
exp{−βm}.

Let us consider the Markov process MN describing the evolution of mag-
netization in the above model and set MN (0) = 0 (this means that N has to
be even, but this is not a really important restriction).

It is clear that MN will spend some time in the neighborhood of 0 and
then it will escape that neighborhood and head towards one of the minima of
free energy, ±m∗. We can interpret the exit in each of these directions as the
decision made by the system. We set a threshold level R ∈ (0,m∗) and as soon
as MN exceeds R in absolute value, we claim that the system has made the
decision. The choice of one of the two alternatives is encoded by the sign of MN

at that time. Our main result describes the asymptotics of the random time it
takes to reach the threshold R starting from the completely disordered state
with zero magnetization. According to the interpretation above, this time can
be viewed as the decision making time for the situation where the initial state
is a completely unbiased indecisive state.

More formally, for any R ∈ (0,m∗) we introduce

τN (R) = inf{t : |MN (t)| ≥ R}.

Our main result describes the joint asymptotic behavior of random vari-
ables τN (R) and sgnMN (τN ). To state it, we need more notation. For m ∈
[−1, 1], we denote

b(m) =
2
N

(λ+(m,N) − λ−(m,N)) = (1 − m)eβm − (1 + m)e−βm, (2.3)

introduce a = b′(0) = 2β − 2 > 0 and Q(x) = b(x) − ax, x ∈ R, and define

D(R) = K(R) +
ln R

a
+

ln(a/2)
2a

, R ∈ R,

where

K(R) = −
R∫

0

Q(x)
axb(x)

dx ∈ R, R ∈ R. (2.4)

Theorem 2.1. For any R ∈ (0,m∗), as N → ∞
(

sgn MN (τN (R)), τN (R) − 1
2a

ln N

)
distr−→

(
sgn G,−1

a
ln |G| + D(R)

)
,

where G is a standard Gaussian random variable.
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3. Proof

The proof is based on the theory of Markov processes, martingales and their
convergence. We refer to [13] as an excellent source on the relevant background.

The form of rates λ+, λ− implies that the generator LN of the magneti-
zation process MN is given by

LNf(m) =
N

2

[
(1 − m)eβm

(
f(m +

2
N

) − f(m)
)

+(1 + m)e−βm

(
f(m − 2

N
) − f(m)

)]
.

In particular,

f(MN (t)) −
t∫

0

LNf(MN (s))ds

has to be a martingale for any f , see Proposition 1.7 in [13, Chapter 4]. Choos-
ing f(x) ≡ x on [−1, 1], we obtain that

ZN (t) = MN (t) −
t∫

0

b(MN (s))ds

is a bounded variation cadlag martingale, where b(·) is defined in (2.3), so that
it plays the role of drift coefficient that drives the deterministic component of
the process. Notice that zeros of b(m) coincide with solutions of equation (2.1),
so that for any point x ∈ (0,m∗), limt→+∞ Stx = m∗ and limt→−∞ Stx = 0,
and for any point x ∈ (−m∗, 0), limt→+∞ Stx = −m∗ and limt→−∞ Stx = 0,
where S is the flow generated by b: S0x = x and d

dtS
tx = b(Stx).

Using the representation

b(m) = am + Q(m), m ∈ [−1, 1], (3.1)

where a = b′(0) = 2β − 2 and |Q(m)| ≤ Km2 for m ∈ [−1, 1], we can write

MN (t) = a

t∫

0

MN (s)ds +

t∫

0

Q(MN (s))ds +

t∫

0

dZN (s),

We can now use variation of constants to write

MN (t) = eat

t∫

0

e−asdZN + eat

t∫

0

e−asQ(MN (s))ds, (3.2)

where the integral w.r.t. ZN is understood as Lebesgue–Stieltjes integral.

Lemma 3.1. Suppose there is a sequence of stopping times θN satisfying

θN
P→ ∞, N → ∞, (3.3)

and

sup
t≤θN

|MN (t)| ≤ N−γ , (3.4)
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for some γ > 0 and all N . Then, as N → ∞, IN = N1/2
∫ θN

0
e−asdZN (s)

converges in distribution to N (0, 2a−1).

Proof. Let us introduce a process

VN (t) =

t∧θN∫

0

e−asdZN (s). (3.5)

It is a martingale with

[VN ]t =

t∧θN∫

0

e−2asd[ZN ]s,

where square brackets denote the quadratic variation process. Let us define
UN (s) = VN (f(s)), where

f(s) = − ln(1 − as/2)
2a

, s ∈ [0, 2a−1].

We need the following statement which is a specific case of Theorem 1.4 in
[13, Chapter 7] (see also bibliographical notes therein for the history of this
theorem and related results):

Theorem 3.1. For each N ∈ N, let UN be a martingale w.r.t. some filtration,
with cadlag paths and UN (0) = 0. Suppose for all t ∈ [0, 2a−1], AN (t) = [UN ]t
satisfies

NAN (t) P→ t, N → ∞,

and

lim
N→∞

E

[
N1/2 sup

0≤t≤2a−1
|UN (t) − UN (t−)|

]
= 0. (3.6)

Then, as N → ∞, N1/2UN converges in distribution in the Skorokhod topology
to the standard Wiener process on [0, 2a−1].

In our case, condition (3.6) is fulfilled automatically since all the jumps
of UN are bounded by 2N−1 in absolute value. All the jumps of ZN are equal
to 2N−1 in absolute value, so that

[ZN ](t) =
4

N2
BN (t), t ≥ 0,

where BN (t) denotes the number of jumps the process ZN makes up to time t.
Next,

AN (t) =
4

N2

∑

s:s≤f(t)∧θN

MN (s) 	=MN (s−)

e−2as,
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and

NAN (t) P→ 4

f(t)∫

0

e−2asds = t. (3.7)

This is a consequence of the following result:

Lemma 3.2. For any non-increasing function g : R+ → R+ and any t ≥ 0,

1
N

∑

s:s≤t∧θN

MN (s) 	=MN (s−)

g(s) P→
t∫

0

g(s)ds.

Proof. It is sufficient to assume that g(s) = 1s∈[0,h] for some h > 0 since
one can use linear combinations of functions of this form to approximate any
non-increasing function. We have to show that for all t,

1
N

BN (t ∧ h ∧ θN ) P→ t ∧ h.

Due to (3.3), we can restrict ourselves to the high probability event {t <
θN}. Let (sN,i) be the increasing sequence of times of jumps for each N ,
i.e., MN (sN,i) �= MN (sN,i−). Clearly, conditioned on MN (sN,i), the spacing
random variable sN,i+1 − sN,i has exponential distribution with parameter

λ+(MN (sN,i), N) + λN (MN (sN,i), N) = λ(MN (sN,i), N),

where

λ(m,N) = λ−(m,N) + λ+(m,N).

Therefore, using (3.4) we see that the number of points si not exceeding t ∧ h
is between two Poisson processes with intensities λ(0, N) = N and λ(N−β , N)
evaluated at time t ∧ h. Our claim follows since λ(N−β , N)/N → 1. �

Now all the conditions of Theorem 3.1 have been verified and we conclude
that N1/2UN converges in distribution in Skorokhod topology to the Wiener
process on [0, 2a−1]. Therefore, IN = N1/2UN (2a−1) converges in distribution
to N (0, 2a−1), and the proof of Lemma 3.1 is complete. �

Let us now check that the conditions of Lemma 3.1 hold for θN = inf{t :
|MN (t)| ≥ N−γ}. Notice that condition (3.4) is satisfied automatically.

Lemma 3.3. If 1
4 < γ < 1

2 , then (3.3) holds.

Proof. Let us take any T > 0. On {θN < T}
N−γ ≤ |MN (θN )|

= eaθN

∣∣∣∣∣∣
VN (θN ) +

θN∫

0

e−asQ(MN (s))ds

∣∣∣∣∣∣

≤ eaT (|VN (θN )| + a−1KN−2γ), (3.8)
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where V has been introduced in (3.5). The quadratic variation of the mar-
tingale VN was computed in the proof of Lemma 3.1, and we can conclude
that

E[VN ]θN
≤ 2a−1N−1.

Therefore, by the Chebyshev inequality and the fact that V 2
N − [VN ] is a mar-

tingale (see Proposition 6.1 in [13, Chapter 2]),

P{|VN (θN )| > N−γ/2−1/4} ≤ EV 2
N (θN )

N−γ−1/2
≤ E[VN ]θN

N−γ−1/2
≤ 2a−1N−1

N−γ−1/2
→ 0.

Now, on {θN < T} ∩ {|VN (θN )| ≤ N−γ/2−1/4}, we have

N−γ ≤ eaT (N−γ/2−1/4 + a−1KN−2γ)

which is impossible for large N under our assumptions. We conclude that
P{τN < T} → 0, and the lemma follows. �

We are ready to describe the asymptotics of the exit from [−N−γ , N−γ ].

Lemma 3.4. If 1/4 < γ < 1/2, then
(

sgn MN (θN ), θN − 1/2 − γ

a
ln N

)
distr−→

(
sgn H,−1

a
ln |H|

)
,

where Law(H) = N (0, 2a−1).

Proof. Considering the process MN at time θN and using (3.2), we obtain

θN =
1
a

ln

⌈
N−γ · N

2

⌉ · 2
N∣∣∣VN (θN ) +

∫ θN

0
e−asQ(MN (s))ds

∣∣∣

=
1/2 − γ

a
lnN − 1

a
ln

∣∣∣∣∣∣
IN + N1/2

θN∫

0

e−asQ(MN (s))ds

∣∣∣∣∣∣
+ o(1).

Also,

sgn MN (θN ) = sgn

⎛

⎝IN + N1/2

θN∫

0

e−asQ(MN (s))ds

⎞

⎠ .

Since

N1/2

θN∫

0

e−asQ(MN (s))ds ≤ N1/2K

a
N−2γ → 0,

the desired statement follows from Lemma 3.1. �

Let us now study the exit of MN from an interval [−r, r] where r is a
small number that does not depend on N . We define YN (t) = MN (t+θN ) and
for any r ∈ (0, R) we define

νN (r) = inf{t ≥ 0 : |YN (t)| = r}.
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We are going to compare the evolution of the magnetization process to the
deterministic trajectory of the flow St generated by the drift b.

For any δ > 0 we introduce t(δ, r) as the only solution t of Stδ = r, i.e.,
it is the time it takes for the solution of ODE ẋ = b(x) to travel from δ to r.

Lemma 3.5. For any r > 0,

lim
δ→0

(
t(δ, r) − 1

a
ln

r

δ

)
= K(r),

where K(·) was defined in (2.4).

Proof. By the basic formula for solutions of autonomous ODE’s (see, e.g.,
[1, Sect. 1.2]):

t(δ, r) =

r∫

δ

dx

b(x)
=

r∫

δ

(
1

b(x)
− 1

ax

)
dx +

r∫

δ

dx

ax

=

r∫

δ

1
b(x)

ax − b(x)
ax

dx +
1
a
(ln r − ln δ),

and the lemma follows. �

Lemma 3.6. There is r0 > 0 such that

sup
0≤t≤t(|YN (0)|,r0)

|YN (t) − St(YN (0))| P→ 0, N → ∞.

Proof. Denote ΔN (t) = YN (t) − StYN (0). Since

YN (t) = YN (0) +

t∫

0

b(YN (s))ds + Z ′
N (t),

where Z ′
N (t) = ZN (t + θN ) − ZN (θN ) is a martingale, and

StYN (0) = YN (0) +

t∫

0

b(SsYN (0))ds,

we see that for any r ∈ (0,m∗) and any t ∈ (0, t(|YN (0)|, r)),

|ΔN (t ∧ νN (r))| ≤ L(r)

t∧νN (r)∫

0

|ΔN (s)|ds + sup
s≤t∧νN (r)

|Z ′
N (s)|,

where L(r) is the Lipschitz constant of b on [−r, r].
Since [Z ′

N ]t = 4N−2(BN (θN + t) − BN (θN )), and the number of jumps
between θN and θN + t is stochastically dominated by the increment of the
Poisson process with intensity N , we have

P

{
sup

s≤t(|YN (0)|,r)∧νN (r)

|Z ′
N (s)| > N−δ

}
→ 0
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if δ < 1/2. On the complementary event, applying Gronwall’s inequality, we
obtain for some constant C > 0,

|ΔN (t ∧ νn(r))| ≤ eL(r)t(|YN (0)|,r)N−δ ≤ CNγL(r)/aN−δ. (3.9)

We can choose r to be so small that L(r) is close to a enough to ensure
that γL(r)/a < 1/2. Consequently, we can choose δ < 1/2 such that ρ =
δ − γL(r)/a > 0, and the r.h.s. of (3.9) converges to 0. For any r0 ∈ (0, r) we
conclude then that P{νN (r) < t(|YN (0)|, r0)} → 0, and

P

{
νN (r) ≥ t(|YN (0)|, r0); sup

s≤t(|YN (0)|,r0)

|ΔN (s)| > N−ρ

}
→ 0.

which completes the proof of the lemma. �
We can now combine the results of Lemmas 3.4 and 3.6.

Lemma 3.7. For any r ∈ (0, r0),(
sgn MN (τN (r)), τN (r) − 1

2a
ln N

)
distr−→

(
sgn H,−1

a
ln |H| +

ln r

a
+ K(r)

)
,

Proof. Obviously,

τN (r) = θN + νN (r). (3.10)

Lemma 3.6 implies that

νN (r) − t(|YN (0)|, r) P→ 0.

This together with Lemma 3.5 implies

νN (r) − 1
a

ln
r

N−γ
− K(r) P→ 0. (3.11)

The lemma follows now from (3.10),(3.11), and Lemma 3.4. �
The next result follows from the same considerations as Lemma 3.6,

except that it is easier since we consider a finite time horizon.

Lemma 3.8. Let r be as in the last lemma. Let YN (t) = MN (τN (r) + t). Then,
for any T > 0,

sup
0≤t≤T

|YN (t) − St(YN (0))| P→ 0, N → ∞.

This lemma means that after τN (r) the process essentially follows the
deterministic trajectory. Since H = 21/2a−1/2G, where G is standard Gauss-
ian, our main result is a direct consequence of Lemmas 3.7 and 3.8. In fact, it
extends Lemma 3.7 since the latter is valid only for sufficiently small values of
threshold, whereas our main result applies to any R ∈ (0,m∗).
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