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Absence of Embedded Mass Shells: Cerenkov
Radiation and Quantum Friction

Wojciech De Roeck, Jiirg Frohlich and Alessandro Pizzo

Abstract. We show that, in a model where a non-relativistic particle is
coupled to a quantized relativistic scalar Bose field, the embedded mass
shell of the particle dissolves in the continuum when the interaction is
turned on, provided the coupling constant is sufficiently small. More pre-
cisely, under the assumption that the fiber eigenvectors corresponding to
the putative mass shell are differentiable as functions of the total momen-
tum of the system, we show that a mass shell could exist only at a strictly
positive distance from the unperturbed embedded mass shell near the
boundary of the energy—momentum spectrum.

1. Introduction

The model studied in this paper describes a system consisting of a non-
relativistic quantum particle coupled to a quantized relativistic field of scalar
massless bosons through an interaction term linear in creation and annihila-
tion operators. The system is invariant under space translations. Therefore, its
total momentum is conserved. In states where the initial particle momentum
is larger than mc, where m is the mass of the non-relativistic particle and ¢
the propagation speed of the bosonic modes, we expect that the particle will
emit Cerenkov radiation, because its group velocity is larger than the speed of
the bosons. We are thus interested in the spectral region (E, P) with |P| > 1,
using units such that m = ¢ = 1. Here, E,ﬁ are the spectral variables of
the Hamiltonian and of the total momentum operator, respectively. In this
region, we expect that a mass shell of the non-relativistic particle does not
exist. Presented differently, we expect that the mass shell, which in the unper-
turbed system described by the equation E = P2 /2, disappears as soon as
the interaction is switched on. This would show that one-particle states of the
non-relativistic particle are unstable for values of |]3 | larger than 1.

Our main result is as follows. We assume that, for |P| > 1, a mass shell
exists with the property that the corresponding fiber eigenvectors are differen-
tiable as functions of the total momentum of the system. Then we show that,
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for sufficiently small values of the coupling constant, such a mass shell may
exist only at a strictly positive distance (> O(1)) from the unperturbed mass
shell in the energy—momentum spectrum. More precisely, one-particle states
might only exist in a region around the three-dimensional surface E = |]3 |— %,
the width of which tends to zero, as the coupling constant approaches 0. Our
results are proven for models with a fixed ultraviolet cutoff that turns off
interactions with high-energy bosons, and under the assumption of appropri-
ate infrared regularity of the form factor that models the interaction.

In the literature, many results are concerned with the existence of a mass
shell for |ﬁ| < 1, depending on the behavior of the coupling between the non-
relativistic particle and the relativistic boson field in the infrared region. These
results clarify and extend the notion of stable particle by providing a scattering
picture for infraparticles, for which a mass shell does not exist (i.e., the single-
particle states are not normalizable in the Hilbert space of pure states of the
system); see [3,4,6,7,10,11,13,16,18,19).

To our knowledge, for the spectral region studied in this paper, no rig-
orous results have yet appeared in the literature concerning the existence or
non-existence of an embedded mass shell. However, in [8], for the model stud-
ied in this paper, it is proven that the electron motion in the kinetic limit is
described by a Boltzmann equation that exhibits the slowdown of the particle
by emitting Cerenkov radiation, as long as its velocity is greater than 1. This
supports the thesis that there is no mass shell for |]3| > 1.

We also stress that the conclusions of our paper leave open an interesting
question: our analysis does not exclude the existence of single-particle states
near the boundary of the energy—momentum spectrum (which, for |]3| >1,1is
approximately linear in |]3 [). In this respect, we recall that the existence of the
ground-state eigenvalue for the fiber Hamiltonians, in the region |P| > 1, has
been studied in [20] and [17] (see also [1,2] for some related spectral problems),
but under some assumptions on the boson dispersion relation that change
the physical phenomenon we are interested in. In fact, in these papers, the
bosons are massive and their energy dispersion relation is strictly subadditive
(see [17]). In particular, in [17], it is proven that, for spatial dimension d = 3,
the fiber Hamiltonian has no ground state whenever the infimum of its spec-
trum equals the infimum of its essential spectrum. However, because of the
assumptions above, this result does not apply to the model studied in this
paper.

In the following, the spin of the electron is neglected, and the bosons are
scalar.

2. Description of the Model and Result

2.1. Hilbert Space
The Hilbert space of pure states of the system is given by

H=L*R* ®F, (2.1)
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where F is the Fock space of scalar bosons,
F=Fr™, rFO=cq, (2.2)
N=0
with € the vacuum vector, i.e., the state without any bosons, and the state
space, FV) of N bosons is given by
FN) .= Syp®N, N >1. (2.3)
Here, the Hilbert space, h, of state vectors of a single boson is given by
b= L*[R?], (2.4)

and Sy denotes symmetrization. We introduce the usual creation- and anni-
hilation operators, a% and aj, obeying the canonical commutation relations

[a;;’v CL;%,} = [ajgva’];/] = Oa (25)
[aE7 a'z-'/] = (E - E/)’ (2'6)
aEQ = 0,

for all k, k' € R3.

2.2. Fiber Decomposition

We may write ‘H as a direct integral

53]
H = /Hﬁ d*P. (2.8)

Given any P € R3, there is an isomorphism, I B
Is:Hpg — F°, (2.9)

from the fiber space H 5 to the Fock space F b acted upon by the annihilation-

and creation operators bz, bz, where b;: corresponds to eik'fag, and b;% to

—ik T %

e”"™%a%, and with vacuum Qy := Iﬁ(e“s'f)

. To define I5 more precisely, we
consider a vector 1 ;). p) € Hp with a definite total momentum describing
an electron and n bosons. Its wave function in the variables (Z; El, . En) is
given by

ei(ﬁ_gl_“'_g")'”?f(")(El, ey En), (2.10)

where f(") is totally symmetric in its n arguments. The isomorphism I p acts
by way of

7. (ei(ﬁfzzl,...,zznmf(n)(;;’17 - ,Jgn))

—_

— 3 3 n 7 7 E3 *
= ﬁ/d R Pk fU (B, R )bE by Q. (2.11)
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2.3. Hamiltonians

We consider a non-relativistic particle moving in a medium of relativistic
bosons. The Hamiltonian of the system is given by

1
H .= 552 + go(pz) + HY, (2.12)

where:

e The operators &, p’ describe the electron position and momentum, respec-
tively;

e H/ :=dl'(w(|k])) (see Sect. 2.5), where w(|k|) := |k| is the free field Hamil-
tonian. In physicist’s notation

i = [ oo

e The real number g, |g| > 0 is a coupling constant.
e The interaction Hamiltonian is

0(pz) = [ rpl)ape 7+ age) (213)
where the form factor p(E) € R satisfies the following conditions

1. There is an ultraviolet cutoff A, i.e., p(k) = 0 whenever |k| > A.

2. The function p is rotationally invariant, i.c., p(k) = p(|k|), continuously
differentiable, p € C'. For expository convenience, when we describe the
decay mechanism in Theorem 5.1, we will also assume that p(E) # 0 for
0< \IZ | < A. Actually, this assumption is not necessary to state the main
result of the theorem, but simplifies the construction of the trial state in
Eq. (5.2) of Theorem 5.1.

3. The following infrared regularity condition holds:

PR <O(F?), and |[Vip(R)|<O(K*), as k=0 (2.14)

for an exponent 5 > 11/2. We believe that the critical value, § = 11/2,
is not optimal. From physical considerations, the result concerning the
instability of the mass shell should hold for any exponent 5 > —1/2. For
B = —1/2, the Hamiltonian describes the interaction of the electron with
the quantized relativistic field with no infrared regularization.
The operator H is self-adjoint, because ¢(pz) is an infinitesimal perturbation
of HY := Hf + 52—2, and Dom(H) = Dom(H"), i.e., the domains of self-adjoint-
ness coincide. Since the Hamiltonian H commutes with the total momentum,
it preserves the fiber spaces H 3, for all P e R3. Thus, we can write

H:/Hﬁd3P, (2.15)

where

H};:Hﬁ—>7‘(}3. (2.16)
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In terms of the operators by, b;%’ and of the variable ]3, the fiber Hamiltonian
H 3 is given by

Hp = HY% + g¢"(p), (2.17)
with
. (P-P)
Hp =+ HY, (2.18)
where, as operators on the fiber space H s,
Pl = /d%fébib,g, (2.19)
H' = dr’(w(|k])) /d?’kw 1K)) )bz (2.20)
and
/df‘kp )(b% + br).- (2.21)
2.4. Result

The absence of a mass shell for |ﬁ | > 11is expressed by the following statement.
The equation

HzVs=EsUp (2.22)

has no normalizable solution for any value of E'5 and for almost every Pe R3,
|ﬁ| > 1. What we actually prove in this paper is the absence of regular mass
shells as formulated in the theorem below (see also Fig. 1).

More concretely, we address the question whether, for a given region
I x Ay in the momentum—energy space (see (ii) below), there is an open inter-
val Iy, I, C I, of size at least O(|g|”), v > 0, where the mass shell exists, with
Es € Ay and with the regularity property specified in the theorem. Recall
that 8 determines the infrared behavior of the form factor p, see (2.14).

Theorem 2.1. Assume that the form factor p satisfies (2.14), with 8 > 11/2,
and fix an interval I of the form I := (1+6,0),0 > 0,0 < 0o and a bounded
interval Ay. Fiz constants 0 < Cy,c; < 0o and exponents 0 < v < 1/4 and
0 < e < /4. Then, there is a g, > 0 such that, for all g satisfying 0 < |g| < g,
the following is ruled out:

There exist normalizable solutions to equation (2.22), for all \13\ € Iy, such
that:

(i) I, is an interval of length larger than |g|"/? (|I,| > |g|"/?).
(i) I, C I arid Es C Ap, for all |P| e I,.
(ili) For all |P| € I,

Hﬁﬁ\l}ﬁ’EﬁH < (.
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FIiGURE 1. The joint energy—momentum spectrum. By the
rotation symmetry, it suffices to plot the (E, | P|)-plane. In the
leftmost figure, we have drawn the spectrum of the uncoupled
system. The parabola %|ﬁ |2 (in boldface) is the mass shell and
the spectrum lies above the three-dimensional surface consist-
ing of %|]3|27 for |P| < 1 and |P| — 1/2, for |P| > 1. Hence,
for |P| > 1, the mass shell is embedded in the continuum. In
the middle figure, we represent the situation when the cou-
pling is switched on, according to formal perturbation theory.
The mass shell has disappeared (drawn as a dashed line) for
|P| > 1. For |P| < 1, the mass shell persists but gets deformed
(mass renormalization). In the rightmost figure, we represent
what is known rigorously: a regular mass shell is excluded in
the colored area (result of the present paper) and there is a
renormalized mass shell for small |P| (earlier works, see
Sect. 1)

(iv) For all |P| € I,

L1 .
Bp - (1P~ 3 )| > erlal

We note that it is an interesting open problem to understand whether
single-particle states could emerge at the boundary of the energy—momentum
spectrum, i.e., near By = \ﬁ\ — % Our results only rule out the existence of
single-particle states whose energies are embedded in the energy—momentum
spectrum and with suitable regularity properties as far as their dependence on
P is concerned.

Remark. In the following theorems, lemmas and corollaries, we always assume
that the Main Hypothesis in Sect. 3.1.1 holds. Furthermore, |g| “sufficiently
small” means 0 < |g| < g., where g, depends only on I, on A; and on ~, but
with the form factor p and the ultraviolet cutoff A kept fixed.
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2.4.1. Main Ingredients of the Proof.
(a) If Vs . existed with properties (i)—(iv) above, and ||6E13| —1] > 3|gP/3,
then

1% — s Il < O(lgl " ~2779), (2.23)

where \IJ% is the bare one-particle state (i.e., \Il?3 =Qy), and

Ji —E=| < O(lg|(t-21/6 2.94
5| < Ol ) (2.24)
2
(b) If U5 as in (a), existed then it could decay into a state consisting of

BEg
an unperturbed single-particle state and a boson with momentum kin a
region of momentum space away from the ray {)\15|0 < A < oo}
(¢) If [[VEs| — 1| < 3|g]/? then |Es — (|P| — )| < const |g|?/*. In other
words, a mass shell with group velocity close to one necessarily lies near
the boundary of the energy momentum spectrum.

2.5. Notation
Here is a list of notations used in subsequent sections.

1. Given any vector, @ € R3, 4 := %
2. Ftin is the dense subspace of F obtained as the span of vectors containing
finitely many bosons.

3. 1(a’b)(l_§’) is the characteristic function of the set
{k e R®:|k| € (a,b)}.

4. For any function w € b, |Jw||2 is the corresponding L?-norm.

5. dT'(A) is the second quantization of an operator A acting on h; dT'(A) is an
operator on F. Analogously, dI'*(A) is defined on F?.

6. We define the (boson) number operators by N := dI'(1(k)) and N? :=
dT?(1(k)), where 1(k) is the identity operator on L2(R3;d3k).

7. We use the notation

@)= [ ErfelBra, alf) = [ EriaEo

for smeared creation/annihilation operators, depending also on the (elec-
tron) position Z.

8. Expressions like (ﬁ, E3) € I, x Ay are interpreted as follows: P € R3 with
|P| €I, and Ej € Ar.

2.6. Structure of the Paper

In Sect. 3, we state a Main Hypothesis (Sect. 3.1). The upshot of our analy-
sis is Theorem 5.4 in Sect. 5. This theorem describes the possible location of
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a mass shell, under the assumption that the Main Hypothesis holds true. In
other words, the implication

Main Hypothesis = Theorem 5.4 (2.25)

Assumptions
in Sect. 2.3

is our main result, and this implication gives rise to Theorem 2.1.

In the remainder of Sect. 3.1, we state some immediate consequences of
the Main Hypothesis, and in Sect. 3.2, we put the technical tools in place.
Section 3.3 contains a rather detailed description of the strategy of our proofs.
The proofs themselves are presented in Sects. 4 and 5. An appendix contains
the proofs of some preliminary results used in Sect. 4.

3. Strategy of the Proof
3.1. Main Hypothesis and Key Properties

The proof of our result, Theorem 2.1, is by contradiction. We will assume
that a regular mass shell exists and, subsequently, we derive that it cannot
be located anywhere else than near the boundary of the energy—momentum
spectrum. Our assumption is stated in Sect. 3.1.1 and it will be referred to
as the Main Hypothesis. Throughout the rest of the paper, we assume that
the Main Hypothesis holds. In Sect. 3.1.2, we derive some consequences of the
Main Hypothesis, namely Properties P1, P2 and P3.

3.1.1. Main Hypothesis. Let R be a rotation matrix in R, and U(R) the
unitary operator implementing the transformation

b]; i bR,IE = U*(R)bEU(R) (3.1)
The identity

U"(R)H,3U(R) = Hp, (3.2)
implies that if ¥ 5 , is a normalized eigenvector of H s with eigenvalue E,
(il =]
then U(R)V 3 ,,_ is an eigenvector of H, 5 with the same eigenvalue, i.e.,
P

HppU(R)¥p g = EpU(R)¥ 5 - (3.3)

In particular, the existence of an eigenvector, ¥ 5 . , of H 5 for all Pina given
g

direction, 15, yields a mass shell with energy function Fz = E‘ Bl

Main hypothesis: We temporarily assume that single-particle states, V5 .,
g

exist, i.e.,

HP\IIRE}5 = Eﬁqjﬁ,Eﬁ’ ||\I/13’E};|| =1, (3.4)
such that the vector \Ilﬁ,Eﬁ is differentiable in P with

|55, <, (3.5)
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where the constant C; < oo, for all P such that |P| € I, C I and for E € A,
where Ay is a bounded interval. Here, I, is an open interval, |I4] > lg|"/2, and
I:=(140,0),0—1>3>0.

From the assumption in Eq. (3.5), the following properties follow for
Pl eI, Es €A

3.1.2. Properties (P1), (P2) and (P3).
(P1) E5 = E| P is differentiable and the Feynman—Hellman formula holds

VEs=(Vp . (P~ P¥s ). (3.6)

The expression on the RHS (right-hand side) of (3.6) is continuous in
P. Thus ﬁElg is a continuous function of P. Moreover, |6E13| < C}
for some C < oo, and, because of rotation invariance, VE 5 and P are
colinear.

(P2) For some 0 < Cf < o0,

0% E5
PP
ﬁ <cl. (3.7)

Starting from the derivative of the RHS of (3.6), this bound can be easily
obtained using (3.5) and that H% is H 5-bounded.

(P3) From Hf = dI’(|k|) and Eq. (3.5), it follows that

(3.8)

IV 5(¥5 g AL (L, 3y (R)) ¥ 5 )| <O(nCy K;ur; |Eﬁ> +1;
€

here we use the inequality
IAC (1o 1y (R)Yl < (n+ V| H Y|, V¢ € Dom(H),
and that Hf is H 5-bounded.

3.2. Technical Tools
We will use two different virial arguments to expand W5  in the coupling
P

constant g, |g| < 1. For this purpose, we must introduce single-particle “wave
packets”, ¥ 75 defined below.

(Z) Single-particle “wave packets”, \Iff%, and the interval I

For |g| sufficiently small, we define the open interval Ij such that
(Tg] >) I > 41g|", (3.9)

with the property that
@I+ 121 € 1, (3.10)

for all |Q| € I, and for all Z such that |z] < [g].
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We consider single-particle “wave packets”, W s, with wave function,
q

f(%, centered around vectors Q, |Q| € I 5+ The vector ¥ I is defined by

Vs ::/f%(ﬁ)\I/ﬁEﬁd?’P (3.11)

where f%(ﬁ) =R( |P“g7|LQ‘ )A(Tﬁf ), 0gp is the angle between Q and P,

and R(z), A(f) are defined as follows.

(1) R(z), z € R, is non-negative, smooth and compactly supported in
the interval (—1,1), R(z) =1 for z € (-3, 3),

(2) A(9), 6 € R, is non-negative, smooth and compactly supported in
the interval (—1,1), A(6) =1 for 6 € (—3,1). Therefore, the angu-

lar restriction
PP > coslgl")
holds for any P, P’ € supp f%.
(3) Since |@Q] > 1, it follows from the definitions of R(z) and .A(6) that:
Vsf5(P)| < O(gl ™),

for any P € supp f(%.

(ZZ) Multiscale virial argument on the Hilbert space H for the Hamilto-
nian H.
We define dilatation operators on the one-particle space b, con-
strained to a suitable range of frequencies and to a suitable angular
sector around a direction 4. We introduce the conjugate operator

D¢ = dr(d, D), (3.12)
with
a 1 o vt (I
a9 = xa(RNEL(R)5 (R - iV, +iVg, - ELE R, (313)
where:
(a) kl is the component of the vector k orthogonal to Q, ie. kL =
\QPQ’
Xn(|l<:|), n € N, are non-negative, C°>°(R™") functions with the prop-
erties:
(i) xn(|k]) = 0 for |k| < 2(n+1) and for |k| >

(ii) Xn(|k\) =1 for T-i-l < |k| <4+
(iii) |\, (k)| < Cyn, for all n € N, where the constant C is inde-
R pendent of n. )
(b) &2(k) (see Fig. 2), 0 < &2(k) < 1, is a smooth function with support
in the g-dependent cone

Ca = {k: k-0 > cos(|g|")}, (3.14)
such that:
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k3

ki

F1GURE 2. The cone C4 containing the support of the smooth
characteristic function &J (k)

(i)
¢d(k)y=1 for {k;k.azcos <;|g|7>}; (3.15)
(i)

€2(k)=0 for {k:k-u < cos(|g|)}; (3.16)
(iid)
10s,.,E5(R)| < Celg| ™7, (3.17)

where 0, is the angle between k and 4, and the constant C¢
is independent of g.
We also define that

a 1 = AT S = = -
a3 = Sn(FNELRIE ¥ + i o (FNELR) (3.18)
and we introduce the second quantized operator
D .= dr(d%). (3.19)

Later on in the paper, when we implement the virial argument,
we will make use of the creation/annihilation operators

/d?’m (ditpz) (k)a’:
a(id®pz) _/d%z(dg ) (k)ag

and, analogously, (zdn pr) (zdn l,ogc) In Lemma 4.1, we show that
the vector W g belongs to the form domain of these operators.
g
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(ZZT) Virial argument in each fiber space H .
Here, we consider

D%R = dl(ds )
as the conjugate operator where

-

di =X ,K<|k|> (k- iV +iVi - k)xqo . (1ED). (3.20)

(|E\) oo > K > max{A, 1}, are non-negative, C°°(R™") functions
w1th the pr_Qperties: B .
(i) xj2 0 (Ik]) = 0 for [k] > 2r, |k| < 5
() X2 (F) = 1 for £ <[F] <
(iii) for some C' > 0, \xgﬁ](\k|)| < Ck.

Analogously to a*(id%pz), a(id®pz), we will use
b*(ids .p) = / d*k(ids .p) (k)b
blid1 .p) = /d%(z‘dlﬁp)(%)bg.

We will also consider the g-dependent cones (see Fig. 3),
4 = {k: |k P| < cos(alg|"/®)}, (3.21)

and use the smooth functions fca k), a = 1.2, defined below.

The functions Eca (k), 0 < fca (k) <1, are chosen such that

€o (k) =1 for {k: |k P| < cos(2alg]""®)}; (3.22)

(i)
fg% (k)y=0 for {k:|k-P|> cos(alg|”’/®)}; (3.23)

(iii)
18,.,,€2 (k)| < Celg| 7", (3.24)

for a constant C¢ independent of g, where 0,-, is the angle between k
and P.

3.3. Description of Strategy

To exclude the existence of eigenvalues E 5, \ﬁ | > 1, we elaborate on an argu-

ment introduced in [12]. The idea of the proof is as follows. One assumes that

an eigenvector W5 € Hp of Hj exists, for some energy E5 in a compact
T p

set. Then, using a multiscale virial argument, one intends to prove that

(U5 N5 ) < O(g°), (3.25)
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K, |

FicUrE 3. The double cone C;“s is the complement in R? of

the inner double cone around P of angular width alg|"/®

where N? is the boson number operator in the fiber spaces. The multiscale
virial argument involves the dilatation operators

TN A T T T
dy 1= S X (KD iV + iV - Klxa(K]), (3.26)

on the one-particle space h, where x,, is a suitable smooth approximation to
the characteristic function of the interval [n%rl, 1] contained in the positive
frequency half axis, n =0,1,2,... (cfr. Eq. (3.13)). After introducing the sec-
ond quantized dilatation operators D := dI'’(d,,), one starts from the formal

virial identity
0= (V5 ilHp Dy]¥5 5 ) (3.27)
to establish the scale-by-scale inequality below, in a rigorous way:

(V5 MoV o) < OWGn® KL o) (R)IIB), (3.28)

2(n+1)72n

where NP := [ &3k a*(k)x2(|k])a(k), n = 1,2,3,.... If (3.28) holds true, for
sufficiently large values of the exponent 3 in the form factor p, one can sum
over n and conclude that (‘11137Eﬁ,Nb\I/137Eﬁ) < O(g?). Next, the eigenvalue
equation (2.22) and the inequality in Eq. (3.25) can be combined to conclude
that the vector ¥ PE; and the eigenvalue F 5 must fulfill the following esti-
mates:

195, — U%]2 < O(). (3.29)
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where \IJ% := )y is the unperturbed eigenstate, and

—,

P2 9
B — 1 < O(g"). (3.30)

This result would imply that putative eigenvalues of Hz lie in an 0O(g?)-
neighborhood of the eigenvalue of the Hamiltonian H 9=0,
Then the argument proceeds with the construction of suitable trial states

of the type
1 P_k)2/2+ |k| — E5
ns ::/d3k1h<( )/2 K] P)b;g\lf%, (3.31)
€2

€

where € > 0 and h(z) € C§°(R), h(z) > 0. One then exploits the identity
(np: (Hp — Ep)¥p 5 ) =0 (3.32)

that must hold true if Wz, is an eigenvector of Hp. Starting from
p
Egs. (3.29)—(3.30), and using that the equation

(P—k)?/2+ k| —Ez=0 (3.33)

has solutions for |[P| > 1, provided |g| is sufficiently small, one arrives at a
contradiction, for € and |g| sufficiently small.

However, the procedure just outlined (mimicking the treatment of atomic
resonances in [12]) will not work without some important modifications. We
will therefore implement an analogous, but more elaborate, strategy.

The first problem encountered is that we cannot control the expectation
value

b
(‘Ijﬁ,E};’N \IIP,E};>

by a multiscale virial argument in the fiber space H 5, because of the term
(P’)? in H . The commutator of (P/)? with dI'(d,,), formally given by

P/ ATl (2 (B)F) + AT (2 (R)E) - B, (3.34)

cannot be controlled in terms of the commutator of HY with d['*(d,,). Conse-
quently, the estimate in Eq. (3.28) cannot be justified starting from the virial
identity in Eq. (3.27).

At the price of limiting our analysis to regular mass shells (see Main
Theorem in Sect. 2.4), this problem can be circumvented by implementing a
multiscale virial argument in the full Hilbert space, by using single-particle
“wave packets” rather than fiber eigenvectors, i.e., vectors in H of the type

U= /f(ﬁ)\I/REﬁdSP, (3.35)

where f(P) is a smooth function with support in I, (the region of momenta for
which an eigenstate was assumed to exist). In practice, we choose f = f% to

be sharply peaked around a given momentum Q; see definition below (3.11).
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In the full Hilbert space, we can essentially mimic the treatment of atomic
resonances to derive the following result (see Sect. 4).
Theorem (4.3). For |g| sufficiently small,

(g5 N, 12 Urg)

2(1-27), 211718 7112
Gty S ORI L 5 BID, (330
Q Q

where Nn,Cg/Z = dF(x%(|k|)§g§2(l§:)) and |Q| € T.
Furthermore, if for all Pe supp fc% the inequality

IVEs| = 1] > |g]"/?
holds true, then

(\chgi’Nn\Ilfy 2(1-27) 2|7 112
—— S ORIk s (R)I), (3.37)

(\I}fﬁ, \Ilffi) 2(n+1)’2n

g’ a
where N, := dD(x2(|k]).
The constants in (3.36), (3.37) can be chosen uniformly in Q, |Q| € I, C

I (I, is defined in Sect. 3.2, Eqgs. (3.9), (3.10)). They only depend on I and
on Aj.

By exploiting the g-dependence of the wave functions f C% and the assump-

tion on the regularity in Pof ¥ BB, Ol can convert a bound for the number
operator N on single-particle wave packets to a bound that holds pointwise
in P on the number operator N? acting on the fiber eigenvectors Vpsp - In
essence, this follows from the fundamental theorem of calculus. These argu-

ments are implemented in Sect. 4 and give the following results.

Theorem (4.5). For |g| sufficiently small and (P, Ep) eIy x Ay,

(1—27) _ 4, > - 1
S lgl T s IR s (B)I), (3:38)

2(n+1)

(Y55, Niie2 V5 p,) < Ollg]
where

Ny 2 = AT O (KD (k). (3.39)

n,

Furthermore, if in addition HﬁElg\ — 1| > 2|g["/3 then

(A—=2v)

4 — - 1
NoWs ) <O(gl = ndlllk°1 o o (R)lI3)  (3.40)

(\PﬁﬁEﬁa

where
Nb = AT (2 (). (3.41)

The constants in (3.38), (3.40) can be chosen uniformly in P, |13| el, cI(I
is defined in Sect. 3.2, Eqs. (3.9), (3.10)). They only depend on I and on Aj.
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We now comment on the contents of Theorem 4.5. Inequality (3.38) means
that we can bound the boson number operator if we exclude a double cone
(see Fig. 3) and the definition of C}% in Eqs. (3.22)—(3.24), Sect. 3.2) around

-

the direction of the particle velocity, provided the form factor p(k) scales like
k|? with 8> 11/2, i.e., (2.14).

The second result (see (3.40)) says that, for putative mass shells (P, E )
such that ||6E13| — 1| is not too small (i.e., ||§E13| — 1| > 3|g]/?3), we can
bound the boson number without any angular restrictions, again using that
p(k) scales like |k|® with 3 > 11/2. The constraint means that the forward
emission of bosons by the (massive) particle cannot be controlled if its speed
is too close to the boson propagation speed.

The estimates on the number operator obtained in Sect. 4 are used in
Sect. 5, where we will establish the following two results regarding the region
I, x Ay, where I, is any open interval contained in I such that |I,| > |g|7/2.

(i) The first result is that we can exclude all the regular mass shells except
those with slope close to 1, i.e., all the regular mass shells such that

q - 3
(P,Ez) eI, x Ay and |[|VEs|—1|> §|g|7/3. (3.42)

(ii) The second result shows that a regular mass shell might exist only for
(P, E3) such that

L
Ep=|P| =5 +0(lg|"""). (3.43)

More precisely, we use that:

(1) The expectation value in \Ilﬁ,Eﬁ’ 1P| e I}, of the operator N’ restricted
to the angular sector C125 vanishes as ¢ — 0 (see Theorem 4.5).

(2) For (P, Ep) € I, x Ay such that IVEp|—1| > O(|g[?/3), the expectation
value of the number operators N® on ¥ PE, vanishes as g — 0; see The-

orem 4.5. Analogously, if suppf% c {(P, Ep) e I, x Ar | IVEp| — 1| >
O(lg|?/3)} then the expectation value of the number operator N on \II?Q

vanishes as g — 0; see Theorem 4.3.
(3) The results in (2) imply that the putative fiber eigenvectors \11137E13, |P| €
I, and the corresponding energies E5 are perturbative in g (see Corol-

lary 4.6), provided that g > 11/2.

We derive (i) in Theorem 5.1 by mimicking the argument with the trial states
employed for the treatment of the atomic resonances [12], which was antici-
pated in Sect. 3.3, Egs (3.31)—(3.33). To this end, we make us of (2) and (3).

The result in (ii) follows thanks to a stronger version of (1) (for details,
see Lemma 5.2, Lemma 5.3) where only the forward cone around the direction
of the particle velocity is excluded in the definition of the restricted number
operator, and by combining the eigenvalue equation with a standard (i.e., not a
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multiscale analysis) virial argument in the fiber space H 3, where the conjugate
operator is Dbiﬁ = de(d%m); see (3.20) and Theorem 5.4.

The virial identity exploited in Theorem 5.4 is actually sufficient to
exclude that, fiber by fiber, the eigenvalue lies at a distance larger than O(g)
above the unperturbed eigenvalue. This observation is explained in the Remark
after Theorem 5.4 in Sect. 5. However, the instability of the unperturbed mass
shell proven in this paper requires a detailed analysis of the configuration of bo-
sons in the putative eigenvector, the momenta of which are contained in differ-
ent cones of momentum space. The decay mechanism exploited in Theorem 5.1
combined with the assumed continuity of the mass shell is responsible for the
absence of single-particle states except for the region E5 = |P|— 14+0(|g[""").
This is because if the particle propagated at the critical velocity, i.e., |§E pl =
1, then there would be no kinematical constraint preventing the emission of an
arbitrarily large number of soft bosons in the forward direction (the direction
of P).

4. Boson Number Estimates

The main results in this section are Theorem 4.3, Theorem 4.5 and Corol-
lary 4.6. Two preparatory results, contained in Sect. 4.1, are needed. In par-
ticular, in Lemma 4.2, we provide a rigorous justification of a virial identity
employed in Lemma 4.4 and in Theorem 4.3.

Since the proof of Theorem 4.3 is lengthy, we present it in two differ-
ent smaller sections: (a) In Sect. 4.2.1, we outline the proof of the theorem
and, in Lemma 4.4, we introduce an important ingredient used later on. (b) In
Sect. 4.2.2, we complete the steps of the proof by assuming the result obtained
in Lemma 4.4.

In Sect. 4.3, by using the regularity properties that follow from the Main
Hypothesis, we derive some estimates for the number operator N? evaluated
on the fiber eigenvectors ¥ P, analogous to those obtained in Theorem 4.3
for the number operator N evaluated on the single-particle states W 75 In

Corollary 4.6, we then finally show that F5 and W5 ,, = are perturbative in g,
Rt
provided |P| € I}, Es € A, 3>11/2, and [[VEs| — 1| > 31gp/3.

4.1. Preparatory Results on Virial Identities

The following two lemmas are repeated and proven in Sects. 6.1 and 6.2 of the
appendix, respectively.

Lemma 4.1. The vector \I/fézj belongs to the domain of the position operator T

and
syl < OUlg W ), 5 =1,2,3 (4.1)

Proof. See the Appendix. O
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Lemma 4.2 states a virial theorem for our model. We observe that by formal
steps one can derive the identity

ilH — Eg, DY) = dU([|E],d]) — VE - dU(i[F, d2)
—gla* (idy pz) + a(idy pz)), (4.2)
where E5 and VE 5 are operator-valued functions of the total momentum
operator P. Another formal step would imply that

Oz(mf%aZ[H_EﬁaDn]\I/f%)v (43)
and, hence,
0 = (W s, DGR, d2))W s ) — (¥gs, T - ADGIF, di]) )
= 9(¥ s, [0 (idypz) + alidypz)] ¥ ps). (4.4)

The next Lemma shows that all terms on the RHS of Eq. (4.4) can be given a
well-defined meaning such that the equality is true.

Lemma 4.2. The identity
0= (W, PO RNEL ()R )

(. VB - AU (R (R )

—9(¥y, [a* (i pz) + a(idﬁpf)]‘l’f%) (4.5)
holds true. As the one-particle state \I'f% belongs to the form domain of all
operators on the RHS of (4.5), this RHS is well defined.

Proof. See the Appendix O

Note that the formal equality of the RHS of (4.4) and (4.5) is straightfor-
ward. The virial identity of the Lemma above is first used in item (i) of 4.2.1.
A similar virial identity in item (ii) is proven analogously.

4.2. Number Operator Estimates in Putative Single-Particle States

We now proceed to proving the following theorem, where the expectation of
the boson number operator in the state ¥ ;s is bounded scale by scale.
3

Theorem 4.3. For |g| sufficiently small,
(Yrg Ntz ¥ss)
Wy, U
( 75 f%)
where Nn,cgz = dF(X%(lkngfm(l%)) and Q € I,

Q
Furthermore, if for all P € suppf% the inequality

< O(gP 0P |[k°1 s s (R)E),  (4.6)

2(n+1)’2n

IVEs| 1] > |g]"*
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holds true then

(\Iffg N, Wfé) -2y, 20110 .
W < O(gP [k L a ay (B)IE), (4.7)
Q?

where N,, == dU(x2 (|k]).

The (implicit) constants in (4.6)-(4.7) can be chosen to be uniform in @,
|C§| € I, C I; for the definition of I, see Egs. (3.9), (3.10)). They only depend
on I and Aj.

4.2.1. Outline of the Proof of Theorem 4.3. To prove inequalities (4.6), (4.7)
we exploit two different virial arguments and properties (P1), (P2), and (P3) of
Sect. 3.1.2. More precisely, we employ both conjugate operators D@ = dT(d%)

and D¢ Qi dr(d™ Q), with d? and di¢ 9 defined in Egs. (3.18) and (3.13),
respectlvely The virial identities (see Lemma 4.2 fg)r a rigorous treatment of

the identities below) corresponding to D¥ and DZ? are:

(i)
0= (Wys, dU([IR], 7)) ¥ s) (4.8)
— (T, VEg - dl(i[k, dﬁ})qfﬂ) (4.9)
—9( Wy, [a" (id}pz) + alidyps)]¥ p2) (4.10)
= (g, AU (1RDE (R) KDY 1) (4.11)
— (Ugs, VE - dD(G(IR)ES (RF) T 1) (4.12)
= 9(V s, [0 (idypz) + alidypz)] ¥ gs); (4.13)
(ii)
0= (W s, dD([IF], d )W ;o) (4.14)
— (Vg VE - dDGIE, 4 ) ¥ p2) (4.15)
— g(W s, 0" (id}; P pz) + alid}y? pz)] 0 ss) (4.16)
- (w%,dr <xi<|i¥|>szz<1%>”“|g|'> \Iffgj> (4.17)
= (55 VB - ATOGURNE (BDFL) ) (4.18)
—9(¥sa,[a (dex)Jra(ldn pr)]\lffgjl (4.19)

(For the definition of the functions x, (|k|), €7(k) see (a) and (b), in Sect. 3.2).
Next, we explain in detail the key role of the virial identities. To arrive
at inequalities (4.6), (4.7), we study (see Lemma 4.4) the number opera-
tor restricted to the sector associated with the unit vector @ and derive the
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estimate

(W s, Noags) < (Ugo, 0o )O(g PO D2 FPL 1o (RB), (4.20)

1
2(n+1)’

where Ny, 4 = dF(Xi(|E\)§ZZ(l%)), for some v, 0 < ¥ < 7; we will eventually
choose 4 = v/2. In doing this, we start from the bound

(g3, ATOE(RDEL 2 RRDW g2) — (g3, Vs - AU (RNEL (B)R) U 10)|
> O(1gl7) (W s, AT (2 (1F1)22 () F1) 22 (421)

that holds if, for all Pe supp fé and for all k in the sector,

1—k-VEz| > |g]7 >0. (4.22)

Given (4.21), it is straightforward to control the term [see (4.13)] associated
with the interaction part of the Hamiltonian and to derive the inequality in
(4.20). Therefore, the bound in (4.22) is crucial, and we must identify the sec-
tors where it is violated. We recall that VE 5 is collinear to 13, and we may
assume that they are parallel; the other case can be treated in the same way.

First, note that the angle between P e supp f% and Q, as well as the

angle between @ and a vector k that belongs to the sector associated with u, is
O(]g|”). This follows from the definitions of the function f% and the cones Cy,

given in Sect. 3.2. It implies that, roughly speaking, we can identify P = Q
and k = i, since, for |g| sufficiently small, [¢|” is much smaller than |g|7 in
(4.22).

The vectors k for which (4.22) fails satisfy

k-P—|VEs|| <O(lg['="), |VEg| > 0. (4.23)

Hence, if |[VE 5| is bounded away from 1, either—for IVE 5| < 1; see also (B)
in Sect. 4.2.2—the condition (4.22) is always satisfied, or—for WEﬁ\ > 1; see
also (C) in Sect. 4.2.2—such k have a nonvanishing component, k| , (of order

1- |6E13\_2) in the orthogonal complement of Q(: ﬁ) In particular, they
satisfy

N

= ki -VEs| > 0(g]"?) > 0. (4.24)
k|2 K]

Note that the second term on the LHS of (4.24) actually vanishes if our approx-
imation P = @) were to hold exactly. In Sect. 4.2.2, we establish (4.24) rigor-
ously. The bound (4.24) immediately implies that, for the sectors @ for which
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(4.22) fails, the following bound holds true

| (@fg,dr (xiukofz?(k) 4 ) %)

~(¥ys, VEp - dT(x (1R)ES? (k)R 1))
= O(Ig\”?’)(‘yﬁadl“(xn(\kl)fgz( )\kl)‘llfg) (4.25)

Starting from this bound, we can use the second virial identity (4.17, 4.18, 4.19)
to derive the inequality (4.20) for the sectors @ for which (4.22) fails.
The conclusion is that, under the condition that |[VEj3|, P € suppfcgj,

differs from 1 by a quantity > O(|g|?/?), we can cover all the sectors by the
two virial identities above. Without the restriction on |V E 5|, these arguments
only show that Eq. (4.20) holds for all d-dependent sectors contained in the

cone Cg 2
In implementing this strategy, we make use of the following lemma.

Lemma 4.4. Fix a unit vector . and assume that, for all Pe suppf% and for

allk e supp &7,
1—k-VEs| > 9" >0, 0<7<n, (4.26)

where 7y is g- and Q—independent. Then, for |g| sufficiently small, the following
bound holds true

Wy, Noags) < (g, 0 )OO P2 [F01 o o) (R))A.2)
where N, 4 := dD(x2 (|k)€2° (k).
Proof. We assume that (4.26) holds with
1—k-VEz<0;
the other case, 1 — k - ﬁE}; > 0, can be treated similarly. We get
0= (¥rss, dr (o (kD€L (k )Ikl)‘Pfg) (4.28)
~ (g2, VEp - dT (G (1R])ES* (k)R )‘I’fg)
—9(‘1’1"%7[ *(idyypz) + alid;, f)]‘l’fi)
= lgl" (U, dT (G (kDS (k )Ikl)‘l’fg) (4.29)
+C|9|1 7II‘IszHIIdF(><n(\/’f|)€Z2( D2 g | (4.30)

) - 1/2
</|k 51(2%1) 3 (k)d k>
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for some constant ¢, ¢ > 0, uniform in @, |Q| € I;. To do the step from (4.28)
o (4.29), we split

i(dypz) (k) = —xn<\k|)gg< ) (B ¥ (xa(RNELR) ) ) pR)e= R

=
&

—§xi<|/¥|>e§2( (V- F) plk)e
—E(RDEL (R)p(k) (K- Ve ) (4.31)
and we may justify this step for each of the four terms separately, using the
Schwarz inequality and
(i) the assumption |1 — k I
(i) the infrared behavior of p(k) as assumed in (2.14), i.c., |p(k)| < O(|k|?)

and [Vp(k)| < O(k[7~);
(iii) Lemma 4.1.
As an example, for the term proportional to

(RN R)p(R) (- Ve )

we proceed as follows:

RN R p(F >||15|||a,;\11f5||||6,;ef“9'fwf%||d3k
1/2
< ( [ R Dllagw 0% )

. . L 1/2
X (/||v,;e1k~xqff%||2|k2ﬁ1(2(nl+l)7;n (k)|k|2d3k> . (4.32)

We notice that
1/2 . R
([ umeitage, Pe) = larame ) 2, (3)

and, since Hﬁlge_ik'f\I!f%H < (’)(\g|_7||\11f%H) (Lemma 4.1),

- . Lo 1/2
</ |V,;eZk'f”\llf%HQk|2ﬁ1(2(n1+1)723n)(k)|k2d3k) (4.34)

1/2
<l ([P @) gl @)

1)’ 2n
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Then, starting from (4.29), the bound from above takes the form
X 2(1—y—73),.2|||718 12
(W g N ¥g) < (Uga, 9 0)O(g PO D02 [FP1 o o (B)IB), (4.36)

2(n+1)

where N, 4 := dD(x2(|k)€2°(k)), because

RDEBIF > o

mX%(‘Engz(i@) (4.37)

O

4.2.2. Proof of Theorem 4.3. Notice that, starting from Lemma 4.4, we can
fill the region

{k:1—k- ﬁEﬁ\ > |47 VPe suppf%} (4.38)

with sectors corresponding to functions fgj where 1 < j < 7 < O(lg|™7), so
that we obtain

i
> (Wya, Noa, W)

j=1

_3y_5 > =
< (o, Wps)O(g PO F D02 FPL s (BR). (439)

2(n+1)’2n

We observe that if, for some Pe supp f(gj,

IVEs| —1] < |g|"/?
then, for |g| sufficiently small,

IVEg | —1] < 2|g]"/*
for all P’ € supp f%. This holds because

e of the constraints on the support of f% (see Sect. 3.2);
0| P|?
After the result in Eq. (4.39), which holds for sectors such that (4.26) [Lemma
(4.4)] is fulfilled, we may distinguish three possible situations, (A), (B) and
(C), depending on the length of the vector ﬁEﬁ, Pe suppf%.

| < C7; (see Property (P2) in Sect. 3.1).

(A) For some P € Suppf%, IVEs| — 1] < |g]73.
In this case, Vk € Ccl?/Q, the inequality in (4.26) holds true for ¥ = ~/2
and |g| sufficiently small, because
(i) [VEp | — 1] < 2/g]"/* VP’ € suppf}.
(ii) by definition

2 i o Loprs
CQ .—{k.|k Q|§cos<2g| )}
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Thus, we can use the estimate in Eq. (4.39) with ¥ = /2,
Ve N U g
(Y55 Nyt ¥ss)

PO R s s (B)]B), (440

2(n+1)'2n

<O(lg

(‘I’f% , ‘I’fa)

where N cy? = dI‘(xn(|k|)§gl/2(l%)) (xn (k) and§ 1/2( ) are defined in
Q

(a) and (b ) of Sect. 3.2).

For some P € suppr IVEs| <1—|g]/3.

The constraint (4.26) with 4 = ~/2 is fulfilled for all angular sectors.
For all P € suppfc% ,|6E}3| > 1+ |g]/3.

First we notice that we can restrict our analysis to an angular sector
labeled by a direction 4 such that, for some Pe supp f%, the inequality

11— k-VEz| < |g[/=/? (4.41)
holds true for some k belonging to the sector under consideration. This
is because, if

11— k-VEz| > |g/=/2), (4.42)
for all k belonging to the given sector, then the result in (4.27) holds, as
we have proven in Lemma 4.4.

We now show that the combination of [VE5| > 1+ [g|7/3 and (4.41)
yields the useful inequality (4.46) below.
We notice that, assuming the bound in Eq. (4.41) for some k belonging
to the sector, for |g| sufficiently small,

11—k VEg| <2g/ =72, (4.43)

for all k in the sector labeled by @. Furthermore, P-Q > cos(|g|), for all
P € supp fé, by construction, and we may assume that V E5 is parallel to

P; the other case, P- ﬁE 5 = —|P| \VEP| can be treated in an analogous
way. Let n be the angle between k and Q Then, (4.43) means that
—2|g]"? <1~ cos(n+ )| VEp| < 2[g"/?, (4.44)
where € = O(|g|7) and, for |g| sufficiently small,
1+ 2|g["/? 1— 9lgln/2
1— c/|g|v/3 > m > cos(n+¢€) > % (4.45)
IVE5| IVE5]|

for some constant ¢’ > 0. Hence, we have n > ¢”'|g|?/® > 0 where ¢/ > 0,
and we find that

kL |k
'él H# -VEp| > O(sin®()) > O(|g]"/?) > 0, (4.46)
for all k in the sector, where l;l =k — %ﬂ Q because

(i) by assumption, P - Q > cos(|g|?);
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(i) VE Ej is parallel (or antiparallel) to P and |VE | < CT;
(iii) |I|€k|| = sin(n);

(iv) |k - VEs| < |VEs| x O(|g|") using that P-Q > cos(|g|").
Assuming, for example, that (4.46) holds, because

kL JRily
K[> [k
where ¢ > 0, we use the second virial identity [see Eq. (4.14)] to obtain
0= [W,dl ><Q(|/‘c'|)gf12(1%)“;é|2 U s (4.48)
g nitSa 1| 13

~(W g1,V pEp - dU (G (RDEL* (R)EL) ¥ s )

—9(¥ys, la” (idnl pz) + a(idnl pa)l¥sa),
< 7C|g|7/3(\11f"'ﬂdF(Xn(“CDggQ( k1)@ g) (4.49)
+ gl I g AT O (RDES* (k)2 5o | (4.50)

. 1/2
</|k|251 ) (k)d3k)
2(n+1) 2n

for some ¢’ > 0. Now, we estimate (4.49) similarly to (4.29) in Lemma 4.4.

VEs < —cg|"/?, (4.47)

Conclusions

For |g| sufficiently small, we have proven that:
(i) by combining cases (A), (B) and (C),
(Crg Noerr2¥sg)

< O(lglP=2n?|| k|71

2(n,+1)7%)(];;)||§)' (4.51)

Ueg  Weg
( fQ> fQ)
Note that, in cases (B) and (C), the angular restriction was not used.
(ii) Under the assumption that
- 5 _
IVEs| — 1| > |g]"/3, forall P e et
we have
(Wys Ny W)
Wy, W -
( f@ ’ f(j')

O(gP "2 IFPL, o o (B3, (452)

2(n+1)

where N,, := dI'(x2(|k|). This follows from cases (B) and (C). O

4.3. Number Operator Estimates in Putative Fiber Eigenvectors

Using the results in Theorem 4.3 and Property (P3), we are now in a position
to state some bounds on the expectation value of the boson number operator
restricted to the fiber spaces. These bounds hold pointwise in ]3, for |]3| in the
open interval I; C I, introduced in Sect. 3.2; see Egs. (3.9, 3.10).
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Theorem 4.5. For |g] sufﬁciently small, and (P, Ep) el x Ar:

(Y5 o Nic2 Y g, ) <O(gl TSR s (B)ls),  (4.53)

12n

where
N ez = drl(y (|E|)5g§(iq)). (4.54)

Furthermore, if in addition |\VEI3| - 1| > 31973, then

“r)

4 — - 1
(W NoWs g ) < Ol "= nd |IFP 1 2 (R)Z) - (4.55)

2(n+1)°2

P.Eg’
where

N = AT O (1K) (4.56)
The constants in (4.53), (4.55) can be chosen uniformly in P, |]3| el, ClIll
is defined in Sect. 3.2, Eqgs. (3.9), (3.10)]. They only depend on I and Aj.

Proof. First of all, we observe that, for P such that fé(ﬁ) = 1, the inequality

(V5 5y N, 225 ) < O(|g|* ||k 2 (B)l2)  (4.57)

ﬁ,Eﬁ’

2(n+1)72n

can fail to hold true only for Pinaset I fq of measure bounded above by

(q;f%, \I,fé)@(9(1—27)n|||k;\/31(2(n1+1)7%)(kz)\|2), (4.58)
ie.,
[P < @ )00l 1y B) (459)
I,
Q

This follows from inequality (4.6), which we can write as
/ PBP fé(ﬁ) f(%(ﬁ)(\l/ ﬁEﬁ,Ns ngxy FE,) (4.60)
y(R)113)- (4.61)

Next, we make use of the following inequality, which holds in the sense of
quadratic forms,

< Wy, W) O(lg P20 1P o s

’2n

Npez <NV % (4.62)

for P in the support of f%. This inequality can be easily derived from the

definitions of the smooth functions §g 125 fcgg (see Sect. 3.2) with support in
Q P

the sets
1
céf { k- Q| < cos <2g|7/8)}, (4.63)
= {k k- 15| < cos (2|g|7/8)}, (4.64)

respectively, and from the constraint P - Q > cos(|g|").
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Hence, for P € suppf% \ I}, such that f%(ﬁ) = 1, we have that
a
(\I/ NZ,C%\I’F’,Eﬁ) < (\I/ﬁ,Eﬁ7NZ,C%/2 \I/ﬁ,Eﬁ) (4.65)

y®)2),  (4.66)

ﬁ,Eﬁ’

< O(lg|" = nll|k|"1

2(71,1+1)
by definition of I;Q.
Because of Eq. (4.59), any point P belonging to the set I fg, and such

that f%(ﬁ) =1, is at a distance at the most of

" [EIP1 ®)I3) (4.67)

1/3
(\Ilf%a\l/f%> / O(

(stamy 220
R)5) (4.68)

from an arbitrary point in suppf % \ I}, . Thus, we consider a slightly modified
q

<O(lg" s”n%nvaﬁl(

1
2(n+1)° 2n

version of property (P3) for the operator NS’C}% , hamely
Va(Wp 5, N2 W o )| < OCrl(sup | B + Tlgl /%) (4:69)
Per

where, following the derivation of property (P3), the term |g|~?/® comes from
the derivative of the smooth function fg% . Using the fundamental theorem of
P

calculus, we can finally state that

b
(‘I’ﬁ,E Vo 2, \I/PE )

a— 2‘!)

D ol

< O(lgl g5 k)7 1 sy (RIS, P € I75.  (4.70)

2( +1) 7271 g

We remark that the bounds in Eqs. (4.65), (4.70) hold uniformly in @, |Q| € I
The bounds in Eqgs. (4.65), (4.70) hold for P = @, because f5(Q) =1 by def-
inition. Thus, we arrive at the estimate in Eq. (4.53) for any P € Ij.

Now, assume that for (ﬁ*,Eﬁ*) € I, x Ay, we have |\§E13*|—1| > 3g|/3.
Then we can consider a wave function f% with Q = P,. Thanks to Property
P2, and for |g] bufﬁciently small, i.e., less than some value |g| uniform in P,
|P,| € I, we have that [|[VEs| — 1| > |g[7/3, for all P € fg Thus, we can

apply Theorem 4.3. Finally, followmg the same steps used before one arrives
at the inequality in Eq. (4.55) for P = P,. Notice that, in this case, since there

is no angular restriction, no term proportional to | g|_7/ 8 appears on the RHS
of Eq. (4.55). O

The bound in Eq. (4.55) trivially implies the corollary below.

Corollary 4.6. For 8 > 11/2, and for (ﬁ,Eﬁ) € I, x Ay with ||§E13| -1 >
%\g|’7/3, the putative eigenvector \Ijﬁ,Eﬁ (up to a suitable phase) is asymptotic
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to the vacuum vector WO B in Hp, as g tends to 0. Likewise, the energy E is

asymptotic to P2/2. More precisely,
1% — 5 5 [l < O(lgl"~277%) (4.71)
and

p2
— = Ep| < O(lg|" /). (4.72)

Proof. The norm estimate in (4.71) follows from Theorem 4.5. Without loss
of generality, we can start from the identity below, for some real and positive
coefficient ¢(g),

>1
Vs g, = c9) 0%+ U E)~ (4.73)

where ¥ 5, and \II(I)3 are normalized, and ¥ZY " contains at least one boson.
P P

Then we can write:

>1)
Vs Es %LU = (c(9) —1)* + H‘I’( ||2 (4.74)
=c(g)®+1—2c(g) + ||\IJ§§;>_||2. (4.75)
B
Using the normalization condition,
>1
1955, 1P =1=clo) + 195, II" (4.76)
we have
—_ 11— &L q21/2
clg) = 1= W) | (4.77)
and
195 5, — U517 =2 - 2c(g). (4.78)
From Theorem 4.5, it follows that
>1 >1 _
||lI}§3_,E)13||2 < ||(Nb)1/2 \Ij(ﬁ_’E)ﬁH2 < O(|g|(l 2v)/3)7 (479)
since the sum over n in (4.55) can be estimated as
4.7 28+3 A
Zn3|||k\ﬁl(m’2n Hz < ZnSn 6 < const., if 3 >11/2
n>1 n>1
(4.80)
2643

where we use that H|k|51(2< ER ) (k B)|l2 = O(n~
O(1/n) of the support of the functlon Xn, and the spatial dimension d = 3. We

remind the reader that the expectation value in ¥ 5 . of the number operator
g

z ), as follows by the size

associated with boson momenta above \E | = 1 can be bounded above by using
the form inequality HY < aH s + b, for some a,b > 0.
Consequently, the estimate in Eq. (4.71) is easily obtained.
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For the inequality in Eq. (4.72), consider

P2 0
Ep—— =Upp, Hp(Yp 5, —Vp)) (4.81)
0 0
(U o (Hp — H) W) (4.82)
0 0,0
(Vg — U, HETY). (4.83)

Then, use (4.72) and the fact that Hz — H103 = g¢®(p) is H%—bounded. O

5. Absence of Regular Mass Shells

In this section, we first make use of the results obtained in Sect. 4 to arrive
at an argument that shows a contradiction to the existence of a mass shell
(P,Ep) € I, x Ay assuming that ||[VEs| — 1| > 3|g[?/3 for P € I}. In imple-
menting the argument, we employ suitable trial states; see Theorem 5.1. Then
we proceed to show that, if we remove the assumption ||[VEz| — 1| > 2[g7/3,

a mass shell might exist for (]3, Eg) € I, x Ay such that
= 1
Ep=|P| =5 +0(g|""). (5.1)

This result is completed in Theorem 5.4.

We recall that so far we have assumed the existence of a mass shell for
P in the open interval I, and we have defined another open interval I ; c I
with the properties specified in Sect. 3.2. The results of Corollary 4.6, which
will be used in the following theorem, hold for Pe I!’].

Theorem 5.1. For 3 > 11/2, and for |g| sufficiently small, no regular (i.e.,
Julfilling the Main Hypothesis in Sect. 3.1.1) mass shell (P, Eg) can exist with
the properties:

() (P € I, |L,| > o/

(i) |Ep| € Ar;

(iii) [|[VEs|— 1| > 2|g]/3 for P € I,
Proof. The proof is by contradiction. For |g| sufficiently small (depending on
the exponent 7), we pick an open interval I/ C I, fulfilling the following
properties:

(a) L] > gI™;
(b) I |Q| € I}/ then |P| € I} for any P € suppf%.

Notice that the definition of ] is meaningful for |g| sufficiently small. For

|C§| € I/, we introduce the trial vector

1 [(P=Fk)?/2+ k|- E3
3 3 P * 1,0
- 7/d /d kf5(P) ? ( - bUY, (5.2)
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where:

o >0
o h(z) € C°(R), h(z) > 0.

Since Vg is a single-particle state, we have that
q

(ng, (H° — Ep)¥ys) = —(ng: 9¢(pz)¥s), (5.3)
where H? := % +H f and Ep is a (operator-valued) function of the total
momentum operator P. This equation implies that

URE d’(Pf)PQ‘I’f%) (5.4)
= —(ng, (H" = Ep)Py ¥ 1) (5.5)
~9(ng, d(pz) P ¥ys,), (5.6)

where, as usual, the expressions Pgq, Pé acting on H stand for 1y, ® Pq,
1%, ® Pq, respectively. We observe that

(ng: ¢(pz) PV ys)

=clg) [ P [@H PR <(ﬁ"f)2/“ u ‘Eﬁ> (.

(5.7)

where ¢(g) — 1, as g — 0, because of Corollary 4.6. Notice that, for |ﬁ| > 1496,
where § > 0 is g-independent, the equation

(P—Fk)?/2+|kl—P?/2=0, |k|>0 (5.8)
has the one-parameter family of solutions

k| = 2(]P|cosf —1) > 0

Els

1 _ P

for cos(0) — e 0, Wilere cos 6 = AN
Notice that, for P € I, p(2(|P|cosf — 1)) # 0 for some 0 < 0 < 7; see

the conditions on p in Sect. 2.3. Hence, using (4.72), for € and |g| sufficiently

small, we arrive at the following bound
3 2
|(ngss #(pz) P ¥ pg )| > Dre2 || f5 ]2, (5.9)
where Dj is an e- and g- independent (positive) constant (hint: for each 6 in
Eq. (5.8), implement the change of variable |k| — zg with zg := [(P — k)2/2 +

k| = Epl/e).
Using the Schwarz inequality, we find that

(1 N* (H® = Ep) Py ¥ )| (5.10)
< (O = EpngllIN* P ¥ pa]| (5.11)
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We then observe that
I(H® = Ep)ngll < O(lI/5llz €)- (5.12)

Using Eq. (4.7), one may easily derive the inequalities

2(1-24)

[N PGl < O(gl™ = [1£5]2) (5.13)
and
|(ng> ¢(pz) Pﬁ‘I’f%N (5.14)
= |(ng N¢(ﬂf)P§‘I’f5)| (5.15)
< O(gl =1 £51). (5.16)
For the step from (5.15) to (5.16), one may use that
(ng: No(pz) Py ¥ gs) = (g, No' ™ (pz) Py ¥ s) (5.17)

where ¢()(pz), () (pz) stand for the part proportional to the annihilation-
and to the creation operator, respectively; i.e., ¢(pz) = ¢(7) (pz) + o) (pz).
Then, we observe that

(ng: N6\ (pz) Py W ps) (5.18)
= (1g:¢' 7 (pz) NPy ¥ 1) (5.19)
(1 [0 (0), NYPE U ), (5.20)

and we finally use Theorem 4.3 together with the estimates
IN¥6D (omgll < OUIF42), (5.21)
116 (pz), NP W s || < O(IN= Py s]l). (5.22)

Finally, we arrive at

DalgleX 17513 < O(elgl >V [17513) + OgP 2 7413 (5.28)

This inequality is violated whenever
cilgl' T < €7 < ca|gl* (5.24)

for some c¢1,co2 > 0. We note that the inequality in Eq. (5.24) can be fulfilled
if 0 <y < 1/4 and |g| is sufficiently small.

From the argument above, we conclude that, for sufficiently small |g],
a mass shell cannot exist in I; x A; with the assumed regularity properties,
because I;) C I} C I,. O

We need two preparatory lemmas to state our final result: Theorem 5.4,
concerning the absence of a mass shell anywhere but near the boundary of the
energy-momentum spectrum.
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From property (P1), we know that the vector ﬁEﬁ is collinear to P. In the
first of the two lemmas below, Lemma 5.2, assuming that ||§E13| -1 < %|g|‘*/3
and § > 11/2, we show that ﬁEﬁ and P are in fact parallel.

The second lemma, Lemma 5.3, states that the boson number operator,
restricted to the cone {k : —k - P < cos(2|g|?/®)} and evaluated on the puta-

1P| e I, is also bounded above by O (|g|(1 -

tive fiber eigenvector W 3
lg|=1/8), for B > 11/2.

PE’

Lemma 5.2. For 8 > 11/2, and for g in an interval {g : 0 < |g| < g.} with
g+ > 0 sufficiently small, if (P,Ep) € 1, x A fulfills the constraint

- 3
9B~ 1] < Sl (5.25)

a|P\ — 2|g[7/® holds true.

Proof. The proof is indirect. We assume that there exists g, > 0 such that, for
some |g| < g« and for some P, € I,

0E 3 3
—L15 5 < -1+ Z]¢|"/? <. 5.26
We also assume that g, is sufficiently small to apply Lemma 4.4 and Theo-
rem 4.5 later on. We shall show that the assumption in Eq. (5.26) yields a
contradiction. Consider the function f%:p . By Property P2,

OE s

withe > 0, (5.27)
o|P|

for all P € supp, fg . Now, for all u-dependent sectors such that

a~P*>O,

we consider the first virial identity of Sect. 4.2.1 [see Egs. (4.8)—(4.13)] and
observe that

—(ys, VEg - dT(x;(|k)&2 (k)k )‘I’fg) (5.28)
2 —clg|" (s, AT (x (|k)€2 (k) k) 4 2); (5.29)
for all P € supp fg . Then, for |g| < g. and g, sufficiently small, one can

proceed as in Lemma 4.4 and finally apply the argument used in Theorem 4.5
to obtain that

(Y5, gy Na¥5. 5, (5.30)

can be summed over n, yielding a quantity bounded by O(|g|?/?). This result
readily implies that

V5 b, aﬁf‘l’ﬁ*,Eﬁ*) <P, < Clgp”? (5.31)
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for some positive constant C'; hence,
~(Up, p, PTU5 g )Pz =Clg. (5.32)

Using the Feynmaanellman formula,

5= 8|13|P =P —(VUpp ,Pfo/ﬁEﬁ), (5.33)
we deduce that
5‘E13 5 /2 /2
o1P |p_p. = [Pl = Clg|"* >1-=Clg]""". (5.34)

This yields a a contradiction for g, sufficiently small; therefore, we conclude
that the bound

O0E5 3

5 >1—Z|g)/? 5.35
op r-n 21 5l (5.35)
holds for {g|0 < |g| < g*}, for some g* > 0, because of (5.25). O

We are now in a position to extend the result in Eq. (4.53).

Lemma 5.3. For (ﬁ,Eﬁ) € I, x Ar, with ||6E};| — 1| < 2[g]/3, and for
8> 11/2 and |g| sufficiently small,

(V55,0 N ey Vre,) SOl 3 Lol P nd IR o B,
(5.36)
where
Ny eaven = AP OGRDEL a - (1) (5.37)
and§ 2 e~ (k),0< gz Lot (k) <1 is a smooth function with support in
PYCr

2 2,—
CruCy, (5.38)
where C;’f = {k : —k- P > cos(2|g]"/®)}. 552 UCQ)_(lAc) is defined as follows:
PYCp
(i)

g k) = Pk P /8\1.
C%,UC%‘(]C) =1 for {k:k-P <cos(4lg]"")}; (5.39)
(ii)
g k) = A /831.
taucy-(R) =0 for {k:k-P > cos(2lg]"®)}; (5.40)
(ii)
|00, égucz,—ﬂ%)I < Celg| ™78, (5.41)
PP

where 0, is the angle between k and }5, and the constant C¢ is indepen-
dent of g.
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Proof. Because of Lemma 5.2, for k in the sector Cg;ﬁ and P’ € suppf%:ﬁ,

with C? =Pec I;, the condition in (4.26) of Lemma 4.4 is fulfilled. Then one
can repeat the arguments of Theorem 4.5 for the number operator restricted to
the sector Cg;p and derive the inequality in Eq. (5.36) forall @ = P € I;. O

Theorem 5.4. For 3 > 11/2 and |g| sufficiently small, if a regular mass shell
(i.e., fulfilling the Main Hypothesis in Sect. 3.1.1) exists in an interval I,, and

if for some (ﬁ,Eﬁ) €Iy x Ar

- 3
V21 -1 < 21, (5.2
then, for all Pe Iy,
o1
Ep=|P| =5 +0(g"""). (5.43)
Proof. We consider (P, Ej) € I; x Ay, such that
- 3 /3
921~ 11 < 21 (5.44)
From the Feynman-Hellman formula [see Eq.(3.6)],
P.-VEjs= |ﬁ|2_ﬁ.(q/ﬁvEﬁ,ﬁfqzﬁyEﬁ). (5.45)

From the result in Lemma 5.2, we can derive the following identity

P-VEp =|P|(1+0(g]"?)). (5.46)
From Lemma 5.3, for the expectation values in the equation below, we can
restrict P/ and H/ to the sector (3]25’+ = {k:k-P > cos(2lg]"/®)} up to an

o((lg|"/*) remainder, and we deduce that

Py PG )= (Wpp HI W, )+ O(g"h). (5.47)

Hence, by combining (5.45)—(5.47), one arrives at

—

(Vp o H Wy ) =P (Vg PO, )
= |P| =1+ |P| = |P]* + O(g|""*). (5.48)
Next, starting from the formal virial identity
(Y5 g, ilHp, DY V5 5 ) =0, (5.49)

where DY L= dI'*(ds ) is defined in Sect. 3.2 (ZZZ), we derive

)
W) A (R) Y5 )
~P-(Vp AL (il dy )5 )

—9(Vp g, [b"(id1 .p) +b(id1 . p)]V 5

0= (Vs dT(i[k],dx ) V5

]D,Eﬁ7

Jr(\I/ﬁ’Eﬁ,de(i[E, d%

). (5.50)

B
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The virial identity in Eq. (5.50) needs to be justified and this is done in Sect. 6.3
in the Appendix.
By taking the limit x T +00 on the RHS of (5.50), it follows that

0= (\I/ﬁEﬁ,Hf\I/ﬁEﬁ)

+(¥5 5 P Pf\yﬁ,Eﬁ)

—P- (\pﬁ,Eﬁ7Pf‘l/13,Eﬁ>

—9(Yp ., [0 (idoop) + b(idecp)| ¥ 5 ) (5.51)

P

where

doo = = (k- iV +iVy - k). (5.52)

DO | =

Equation (5.51) follows from (5.50) thanks to

1. the infrared behavior of the form factor p(k), namely for any g > —1;
2. the ultraviolet cutoff A; see Eq. (2.14);

3. the fact that AT’ (i[|k|, d1 ,,]) and dT?(i[k, da ,]) bounded by HY and W 5
Ko " " p

belong to the domain of H7.
Therefore, we can express the expectation value of (Pf)? in the state ¥ PEs

as a function of |]3| up to g-dependent corrections
(Wp . (PPUp ) = (1P~ 12+ O(g ). (5.53)
Using the eigenvalue equation (2.22), we obtain
]. — — — —
Ep = 5 [(1P1 = 12 + 21P| = [P + O(1g")] + 1P| - 1+ O(lg"/*)
~ 1
=IPl-5+ O(lg""*). (5.54)

Finally, because of the constraint on ﬁEﬁ (see Property P1, Sect. 3.1), if
Eq. (5.54) holds for | P| € I}, either it is also true for |P| € I, or the mass shell
cannot be defined on I, with the assumed regularity properties. This can be
explained considering the following two cases:

(a) if |1, < 2|g|"/4, use |€Eﬁ| < C% and conclude that Eq. (5.54) holds on

gy

(b) if [Iy] > 2[g]/*, write I, as I, = U;I3, with {I7} disjoints, and 2|g["/* >
[I7| > |g|"/2. For each I}, either one can repeat the argument developed
in Egs. (5.44)—(5.54), and proceed as in a), or conclude that the mass shell

does not exists for P € [. g. In the latter case, since I _g C I, the mass shell
does not exist in I, with the assumed regularity properties. O

Remark. Tt is easy to see that

P2
Bp < 5+ 0(g)). (5.55)
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The proof follows from Eq. (5.51) by adding and subtracting P2 on the right-
hand side. In fact, one gets

]32
HzV

0= (\IJRE};? P ﬁ,Eﬁ) T

1 L
+§(\11137Eﬁ,Pf -Pf\yﬁ’Eﬁ)

9V o[V (idoop) + blidoc Vs, ). (5.56)

Furthermore, assuming the validity of the Feynman—Helman formula, we
see that

P.VEz=P-: (Y55, (P — ﬁf)xlfﬁ’Eﬁ) (5.57)
> P? — |P||PT s . (5.58)
From Eq. (5.56),
1P/ s, |I° < P —2E5+Clgl, C>0, (5.59)
and then
P-VEs> P2~ |P|\/P> —2B5+Clg| (5.60)

For |P| > 1+ 6, because of the constraint Eg > |P| — 1+ 0(lgl), we can
conclude that

P-VEz>1-C'g| (5.61)

for some positive constant C’. This yields an alternative proof of Lemma 5.2.
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6. Appendix

In Sects. 6.1 and 6.2, we provide the proofs of Lemmas 4.1 and 4.2 in Sect. 4.
For the convenience of the reader, these lemmas are repeated below. In
Sect. 6.3, we prove the equality (5.50) in Sect. 5.

Lemma 4.2 and the equality (5.50) are virial identities, the justification
of which is, in general, a difficult task. We refer the reader to [9,14] and [15]
for more background.
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6.1. Proof of Lemma 4.1

Lemma (4.1). The vector Wyg belongs to the domain of the position operator
q

Z and

sl < OUlgl [ ¥gal), i =1,2,3 (6.1)

Proof. 1t suffices to estimate, in the limit A; — 0,
e_iAimi\Iffy — \I/fg

(6.2)
1 _
= A [ T /fg Eﬁd?’P—/f‘i(P) \IfﬁEﬂcPP}
1 7’LALZEL
KZ [/f% Vi E~d3 /fg Vs Ai%,EﬁAﬁdSP]
(6.3)
1
A [/ - f% (P— D)) Up_5. iEs . ld3P] (6.4)
1 "
A[ ng Aii)¥ PA,-,E,EﬁAd?)P /ng B.E ]
(6.5)
We notice that e*iAm\IJﬁ)Eﬁ € Hp_a,; [in (6.3)], and
Iﬁ—Ai%(e_miri\IIﬁ,Eﬁ) = 113(‘1’13,1513) (6.6)

as vectors in F°. The term in (6.5) is identically zero, by a change of variables.
We now derive bounds for (6.3), (6.4), as A; — 0.

By item (iii) in the Main Hypothesis (which, strictly speaking, means that
1\ pls(¥p Eﬁ) || < Cr) and the Cauchy—Schwartz inequality, we conclude that

(6.3) is bounded by Cy[|f5(P)l-

For (6.4), we use again Cauchy—Schwartz and the bound (for some con-
stant C')

19 575(P)lle < Clsup ¥ 14 (B)I75(P)lle = Ogl 7 175(P)ll). (6.7)

which can be checked from the construction of the functions f (% (see Eq. (3.11)).
Collecting the bounds on (6.3, 6.4, 6.5), we have proven the lemma. O

6.2. Proof of Lemma 4.2

We now proceed with the proof of Lemma 4.2 in Sect. 4.
Lemma (4.2). The identity
0 = (Wya, dUO(RDES* (k)R] @ 1) (6.8)
- (\I’f%7VE~ AT (kD€L (k )H)\I/fgﬂ) (6.9)

—9(¥ys,a (Zd“px)+a(ldnpm)]‘11fg) (6.10)
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holds true. As the one-particle state \I/f% belongs to the form domain of all
operators in (6.8, 6.9, 6.10), this RHS is well defined.

Since the dilation operator is unbounded, we must check that a regular-
ized expression for the commutator i[H — E, D% in Eq. (4.2) is well defined
and that, upon the removal of the regularization, the expectation value of that
commutator in the state ¥ 13 corresponds to the right-hand side above, i.e.
(6.8, 6.9, 6.10). We show that, provided § is sufficiently large, the same strat-
egy as implemented in [12] justifies this identity. Most of the arguments below,
with the exception of the one in Sect. 6.2.5, are standard in literature.

However, compared to the literature, our virial theorem has a little twist.
This is due to the fact that we do not attempt to rule out any eigenvector,
but merely an eigenvector with a certain regularity property. This is exploited
in Lemma 4.1 and it is a crucial ingredient of the justification of the virial
identity in Lemma 4.2.

In Sect. 6.2.1, we prove that the expressions in (6.8, 6.9, 6.10) are well
defined. In Sect. 6.2.2, we start the proof of the equality in Lemma 4.2.

6.2.1. Well-Definedness of the Terms (6.8, 6.9, 6.10). The operators
AU (KDL (R)[ED)  and ¥V pBp - dDOG(FDE*(R)F) - (6.11)

are bounded by a (multiple of) H/. In fact, the operator ﬁE]; is surely

bounded if we restrict the total Hilbert space to the fibers P € I. This restric-
tion can be done since the function f% has support in I. Since

\I/f% € Dom(H) = \Ilffj € Dom(H), (6.12)

the expressions (6.8) and (6.9) are well defined. Next, from the expression in
(4.31) and the fact that p € Cy, we have

1
/d3k|]€_.| Sllp
1

and, hence, by a standard argument for bounding creation/annihilation oper-
a(idﬁpf)H < 0. (6.14)

ators,
‘ |Z] +1 (Hf +1)
Since \I/f% € Dom(Z) NDom(H') by Lemma 4.1 and (6.12), it follows that also

the expression (6.10) makes sense.

2

(dipz) (k)| < oo (6.13)

|Z] + 1

6.2.2. Virial Identity with a Regularized Dilation Operator. We introduce the
regularized gradient
- Ve
Vei=—k 6.15
k 1-— EAE ( )
where the parameter € > 0 will be eventually removed. Consequently, we also
define D% := dI'(d%*) where di-¢ corresponds to d% with V replaced by Ve
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Since, thanks to the regularization, D% is bounded w.r.t. to H/, we deduce
that U € Dom (D) [cfr. (6.12)].
3
We claim that
Z((H - Eﬁ)\I]fﬁiaD ’ \ij%) - Z(Dn’ \ij(%’ (H - Eﬁ)qu%)
= (W o, AR, AW )
—1(Vye [E5 l)u’E oy
i( fQ[ 5 D0l fQ)
9o, [0 (id2"pz) + alidi D) 52
where the LHS makes sense since ¥ 1% € Dom(D%<) and the RHS is obtained

by formal evaluation of the commutator [H — E 5, D%¢]. All terms on the RHS
are well defined by similar (but easier) arguments as those in Sect. 6.2.1 (for
example, note that [|k|, d%] is a bounded operator). Nevertheless, the equality
above requires a justification. In the case at hand, a pedestrian way to provide
such a justification is to introduce cutoffs in &, & and N (the number operator),
such that all operators involved are bounded, calculate the commutator and
finally remove the cutoffs.

Since (H — Eﬁ)\Ilf% = 0 by assumption, the expression (6.16) vanishes.
Thus, it is sufficient to prove that the expressions (6.17, 6.18, 6.19) converge
0 (6.8, 6.9, 6.10), respectively, as € tends to 0. These three convergence state-
ments will be established in Sects. 6.2.4, 6.2.5 and 6.2.6, respectively.

6.2.3. Some Properties of the Regularized Dilation Operator. In this prepa-
ratory section, we state some estimates on

eig.ﬁDZ,ee—iE-ﬁ _ D276 (6.20)
that will be useful in taking the limit € — 0. First, we remark that
@D TP = Ar(dyD), s = e Rdcen (6.21)

on the appropriate domain. Explicitly,
ds = x5 (F)

and F. is the family of R® — R3 functions given by [cfr. (6.15)]

(E- FeliVo+ 2+ PV 42 R Rl (R (02

DN =

—

2 Y
F(f) = —2—. 6.23
) = 155 (6.23)

We define the vector operator 5;‘; such that it satisfies

—,

7. DZ; = dZ; — dfl’s. (6.24)
Namely,

(@225 = xn(|E])EL(R)

l\)\i—t

Zl: (kl/ (VFE.)); (zvaﬂz)) €2 (k)xn (K| + h.c.

(6.25)
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where the subscripts | and j label vector components. To check that (6.24)
holds, we substitute the line integral

1
Fou(f+ ) — Fou(d) Z/dtVFel(y+tz) 11,23,  (6.26)

into the explicit expression for (6.22), using functional calculus.
We derive immediately the following properties:

1. The operator norms,
SU,€ 7 7 2/7
oSl 1k (IkDES = (R, (6.27)
and hence also

1

dF( (Hf +1)

(6.28)

H Hdr B2 REL ()

)([{fi

are bounded uniformly in € and Z € R3. For the operators on the left (involv-
ing SZ;), this follows from the fact that sup;, IVE.; ()] is
bounded. For the operators on the right, this is a trivial consequence of
the momentum cutoff functions.

2. For each Z,

oS Y B ()€ 2 (). (6.29)
g7 1 strongly 9, 1
F 1l7i - F g . .
O G s AR ) g (690)

This convergence on Dom(ﬁlg) and Dom(dF(ﬁE)) N Fun follows by

ﬁFe,j(gj') — 75, as € — 0, pointwise in 3. Convergence on all vectors then
follows by using the uniform boundedness (6.27, 6.28) above.

6.2.4. The Term [H¥, D%]. In this section, we show that (6.17) converges to

(6.8), as e — 0.
We derive
T Qe 1 strongly 207 g2/7 1
AU dy ) g 8 ar (FNGORDEL () g (631)

in exactly the same way as we did to arrive at (6.30). That is, we first establish
(using properties of F,) that

sup [Ji[| k[, diy]|| < oo,
€

and that, on the dense domain Dom(ﬁ,;), the operator i[|k|, d%] converges to
|E\x%(|E|)§i %(k). Since \I/fézj € Dom(H'), we conclude that

r (illk, d5) gy — ar (IKE(RDES *(R)) Wy (6.32)

We have proven that the difference between (6.17) and (6.8) vanishes as € — 0.
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6.2.5. The Term [E 5, D%]. In this section, we show that (6.18) converges to
(6.9), as e — 0.
We consider an extension of the function E 5 that is twice differentiable

(see Sect. 3.1.2) and of compact support K (i.e., {P||P| € I} C K). We use
the same symbol, E 3, for the function extended to K, and we write

- / B2 B(2)eE P, (6.33)

where E(Z) is the Fourier transform of Ej3 (up to the prefactor (2m)~%/2).
Since E5 is twice differentiable and of compact support, \E|2E(Z) belongs to
L2(R3; d3z) and, by Cauchy-Schwartz, E(Z) is in L!(R3; d3z). Therefore, using
functional calculus, we can write,

(W s, (B, DI W) = / @2 B(2) (W s, [P, DR ). (6.34)

Then we observe that, on e.g., the domain Dom(H/),

iz-P e e iz P _ (. iZ-P e —iZ-P e\ iZ- P _ o Sie\ 7P
e Dy — Dre = (e Dyye —Dp9)et =72.dI'(0, % )e

with the bounded operator o
to compare (6.18) with (6.9):

as defined in Sect. 6.2.3. We are now ready

LZ’
(W, (B, Dy W) — (‘I’fg.,ﬁEﬁ AT (0 ([R)E? (k) k)W 4

=i [ BE Wy, (0@ - CEEIRNEL D) - 2T,
= / d*2B(2)(@W g, [AD@}2) — AR (RN (R ",
i / @2E(Z)(¥ g, [AD@}9) — AU R (RDEE (B))le* P2

The first equality follows by (6.34, 6.35, 6.24) and the fact that the Fourier
transform sends differentiation into multiplication. To obtain the second equal-
ity, we used the canonical commutation relation

Zei? P = [e"g’ﬁ,gﬁ']7 (6.40)

which holds e.g., on Dom(#) N Dom(H/).
Since E(Z) € LY(R?;d32), we can estimate (6.38)

[(6.38)]

< [ #21B@)] @045, @AEES - ArEE R F)e ™ v yy)
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For each Z, the second factor vanishes as € — 0 by (6.30) and the fact that
\Ilf% € Dom(Z) N Dom(HY). Hence, we conclude that (6.38) tends to zero as e

tends to zero, by dominated convergence. Obviously, (6.39) can be treated in
exactly the same way and hence we have proven that (6.37) vanishes as e — 0.

Hence, we have shown that the difference between (6.18) and (6.9) van-
ishes, as € — 0.

6.2.6. The Term [g¢p(pz), D2]. In this section, we prove that (6.19) converges
0 (6.10) as e | 0.
First, we note that

Sup/d3k—sup (d%<pz)(K)| < oo. (6.41)

¢ k|

This follows in the same way as (6.13), established in Sect. 6.2.1. Together,

(6.41) and (6.13) imply that the operator norms of
X 1 1
Boe = g1 (00" = o )|5c‘| 1
1 1

(6.42)

(6.43)

are uniformly bounded in e. We can now take advantage of the fact that
\I]f% € Dom(Z) N Dom(H') to write

(W s, [a (GUE — d2)pz) + ali(die* — d2)pe) W ) (6.44)

= ((H +1)% 3, RE o, (1] + 100 ) (6.45)

(T 4 10)W s RE (7 + 1)1 x5, ¥g2) (6.46)

(] D)W i, (B (Y 4 1)) (6.47)

(1 X, )]+ D)W (RE) (T 4 10)¥ ) (6.48)

where X, = Xk, (%) is the characteristic function of a compact set K5 C R3,

chosen such that the [(6.46)|, [(6.48)| are smaller than §. This can be done by
the uniform bound on [|R% || and the fact that [|(x, — 1)(|Z] + 1)\Ilf%|| can

be made arbitrarily small by choosing K to be sufficiently big. Moreover, for
any compact K,

el

lim d3k—[sup ((id®€ —id™)pz) (k)] = 0. (6.49)
e—0 |k‘| reK

This implies that ||xRE ||, [[xx (R% .)*|| and hence (6.45), (6.47) vanish, as
€ — 0. Together, the bounds on (6.45), (6.47) and on (6.46), (6.48) prove that

(6.44) vanishes in the limit € — 0. Hence, the difference of (6.19) and (6.10)
vanishes as € | 0.



Vol. 11 (2010) Absence of Embedded Mass Shells 1587

6.3. Proof of the Fiber Virial Identity in (5.50)

The justification of the virial identity in (5.50) is largely analogous to that
of the virial identity in Lemma 4.2. To avoid repetitive arguments, we only
sketch the main strategy of the proof.

First, one introduces a regularized dilation operator d5 _ and the corre-
sponding second quantized operator DTR = dIr?(ds N). The operator d |, is
obtained from d1 . [see Eq. (3.20)] by replacing the gradient, ﬁg, with

K

e 612
Vi = [—eA,’ e> 0. (6.50)
Then one exploits the following properties:
(i) On the dense subspace Dom(ﬁg) €h,
iR, 5] — (B (), (6.51)
iR, 5] — R (IR (6.52)

as ¢ — 0 (strong convergence on the whole of b follows than from ii)
below).
(ii) The operator norms
1

‘ (1+HY)

are bounded uniformly in e.

(iii)

MR s Jl 1 ds I (6.53)

dr(if|kl,d5 ,]) (14 HY)

H Hde(i[E,dzﬁ])lH (6.54)

1 -
lim | d®k—|(id5 , —ids )p(K)[* = 0. (6.55)

e—0 ‘k

(iv) the operator norm

e 1
is uniformly bounded in e.
(v)
- 1 2
Hb(ld L™ Zd%,n)P(k))m
1 -
< / Akl idy ()P (6.57)

References

ngelescu, N.,; Minlos, R.A., Zagrebnov, V.A.: Lower spectral branches of a
1] Angel N., Minlos, R.A., Z b V.A: L 1 b h f
particle coupled to a Bose field. Rev. Math. Phys. 17(9), 1-32 (2005)



1588 W. De Roeck et al. Ann. Henri Poincaré

[2] Angelescu, N.; Minlos, R.A., Zagrebnov, V.A.: Lower spectral branches of a
spin-boson model. J. Math. Phys. 49, 102105 (2008)

[3] Bach, V., Chen, T., Frohlich, J., Sigal, .M.: The renormalized electron mass
in non-relativistic quantum electrodynamics. J. Funct. Anal. 243(2), 426-535
(2007)

[4] Chen, T.: Infrared renormalization in non-relativistic QED and scaling critical-
ity. J. Funct. Anal. 254(10), 2555-2647 (2007)

[5] Chen, T., Frohlich, J.: Coherent infrared representations in nonrelativistic QED.
In: Spectral Theory and Mathematical Physics: A Festschrift in Honor of Barry
Simon’s 60th Birthday. Proc. Symp. Pure Math. AMS (2007)

[6] Chen, T., Frohlich, J., Pizzo, A.: Infraparticle scattering states in QED: II. Mass
shell properties. J. Math. Phys. 50, 012103 (2009)

[7] Chen, T., Frohlich, J., Pizzo, A.: Infraparticle scattering states in QED:
I. The Bloch-Nordsieck paradigm. Commun. Math. Phys. doi:10.1007/
s00220-009-0960-x

[8] Erdos, L.: Linear Boltzmann equation as the long time dynamics of an electron
weakly coupled to a phonon field. J. Stat. Phys 107(5-6), 1043-1127 (2002)

[9] Cycon, H.L., Froese, R.G., Kirsch, W., Simon, B.: Schrodinger Operators, with
Applications to Quantum Mechanics and Global Geometry. Springer-Verlag,
Berlin (1987)

[10] Frohlich, J.: On the infrared problem in a model of scalar electrons and massless,
scalar bosons. Inst. Henri Poincaré, Section Physique Théorique 19(1), 1-103
(1973)

[11] Frohlich, J.: Existence of dressed one electron states in a class of persistent
models. Fortschritte der Physik 22, 159-198 (1974)

[12] Frohlich, J., Pizzo, A.: On the absence of excited eigenstates in QED. Commun.
Math. Phys. 286(3), 803-836 (2009)

[13] Frohlich, J., Pizzo, A.: The renormalized electron mass in non-relativistic QED.
Commun. Math. Phys. 294(3), 761-825 (2010)

[14] Frohlich, J., Griesemer, M., Sigal, I.M.: Spectral theory for the standard model
of non-relativistic QED. Commun. Math. Phys. 283, 613-646 (2008)

[15] Georgescu, V., Gérard, C.: On the virial theorem in quantum mechanics. Com-
mun. Math. Phys. 208(2), 275-281 (1999)

[16] Hasler, D., Herbst, I.: Absence of ground states for a class of translation invariant
models of non-relativistic QED. Commun. Math. Phys. 279(3), 769-787 (2008)

[17] Schach-Mgller, J.: The translation invariant Nelson model: I. The bottom of the
spectrum. Ann. H. Poincaré 6(6), 1091-1135 (2005)

[18] Pizzo, A.: One-particle (improper) states in Nelson’s massless model. Ann. H.
Poincaré 4(3), 439-486 (2003)

[19] Pizzo, A.: Scattering of an infraparticle: the one particle sector in Nelson’s
massless model. Ann. H. Poincaré 6, 553-606 (2005)

[20] Spohn, H.: The polaron at large total momentum. J. Phys. A 21, 1199-1212
(1988)


http://dx.doi.org/10.1007/s00220-009-0960-x
http://dx.doi.org/10.1007/s00220-009-0960-x

Vol. 11 (2010) Absence of Embedded Mass Shells

Wojciech De Roeck

Institut fiir Theoretische Physik

Universitat Heidelberg

Philosophenweg 19

69120 Heidelberg

Germany

e-mail: w.deroeck@thphys.uni-heidelberg.de

Jiirg Frohlich

Institute of Theoretical Physics
ETH Ziirich

8093 Zurich

Switzerland

e-mail: juerg@itp.phys.ethz.ch

Alessandro Pizzo

Department of Mathematics
University of California Davis
One Shields Avenue

Davis

CA 95616

USA

e-mail: pizzo@math.ucdavis.edu

Communicated by Christian Gérard.
Received: March 3, 2010.
Accepted: October 21, 2010.

1589



	Absence of Embedded Mass Shells: Cerenkov Radiation and Quantum Friction
	Abstract
	1. Introduction
	2. Description of the Model and Result
	2.1. Hilbert Space
	2.2. Fiber Decomposition
	2.3. Hamiltonians
	2.4. Result
	2.4.1. Main Ingredients of the Proof

	2.5. Notation
	2.6. Structure of the Paper

	3. Strategy of the Proof
	3.1. Main Hypothesis and Key Properties
	3.1.1. Main Hypothesis
	3.1.2. Properties (P1), (P2) and (P3)

	3.2. Technical Tools 
	3.3. Description of Strategy

	4. Boson Number Estimates 
	4.1. Preparatory Results on Virial Identities
	4.2. Number Operator Estimates in Putative Single-Particle States
	4.2.1. Outline of the Proof of Theorem 4.3
	4.2.2. Proof of Theorem 4.3.

	4.3. Number Operator Estimates in Putative Fiber Eigenvectors

	5. Absence of Regular Mass Shells
	Acknowledgements
	6. Appendix
	6.1. Proof of Lemma 4.1
	6.2. Proof of Lemma 4.2
	6.2.1. Well-Definedness of the Terms (6.8, 6.9, 6.10)
	6.2.2. Virial Identity with a Regularized Dilation Operator
	6.2.3. Some Properties of the Regularized Dilation Operator
	6.2.4. The Term [Hf, Dnhat u]
	6.2.5. The Term [Evec P, Dnhat u]
	6.2.6. The Term [g phi(rhovec x), Dnhat u]

	6.3. Proof of the Fiber Virial Identity in (5.50)

	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 149
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 149
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 599
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<

    /BGR <>
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /CZE <>
    /DAN <>
    /ESP <>
    /ETI <>
    /FRA <>
    /GRE <>

    /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke.  Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
    /HUN <>
    /ITA <>
    /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /LTH <>
    /LVI <>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
    /PTB <>
    /RUM <>
    /RUS <>
    /SKY <>
    /SLV <>
    /SUO <>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /TUR <>
    /UKR <>
    /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
    /DEU <>
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.276 841.890]
>> setpagedevice


