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Recursion Between Mumford Volumes
of Moduli Spaces

Bertrand Eynard

Abstract. We propose a new proof, as well as a generalization of
Mirzakhani’s recursion for volumes of moduli spaces. We interpret those
recursion relations in terms of expectation values in Kontsevich’s inte-
gral, i.e., we relate them to a ribbon graph decomposition of Riemann
surfaces. We find a generalization of Mirzakhani’s recursions to measures
containing all higher Mumford’s κ classes, and not only κ1 as in the
Weil–Petersson case.

1. Introduction

Let

VolWP(Mg,n(L1, . . . , Ln)) (1.1)

be the volume (measured with Weil–Petersson’s measure) of the moduli space
of genus g curves with n geodesic boundaries of length L1, . . . , Ln. Maryam
Mirzakhani found a good recursion relation [11,12] for those functions, allow-
ing to compute all of them in principle. This relation has received several
proofs [10,13], and we provide one more proof, more “matrix model oriented”.

The main interest of our method is that it easily generalizes to a larger
class of measures, containing all Mumford classes κ, which should also prove
the result of Liu and Xu [10].

In fact, our recursion relations are those of [7], and they should be gener-
alizable to a much larger set of measures, not only those based on Kontsevich’s
hyperelliptical spectral curve, but also rational spectral curves. For instance,
they hold for the generalized Kontsevich integral, the spectral curve of which
is not hyperelliptical, i.e., they should hopefully allow to compute also some
sort of volumes of moduli spaces of stable maps with spin structures.

In [5], it was observed that after Laplace transform, Mirzakhani’s recur-
sion became identical to the solution of loop equations [7] for Kontsevich’s
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matrix integral. Based on that remark, we are in a position to reprove
Mirzakhani’s result, and in fact we prove something more general.

Consider an arbitrary set of Kontsevich KdV times1 t2d+3, d = 0, 1,
. . . ,∞, we define their conjugated times t̃k, k = 0, 1, . . . ,∞, by:

f(z)=
∞∑

a=1

(2a+ 1)!
a!

t2a+3

2−t3 za → f̃(z)=− ln (1−f(z))=
∞∑

b=1

t̃b z
b (1.2)

Then we prove the following theorem:

Theorem 1.1. Given a set of conjugated Kontsevich times t̃0, t̃1, t̃2, . . ., the fol-
lowing “Mumford volumes”,

Wg,n(z1, . . . , zn) = 2−dg,n(t3 − 2)2−2g−n
∑

d0+d1+···+dn=dg,n

d0∑

k=1

1
k!

×
∑

b1+···+bk=d0,bi>0

n∏

i=1

2di + 1!
di!

dzi

z2di+2
i

k∏

l=1

t̃bl

〈
k∏

l=1

κbl

n∏

i=1

ψdi
i

〉

g,n

(1.3)

where dg,n = 3g − 3 + n = dimMg,n, satisfy the following recursion relations
(where K = {z1, . . . , zn}):

W0,1 = 0 W0,2(z1, z2) = dz1dz2
(z1−z2)2

Wg,n+1(K, zn+1)

=
1
2

Res
z→0

dzn+1(
z2
n+1 − z2

)
(y(z) − y(−z))dz

[
Wg−1,n+2(z,−z,K)

+
g∑

h=0

∑

J⊂K

Wh,1+|J|(z, J)Wg−h,1+n−|J|(−z,K/J)

]
(1.4)

where

y(z) = z − 1
2

∞∑

k=0

t2k+3 z
2k+1 (1.5)

From Theorem 1.1, we obtain as an immediate consequence if t2d+3 =
− (2iπ)2d

2d+1! + 2δd,0, i.e., t̃1 = 4π2 and t̃k = 0 for k > 1, and after Laplace trans-
form:

Corollary 1.1. The Weil–Petersson volumes satisfy Mirzakhani’s recursions.

The proof of Theorem 1.1 is detailed in the next sections, and it can be
sketched as follows:
• We first define some Wg,n(z1, . . . , zn) which obey the recursion relations

of [7], i.e., Eq. 1.4. In other words, we define them as the solution of the
recursion, without knowing what they compute.

1 Our definition of times tk slightly differs from the usual one; we have tk = 1
N

Tr Λ−k.
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• We prove that those Wg,n(z1, . . . , zn) correspond to some expectation

values in the Kontsevich integral Z(Λ) =
∫

dM e−N Tr
(

M3
3 −MΛ2

)

, where
Λ = diag(λ1, . . . , λn), and tk = 1

N Tr Λ−k, of the form:

Wg,n(λi1 , . . . , λin
)

dx(λi1) . . . dx(λin
)

= (−1)n 〈Mi1,i1 . . .Min,in
〉(g)
c (1.6)

• Then we expand 〈Mi1,i1 . . .Min,in
〉 into Feynman ribbon graphs, which

are in bijection with a cell decomposition of Mcomb
g,n (like in Kontsevich’s

first works), and the value of each of those Feynman graphs is precisely
the Laplace transform of the volume of the corresponding cell.

• the sum over all cells yields the expected result: the inverse Laplace trans-
forms of Wg,n are the volumes Vg,n, and, by definition, they satisfy the
recursion relations.

• In fact, the volumes are first written in terms of the first Chern classes ψi

in formula 2.31, and after some combinatorics, we find it more convenient
to rewrite them in terms of Mumford κ classes.
Then, we specialize our theorem to some choices of times tk’s, in partic-

ular the following:

• The first example is t2d+3 = − (2iπ)2d

2d+1! + 2δd,0, in which case Vg,n the
Laplace transform of Wg,n are the Weil–Petersson volumes, and thus we
recover Mirzakhani’s recursions.

• Our second example is tk = λ−k, i.e., Λ = λ Id, for which the Kontsevich
integral reduces to a standard matrix model, and for which the Wg,n are
known to count triangulated maps, i.e., discrete surfaces with the dis-
crete Regge metrics (metrics whose curvature is localized on vertices and
edges). We are thus able to associate some class to that discrete measure
on Mg,n. And we have a formula which interpolates between the enumer-
ation of maps and the enumeration of Riemann surfaces, in agreement
with the spirit of 2d-quantum gravity in the 1980s [2,4,16].

2. Proof of the Theorem

2.1. Kontsevich’s Integral

In his very famous work [9], Maxim Kontsevich introduced the following matrix
integral as a generating function for intersection numbers

Z(Λ) =
∫

dM e−N Tr
(

M3
3 −M(Λ2+t1)

)

= e
2N
3 Tr Λ3+Nt1 Tr Λ

∫
dM e−N Tr

(
M3
3 +M2Λ−t1M

)

(2.1)

where the integral is a formal integral over hermitian matrices M of size N ,
and Λ is a fixed diagonal matrix

Λ = diag(λ1, . . . , λn), tk =
1
N

Tr Λ−k (2.2)
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Throughout all this article, we shall assume t1 = 0, since none of the
quantities we are interested in here depend on t1 (see symplectic invariance in
[7], or see [3]).

In [7], a method to compute the topological expansion of such matrix
integrals was developed. We first define the Kontsevich’s spectral curve:

Definition 2.1. The spectral curve of Z(Λ) is the rational plane curve of equa-
tion:

E(x, y)=y2−x− y

N
Tr

1
x− t1 − Λ2

− 1
N

〈
Tr

1
x− t1 − Λ2

M

〉(0)

=0 (2.3)

i.e., it has the following rational uniformization

E(x, y) =

{
x(z) = z2 + t1

y(z) = z + 1
2N Tr 1

Λ(z−Λ) = z − 1
2

∑∞
k=0 tk+2z

k (2.4)

Then we define (i.e., the algebraic invariants of [7]):

Definition 2.2. We define the correlators:

W0,1 = 0 W0,2(z1, z2) =
dz1dz2

(z1 − z2)2
(2.5)

and we define by recursion on 2g − 2 + n, the symmetric2 form Wg,n+1

(z0, z1, . . . , zn) by (we write K = {z1, . . . , zn}):

Wg,n+1(K, zn+1)

= Res
z→0

z dzn+1(
z2
n+1 − z2

)
(y(z) − y(−z))dx(z)

[
Wg−1,n+2(z,−z,K)

+
g∑

h=0

∑

J⊂K

Wh,1+|J|(z, J)Wg−h,1+n−|J|(−z,K/J)

]
(2.6)

Then, if dΦ = ydx, we define for g > 1:

Fg =
1

2g − 2
Res
z→0

Φ(z)Wg,1(z) (2.7)

(there is a separate definition of Fg for g = 0, 1, but we shall not use it here).

We recall the result of [7] (which uses also [8]):

Theorem 2.1.

lnZ =
∞∑

g=0

N2−2gFg (2.8)

Now, we prove the more elaborate result:

2 The non-obvious fact that this is symmetric in its n + 1 variables is proved by recursion
in [7].
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Theorem 2.2. if i1, . . . , in are n distinct integers in [1, N ], then:

W
(g)
n (λi1 , . . . , λin

)
dx(λi1) . . . dx(λin

)
= 〈Mi1,i1 . . .Min,in

〉(g)
c (2.9)

where 〈·〉 means the formal expectation value with respect to the measure used
to define Z, the subscript c means connected part or cumulant, and the sub-
script (g) means the gth term in the 1/N2 topological expansion.

In other words, the Wg,n compute some expectation values in the Kon-
tsevich integral, which are not the same as those computed by [3].

Proof. From Eq. 2.1, it is easy to see that:

N−n ∂n lnZ
∂λi1 . . . ∂λin

= 2n λi1 . . . λin
〈Mi1,i1 . . .Min,in

〉c (2.10)

i.e., to order N2−2g−n:

∂nFg

∂λi1 . . . ∂λin

= 2n λi1 . . . λin
〈Mi1,i1 . . .Min,in

〉(g)
c (2.11)

Now, let us compute ∂Fg

∂λi
with the method of [7].

Consider an infinitesimal variation of the matrix Λ: λi → λi + δλi (we
assume δt1 = 0). It translates into the following variations of the function y(z):

δy(z) =
1

2Nz
Tr

δΛ
(z − Λ)2

(2.12)

and thus the form:

− δy(z)dx(z) = d

(
1
N

Tr
δΛ
z − Λ

)

= Res
ζ→z

1
(z − ζ)2

1
N

Tr
δΛ
ζ − Λ

= −
∑

i

Res
ζ→λi

1
(z − ζ)2

1
N

Tr
δΛ
ζ − Λ

(2.13)

Then, using theorem 5.1 of [7], we have:

δFg =
∑

i

Res
ζ→λi

W
(g)
1 (ζ)

1
N

Tr
δΛ
ζ − Λ

=
∑

i

W
(g)
1 (λi)
dλi

δλi

N
(2.14)

i.e.,

W
(g)
1 (λi) = 〈Mii〉(g) dx(λi) (2.15)

And repeating the use of theorem 5.1 in [7] recursively we get the result. �
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Example:

〈Mii〉(1) = 1
16(2 − t3)

(
1
λ5

i

+
t5

(2 − t3)λ3
i

)
−→ 〈 TrM〉(1) =

t5
8(2 − t3)2

(2.16)

2.2. Expectation Values and Ribbon Graphs

Let i1, . . . , in be n distinct given integers ∈ [1, . . . , N ]. We want to compute:

〈Mi1,i1 . . .Min,in
〉(g) (2.17)

Let us also choose n positive real perimeters P1, . . . , Pn

Let Γ(g, n,m) be the set of trivalent oriented ribbon graphs of genus g,
with n marked faces, and m unmarked faces. Each marked face F = 1, . . . , n
carries the given index iF , and each unmarked face f carries an index if ∈
[1, . . . , N ].

Let us consider another set of graphs. Let Γ∗(g, n,m) be the set of ori-
ented ribbon graphs of genus g, with trivalent and 1-valent vertices, made of m
unmarked faces bordered with only trivalent vertices, each of them carrying an
index if , and n marked faces carrying the fixed index iF ∈ {i1, . . . , in}, such
that each marked face has one 1-valent vertex on its boundary. The unique
trivalent vertex linked to the 1-valent vertex on each marked face corresponds
to a marked point on the boundary of that face.

For any graph G in either Γ(g, n,m) or Γ∗(g, n,m), each edge e is bor-
dered by two faces (possibly not different), and we denote the pair of their
indices as (eleft, eright).

Assume that i1, . . . , in are distinct integers. The usual fat graph expan-
sion of matrix integrals gives (cf. [2,4,9]):

〈Mi1,i1 . . .Min,in
〉(g)

=N−m
∑

m

∑

G∈Γ∗
g,n,m

∑

{if }

(−1)#vertices

#Aut(G)

∏

e∈edges(G)

1
λe left + λe right

(2.18)

It is obtained by first expanding e− N
3 Tr M3

=
∑∞

v=0
Nv

3v v! (−1)v (TrM3)v, and
then computing each polynomial moment of the Gaussian measure e−N Tr ΛM2

with the help of Wick’s theorem. Each TrM3 corresponds to a trivalent ver-
tex, each Mii corresponds to a 1-valent vertex, and edges correspond to the
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“propagator” 〈MijMkl〉Gauss = δilδjk

N(λi+λj)
. The result is best represented as

a fat graph, the edges of which are double lines, carrying two indices. The
indices are conserved along simple lines. The symmetry factor comes from the
combination of 1/(3vv!) and the fact that some graphs are obtained several
times. Notice that (−1)v = (−1)n, because the total number of 1- and 3-valent
vertices must be even.

Notice that the edge connected to the 1-valent vertex MiF ,iF
gives a fac-

tor 1/2λiF
, and the two edges on the boundary of face F , on each side of

the 1-valent vertex, give a factor 1/(λiF
+ λj)2 (where j is the index of the

neighboring face), which can be written as:

1
(λiF

+ λj)2
=

∞∫

0

dle

le∫

0

dl̂i e−le(λiF
+λj) (2.19)

and all other edges have a weight of the form:

1
λe left + λe right

=

∞∫

0

dle e−le(λe left+λe right) (2.20)

We are thus led to associate to each edge e a length le ∈ R+.
Therefore,

〈Mi1,i1 . . .Min,in
〉(g) =

N−m

2nλi1 . . . λin

∑

m

∑

G∈Γ∗
g,n,m

∑

{if }

(−1)n

#Aut(G)

×
∏

e∈edges(G)

∞∫

0

dle e− ∑
e le(λe left+λe right)

n∏

F=1

leF∫

0

dl̂F (2.21)

Now, we introduce the perimeters of each face PF for marked faces, and pf for
unmarked ones.

Notice that each graph of Γ∗
g,n,m projects on a graph of Γg,n,m by remov-

ing the 1-valent vertex and its adjacent trivalent vertex, and keeping a marked
point on the boundary of the face F . The sum of

∫ ∏
F dl̂F over graphs of

Γ∗
g,n,m, which project to the same graph, corresponds to a sum of all possibil-

ities of marking a point on the boundary of face F , i.e., a factor PF , and thus
removing the marked point. Therefore:

〈Mi1,i1 . . . Min,in〉(g)

=
N−m

2nλi1 . . . λin

∑

m

∑

G∈Γg,n,m

∑

{if }

(−1)n

#Aut(G)

∏

f

∞∫

0

dpf e
− ∑

f λif
pf
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×
∏

F

∞∫

0

PF dPF e−λiF
PF

∏

e

∞∫

0

dle
∏

f

δ

(
pf −

∑

e∈∂f

le

)
n∏

F=1

δ

(
PF −

∑

e∈∂F

le

)

=
1

2nλi1 . . . λin

∑

m

∑

G∈Γg,n,m

(−1)n

#Aut(G)

×
∏

f

∞∫

0

dpf
1

N
Tr (e−pf Λ)

∏

F

∞∫

0

PF dPF e−λiF
PF Vol

(
π−1

G (PF , pf )
)

(2.22)

where Vol
(
π−1

G (PF , pf )
)

is the volume of the pullback of the ribbon graph G

in Mcomb
g,n+m:

Vol
(
π−1

G (PF , pf )
)

=
∫ ∏

e

dle
∏

f

δ

⎛

⎝pf −
∑

e∈∂f

le

⎞

⎠
n∏

F=1

δ

(
PF −

∑

e∈∂F

le

)

(2.23)

The number of integrations (i.e., after performing the δ) is 2dg,n+m = #edges−
#faces = 2(3g−3+n+m), which is the dimension of Mg,n+m; therefore,

∏
e dle

is a top-dimension volume form on Mcomb
g,n+m = Mg,n+m × Rn+m

+ , i.e.:
∏

e

dle =
ρg,n+m

dg,n+m!

∏

F

dPF

∏

f

dpf ∧ Ωdg,n+m (2.24)

where Ω is the two-form on the strata π−1
G (PF , pf ) of Mcomb

g,n+m such that:

Ω =
∑

f

p2
fωf +

∑

F

P 2
FωF (2.25)

and where ωf =
∑

e<e′ d(le/pf ) ∧ d(le′/pf ) is the first Chern class of pullback
of the cotangent bundle at the center of the face ψf = c1(Lf ).

Kontsevich [9] proved that the constant ρg,n+m is given by:

ρg,n+m = 2g−1−2dg,n+m (2.26)

Thus we have:

Vol
(
π−1

G (PF , pf )
)

=
ρg,n+m

dg,n+m!

∫

π−1
G (PF ,pf )

Ωdg,n+m

= ρg,n+m

∑
∑

f df +
∑

F dF =dg,n+m

∫

π−1
G (PF ,pf )

∏

f

p
2df

f ψ
df

f

df !

∏

F

P 2dF

F ψdF

F

dF !

=ρg,n+m

∑
∑

f df +
∑

F dF =dg,n+m

∏

f

p
2df

f

df !

∏

F

P 2dF

F

dF !

〈
∏

f

ψ
df

f

∏

F

ψdF

F

〉

G

(2.27)
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therefore

∏

f

∞∫

0

dpf
1
N

Tr (e−pf Λ)Vol
(
π−1

G (PF , pf )
)

= ρg,n+m

∏

f

∞∫

0

dpf
1
N

Tr (e−pf Λ)
∑

∑
f df +

∑
F dF =dg,n+m

×
∏

f

p
2df

f

df !

∏

F

P 2dF

F

dF !

〈
∏

f

ψ
df

f

∏

F

ψdF

F

〉

G

= ρg,n+m

∑
∑

f df +
∑

F dF =dg,n+m

×
∏

f

2df !
df !

1
N

Tr
(
Λ−(2df +1)

) ∏

F

P 2dF

F

dF !

〈
∏

f

ψ
df

f

∏

F

ψdF

F

〉

G

= ρg,n+m

∑
∑

f df +
∑

F dF =dg,n+m

×
∏

f

2df !
df !

t2df +1

∏

F

P 2dF

F

dF !

〈
∏

f

ψ
df

f

∏

F

ψdF

F

〉

G

(2.28)

and then, when we sum over all graphs (since we sum over graphs with m
unmarked faces, we have to divide wrt the symmetry factor m!, like in [9]):

〈Mi1,i1 . . .Min,in
〉(g) =

(−1)nρg,n

2nλi1 . . . λin

∏

F

∞∫

0

PF dPF e−λiF
PF

×
∑

m

1
m!

∑
∑

df +dF =dg,n+m

∏

f

2df !
df !

t2df +1

4

∏

F

P 2dF

F

dF !

〈
∏

f

ψ
df

f

∏

F

ψdF

F

〉

(2.29)

Therefore, if we write:

Wg,n(λi1 , . . . , λin
)

dλi1 . . . dλin

=

∞∫

0

dP1 . . . dPn

∏

F

PF e−λiF
PF Vg,n(P1, . . . , Pn) (2.30)

we find that the inverse Laplace transform of Wg,n is:

Vg,n(P1, . . . , Pn) = ρg,n

∑
m

(−1)n

m!

∑
∑m

1 df +
∑n

1 dF =dg,n+m

∏
f

2df !
df !

t2df +1

4

∏
F

P
2dF
F

dF !

〈∏
f ψ

df

f

∏
F ψ

dF

F

〉 (2.31)

where the intersection theory is computed on Mg,n+m.
Since we are interested only in the perimeters of the n marked faces,

we may try to perform the integration over the m unmarked faces, i.e., we
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introduce the forgetful projection πn+m→n : Mg,n+m → Mg,n, which “forgets”
the m remaining points. It is known [1,16] that the push forward of the classes
ψ

df

f , can then be rewritten in terms of Mumford’s [14] tautological classes κb

on Mg,n, by the relation:

(πn+m→n)∗

(
ψa1+1

1 . . . ψam+1
m

∏

F

ψdF

F

)
=

∑

σ∈Σm

∏

c=cycles of σ

κ∑
i∈c ai

∏

F

ψdF

F

(2.32)

Therefore, if we rewrite df = af + 1 we have:

1
ρg,n

Vg,n (P1, . . . , Pn) =
∑

m

(−1)n

m!

∑
∑m

1 af +
∑n

1 dF =dg,n

×
∏

f

2af + 1!
af !

t2af +3

2

∏

F

P 2dF

F

dF !

〈
∏

f

ψ
af +1
f

∏

F

ψdF

F

〉

=
∑

m

(−1)n

m!

∑
∑m

1 af +
∑n

1 dF =dg,n

∑

σ∈Σm

×
∏

f

2af + 1!
af !

t2af +3

2

∏

F

P 2dF

F

dF !

〈
∏

c

κ∑
c ai

∏

F

ψdF

F

〉

= (−1)n
∑

d0+d1+···+dF =dg,n

∏

F

P 2dF

F

dF !

∑

m

1
m!

∑

a1+···+am=d0,af ≥0

∑

σ∈Σm

×
∏

f

2af + 1!
af !

t2af +3

2

〈
∏

c

κ∑
c ai

∏

F

ψdF

F

〉
(2.33)

Now, instead of summing over permutations, let us sum over classes of permu-
tations, i.e., partitions l1 ≥ l2 ≥ · · · ≥ lk > 0, and we denote |l| =

∑
i li = m

the weight of the class and |[l]| the size of the class:

|[l]| =
|l|!∏

i li
∏

j(#{i/ li = j})!
(2.34)

The sum over the a’s for each class gives:

(−1)n

ρg,n
Vg,n(P1, . . . , Pn)

=
∑

d0+d1+···+dF =dg,n

∏

F

P 2dF

F

dF !

∑

k

∑

l1≥l2≥···≥lk>0

|[l]|
|l|!

∑

ai,j ,i=1,...,k,j=1,...,li

×δ
⎛

⎝
∑

i,j

ai,j − d0

⎞

⎠
∏

i,j

2ai,j + 1!
ai,j !

t2ai,j+3

2

〈
k∏

i=1

κ∑li
j=1 ai,j

∏

F

ψdF

F

〉

(2.35)



Vol. 12 (2011) Recursion Between Mumford Volumes of Moduli Spaces 1441

Since the summand is symmetric in the li’s, the ordered sum over l1 ≥ . . . lk can
be replaced by an unordered sum (multiplying by 1/k!, and by

∏
i(#{i/ li =

j})! in case some li coincide):

(−1)n

ρg,n
Vg,n(P1, . . . , Pn)

=
∑

d0+d1+···+dF =dg,n

∏

F

P 2dF

F

dF !

∑

k

1
k!

∑

l1,l2,...,lk>0

k∏

i=1

1
li

∑

ai,j ,i=1,...,k,j=1,...,li

×δ
⎛

⎝
∑

i,j

ai,j − d0

⎞

⎠
∏

i,j

2ai,j + 1!
ai,j !

t2ai,j+3

2

〈
k∏

i=1

κ∑li
j=1 ai,j

∏

F

ψdF

F

〉

=
∑

d0+d1+···+dF =dg,n

∏

F

P 2dF

F

dF !

∑

k

1
k!

∑

b1+b2+···+bk=d0

k∏

i=1

t̃bi

〈
k∏

i=1

κbi

∏

F

ψdF

F

〉

(2.36)

where

t̃b =
∑

l>0

1
l

∑

a1+···+al=b

∏

j

2aj + 1!
aj !

t2aj+3

2
(2.37)

t̃b can be computed as follows: introduce the generating function

g(z) =
∞∑

a=0

2a+ 1!
a!

t2a+3

2
za (2.38)

then t̃b is

t̃b =
∑

l>0

1
l

(
gl
)
b

= (− ln (1 − g))b (2.39)

where the subscript b means the coefficient of zb in the small z Taylor expan-
sion of the corresponding function, i.e.,

− ln (1 − g(z)) =
∞∑

b=0

t̃b z
b = g̃(z), 1 − g(z) = e−g̃(z) (2.40)

In fact, it is better to treat the a = 0 and b = 0 terms separately. Define:

f(z) = 1 − 1 − g(z)
1 − t3

2

=
∞∑

a=1

2a+ 1!
a!

t2a+3

2 − t3
za (2.41)

and

f̃(z) = − ln (1 − f(z)) = g̃(z) − t̃0 =
∞∑

b=1

t̃b z
b (2.42)

We have:

t̃0 = − ln
(

1 − t3
2

)
(2.43)
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and t̃b is now a finite sum:

t̃b =
b∑

l=1

(−1)l

l

∑

a1+···+al=b,ai>0

∏

j

2aj + 1!
aj !

t2aj+3

t3 − 2
(2.44)

Using that κ0 = 2g − 2 + n, we may also perform the sum over all van-
ishing b’s. Let us change k → k + l where l is the number of vanishing b’s,
i.e.,

(−1)n

ρg,n
Vg,n(P1, . . . , Pn)

=
∑

d0+d1+···+dF =dg,n

∏

F

P 2dF

F

dF !

∑

k

∑

l

1
k!l!

(t̃0κ0)l

×
∑

b1+b2+···+bk=d0,bi>0

k∏

i=1

t̃bi

〈
k∏

i=1

κbi

∏

F

ψdF

F

〉

= et̃0κ0
∑

d0+d1+···+dF =dg,n

∏

F

P 2dF

F

dF !

∑

k

1
k!

×
∑

b1+b2+···+bk=d0,bi>0

k∏

i=1

t̃bi

〈
k∏

i=1

κbi

∏

F

ψdF

F

〉

=
(

2
2 − t3

)2g−2+n ∑

d0+d1+···+dF =dg,n

∏

F

P 2dF

F

dF !

∑

k

1
k!

×
∑

b1+b2+···+bk=d0,bi>0

k∏

i=1

t̃bi

〈
k∏

i=1

κbi

∏

F

ψdF

F

〉
(2.45)

Notice that:

ρg,n22g−2+n = 2−dg,n (2.46)

thus

2dg,n (t3 − 2)2g−2+n Vg,n(P1, . . . , Pn)

=
∑

d0+d1+···+dF =dg,n

∏

F

P 2dF

F

dF !

∑

k

1
k!

∑

b1+b2+···+bk=d0,bi>0

k∏

i=1

t̃bi

×
〈

k∏

i=1

κbi

∏

F

ψdF

F

〉
(2.47)

Finally, we obtain Theorem 1.1. �
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3. Examples

3.1. Some Examples

First, we give a few examples with general times tks.
Using formula 2.44, we have:

t̃1 = −6
t5

t3 − 2
, t̃2 = −60

t7
t3 − 2

+ 18
t25

(t3 − 2)2
(3.1)

t̃3 = −7!
3!

t9
t3 − 2

+
3!5!
2!

t5t7
(t3 − 2)2

− 3!3

3
t35

(t3 − 2)3
, . . . (3.2)

Then we use Theorem 1.1 for some examples. In the examples that fol-
low, the first expression is the definition Eq. 1.3, while the second expression
results from the recursion equation 1.4.

W0,3(z1, z2, z3) =
1

t3 − 2
dz1 dz2 dz3
z2
1 z

2
2 z

2
3

〈1〉0 =
1

t3 − 2
dz1 dz2 dz3
z2
1 z

2
2 z

2
3

(3.3)

i.e.,

V0,3(L1, L2, L3) =
1

t3 − 2
, 〈1〉0 = 1 (3.4)

W1,1(z) =
dz

2(t3 − 2)

(
6
z4

〈ψ〉1 +
t̃1
z2

〈κ1〉1
)

=
dz

8(t3 − 2)

(
1
z4

− t5
(t3 − 2)z2

)
(3.5)

i.e.,

〈ψ〉1 =
1
24
, 〈κ1〉1 =

1
24

(3.6)

W1,2(z1, z2)

=
dz1dz2

4(t3 − 2)2 z6
1 z

6
2

[
5!
2!

(
z4
1〈ψ2

2〉 + z4
2〈ψ2

1〉) + 3!2z2
1z

2
2〈ψ1ψ2〉

+ t̃1z
2
1z

4
2〈κ1ψ1〉 + t̃1z

4
1z

2
2〈κ1ψ2〉 +

1
2
t̃ 21 z

4
1z

4
2〈κ2

1〉 + t̃2z
4
1z

4
2〈κ2〉

]

=
dz1dz2

8(t3 − 2)4z6
1z

6
2

[
(t3 − 2)2

(
5z4

1 + 5z4
2 + 3z2

1z
2
2

)
+ 6t25z

4
1z

4
2

−(t3 − 2)
(
6t5z4

1z
2
2 + 6t5z2

1z
4
2 + 5t7z4

1z
4
2

)]
(3.7)

i.e.,

〈κ1ψ1〉1 =
1
2
, 〈κ2

1〉1 =
1
8
, 〈κ2〉1 =

1
24

(3.8)

The recursion equation 1.4 also gives:

W2,1(z) = − dz

128(2 − t3)7z10

[
252 t45z

8 + 12 t25z
6(2 − t3)(50 t7z2 + 21 t5)

+z4(2 − t3)2
(
252 t25 + 348 t5t7z2 + 145 t27z

4 + 308 t5t9z4
)
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+z2(2 − t3)
(
203 t5 + 145 z2t7 + 105 z4t9 + 105 z6t11

)

+105 (2 − t3)4
]
. (3.9)

W4,0(z1, z2, z3, z4)

= 12
dz1dz2dz3dz4

(t3 − 2)3 z2
1z

2
2z

2
3z

2
4

(
(t3 − 2)

(
z−2
1 + z−2

2 + z−2
3 + z−2

4

) − t5
)

(3.10)

and so on.

3.2. Specialization to the Weil–Petersson Measure

Now, we specialize to the Weil–Petersson spectral curve of [5]:

y(z) =
1
2π

sin (2πz) → t2d+3 =
(2iπ)2d

2d+ 1!
+ 2δd,0 → f(z) = 1 − e−4π2z

(3.11)

so that:

f̃(z) = 4π2z → t̃b = 4π2 δb,1 + δb,0 ln (−2) (3.12)

therefore, each bi must be 1, and we must have k = d0, and we get:

Vg,n(P1, . . . , Pn)

= 2−dg,n
∑

d0+d1+···+dF =dg,n

2d0

d0!

∏
F

P
2dF
F

dF ! 〈(2π2κ1)d0
∏

F ψ
dF

F 〉 (3.13)

which is after Wolpert’s relation [17], the Weil–Petersson volume since 2π2κ1

is the Weil–Petersson Kähler form, and thus, we have rederived Mirzakhani’s
recursion relation.

3.3. Specialization to the κ2 Measure

To illustrate our method, we consider the integrals with only κ2:

Vg,n(P1, . . . , Pn)

= 2−dg,n

∑

2d0+d1+···+dF =dg,n

1
d0!

∏

F

P 2dF

F

dF !

〈
(t̃2κ2)d0

∏

F

ψdF

F

〉
(3.14)

which correspond to the conjugated times

f̃(z) = t̃2z
2 → f(z) =

∞∑

k=1

(−1)k t̃k2
k!

z2k (3.15)

i.e., t3 = 3, and

t4a+3 = 4(−1)a t̃a2
2a!

a!(4a+ 1)!
− δa,0 (3.16)

The corresponding spectral curve is:

y(z) = −z

2
+ 2

∞∑

k=1

(−t̃2)k 2k!
k!(4k + 1)!

z4k+1 (3.17)

with that spectral curve, the volumes Vg,n satisfy the recursion of Theorem 1.1.
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3.4. Specialization to Discrete Measure

Let us consider the example where Λ = λ Id, which is particularly important
because

Z =
∫

dM e−N Tr
(

M3
3 −M(λ2+ 1

λ )
)

∝
∫

dM e− N
T Tr

(
1
2 M2− M3

3

)

(3.18)

where

T = −1
8

(
λ2 +

1
λ

)−3/2

(3.19)

i.e., Kontsevich integral reduces to the usual cubic one-matrix model, which
is known to count triangulated maps [2].

In that case, we have:

tk = λ−k (3.20)

thus for b ≥ 1:

t̃b = 2bλ−2b
b∑

l=1

1
l
(1 − 2λ3)−l

∑

a1+···+al=b,ai>0

∏

i

(2ai + 1)!! (3.21)

For instance we have:

V0,3(L) =
1

λ−3 − 2
(3.22)

V1,1(L)

=
1
2

1
λ−3 − 2

(L〈ψ1〉1 + t̃1〈κ1〉1) =
−1

8(2 − λ−3)

(
L

6
+

λ−5

2 − λ−3

)
(3.23)

where t̃1 = 6λ−2 (1 − 2λ3)−1.
It would be interesting to understand how this relates to the discrete

Regge measure on the set triangulated maps. In the case of triangulated maps,
loop equations, i.e., the recursion equation 1.4 are known as Tutte’s equations
[15], which give a recursive manner to enumerate maps. This shows how general
the recursion equation 1.4 is.

4. Other Properties

From the general properties of the invariants of [7], we immediately have the
following properties:
• Integrability. The Fgs satisfy Hirota equations for KdV hierarchy.

That property is well known and it motivated the first works on
Witten–Kontsevich conjecture [9].

• Virasoro. The invariants of [7] were initially obtained in [6,7] from the
loop equations, i.e., Virasoro constraints satisfied by Z(Λ).

• From dilation equation, we have:

Wg,n(z1, . . . , zn) =
1

2g + n− 2
Res
z→0

Φ(z)Wg,n+1(z1, . . . , zn, z) (4.1)

where dΦ = ydx.
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For the Weil–Petersson case, after Laplace transform this translates
into [5]:

Vg,n(L1, . . . , Ln)WP =
1

2g + n− 2
∂

∂Ln+1
Vg,n+1(L1, . . . , Ln, 2iπ)WP

(4.2)

• It was also found in [7] how all those quantities behave at singular points
of the spectral curve and thus obtained the so-called double scaling limit.

• The invariants constructed in [7] have many other good properties, and it
would be interesting to explore their applications to algebraic geometry.

5. Conclusion

In this paper, we have shown how powerful the loop equation method is, and
that the structure of the recursion equation 1.4 (i.e., Virasoro or W-algebra
constraints) is very universal.

We have thus provided a new proof of Mirzakhani’s relations, exploit-
ing the numerous properties of the invariants introduced in [7]. However, the
construction of [7] is much more general than that of Mirzakhani, since it can
be applied to any spectral curve and not only to the Weil–Petersson curve
y = 1

2π sin (2π
√
x). In other words, we have Mirzakhani-like recursions for

other measures, and Theorem 1.1 gives the relationship between a choice of
tks (i.e., a spectral curve) and a measure on moduli spaces. Moreover, the
recursion relations always imply integrability and Virasoro.

It would be interesting to understand what the algebraic invariants Wg,n

defined by the recursion relation of [7] compute for an arbitrary spectral curve,
not necessarily hyperelliptical or rational.
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