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Non-Existence and Uniqueness Results
for Supercritical Semilinear Elliptic Equations

Jean Dolbeault and Robert Stanczy

Abstract. Non-existence and uniqueness results are proved for several local
and non-local supercritical bifurcation problems involving a semilinear elliptic
equation depending on a parameter. The domain is star-shaped and such that
a Poincaré inequality holds but no other symmetry assumption is required.
Uniqueness holds when the bifurcation parameter is in a certain range. Our
approach can be seen, in some cases, as an extension of non-existence results
for non-trivial solutions. It is based on Rellich—Pohozaev type estimates. Semi-
linear elliptic equations naturally arise in many applications, for instance in
astrophysics, hydrodynamics or thermodynamics. We simplify the proof of
earlier results by K. Schmitt and R. Schaaf in the so-called local multiplica-
tive case, extend them to the case of a non-local dependence on the bifurcation
parameter and to the additive case, both in local and non-local settings.

1. Introduction

This paper is devoted to non-existence and uniqueness results for various super-
critical semilinear elliptic equations depending on a bifurcation parameter, in a
star-shaped domain in R?. We shall distinguish the multiplicative case when the
equation can be written as

Au+Af(u)=0 (1)
and the additive case for which the equation is
Au+ f(u+p)=0. (2)

We shall also distinguish two sub cases for each equation. The local case when \
and p are the bifurcation parameters, and the non-local case when A\ and p are
determined by a non-local condition, respectively,
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A flu)dz=«k
/
and

!f(u—&-u)dx:M.

In the multiplicative non-local case, the equation is

Au+ K fw 0. (3)

Jo flu) dx
In many applications, the term f(u)/ [, f(u)dz is interpreted as a probability
measure and « is a coupling parameter. Such a parameter arises from physical con-
stants after a proper adimensionalization. In the additive non-local case (cf. [18]),
the problem to solve is

Au+ f(u+p) =0, M:/f(qu,u)dx. (4)
9)

The parameter M is typically mass and, in a variational setting, p can be inter-
preted as a Lagrange multiplier associated with mass constraint, i.e., a chemical
potential from the point of view of physics. We shall consider the four problems,
(1)—(4), and prove that if the domain €2 is star-shaped, with boundary 99 in C?7,
~v € (0,1), and if f is a non-decreasing non-linearity with supercritical growth at
infinity, such that f(0) > 0 in the case of (1) or (3), or such that f > 0 on (f, o)
and lim,,_,; f(p) = 0 for some fi € [—00, 00) in the case of (2) or (4), then solutions
are unique in LN H}(Q) in a certain range of the parameters A, u, k or M, while
no solution exists for large enough values of the same parameters. Typical non-
linearities are the exponential function f(u) = e* and the power law non-linearity
f(u) = (1 +wu)P, for some p > (d+2)/(d — 2), d > 3. In the exponential case, (1)
is the well-known Gelfand equation, cf. [36].

Our approach is based on Pohozaev’s estimate, see [55], which is obtained
by multiplying the equations by (z - Vu), integrating over 2 and then integrating
by parts. Also see [63] for an earlier result based on the local dilation invariance
in a linear setting. In this paper, we shall only consider solutions in L> N H} (),
which are, therefore, classical solutions, so that multiplying the equation by w or
by (x - Vu) is allowed. Some results can be extended to the Hg () framework, but
some care is then required.

This paper is organized as follows. In Sect. 2, we consider the multiplicative
local and non-local bifurcation problems, respectively, (1) and (3). In Sect. 3, we
study the additive local and non-local bifurcation problems, respectively, (2) and
(4). In all cases, we establish non-existence and uniqueness results, and give some
indications on how to construct the branches of solutions, although this is not our
main purpose.

Before giving the details of our results, let us give a brief review of the liter-
ature. Concerning (1), we primarily refer to the contributions of Schaaf [64] and
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Schmitt [65], which cover even more general cases than ours and will be discussed
more thoroughly later in this section.

The parameter A in (1) can be seen as a bifurcation parameter. Equation (1)
is sometimes called a non-linear eigenvalue problem. It is well known that for cer-
tain values of A, multiplicity of solutions can occur, see for instance [40]. In some
cases, there are infinitely many positive solutions, even in the radial case, when
Q) is a ball. Radial solutions have been intensively studied. We refer for instance
to [19] for a review of problems with positone structure, i.e. for which f(0) < 0
and f changes sign once on RT. A detailed analysis of bifurcation diagrams can
be found in [52,53]. Also see [43] for earlier and more qualitative results. Positive
bounded solutions of such a non-linear scalar field equation are often called ground
states and can be characterized in many problems as minimizers of a semi-bounded
coercive energy functional. They are relevant in many cases of practical interest
in physics, chemistry, mathematical biology, etc.

When (2 is a ball, all bounded positive solutions are radial under rather weak
conditions on the non-linearity f, according to [37] and subsequent papers. Lots of
efforts have been devoted to uniqueness issues for the solutions of the correspond-
ing ODE and slightly more general problems like quasilinear elliptic ones, see,
e.g., [32]. Several other results also cover the case Q = R?, see [67]. There are also
numerous papers in the case of more general non-linearities, including, for instance,
functions of x, u, and Vu (see [42]), or more general bifurcation problems than the
ones considered in this paper. It is out of the scope of this introduction to review
all of them. In a ball, the set of bounded solutions can often be parametrized.
The corresponding bifurcation diagrams have the following properties. For non-
linearities with subcritical growth, for instance for f(u) = (1 4+ w)?, p < (d+2)/
(d—2), d > 3, multiple positive solutions may exist when \ is positive, small, while
for supercritical growths, for example f(u) = (1 4 u)? with p > (d + 2)/(d — 2),
d > 3, or f(u) = e" and d = 3, there is one branch of positive solutions which
oscillates around some positive, limiting value of A\ and solutions are unique only
for A positive, small. See [4,27,29,33,43,52,53,75] for more details.

Another well-known fact is that, at least for star-shaped domains, Poho-
Zaev’s method allows to discriminate between super- and subcritical regimes. This
approach has been used mostly to prove the non-existence of non-trivial solutions,
see [14,24,57,59], and [55,63] for historical references. Such a method is for instance
at the basis of the result of [14] on the Brezis-Nirenberg problem. Also see [4] and
references therein for more details. The identity in PohoZaev’s method amounts
to consider the effect of a dilation on an energy associated with the solution and
therefore carries some important information on the problem, see, e.g., [28,60]. In
this context, stereographic projection and connections between Euclidean spaces
and spheres are natural, as was already noted in Bandle and Benguria [2].

In this paper we are going to study first the regime corresponding to A\ small
and show that PohoZaev’s method provides a uniqueness result also in cases for
which a non-trivial solution exists. The existence of a branch of positive solutions
of (1) is a widely studied issue, see for instance [25,58]. Also see [65] for a review,
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and references therein. As already said, our two basic examples are based on the
power law case, f(u) = (1 4+ u)?, and the exponential non-linearity, f(u) = e, for
which useful informations and additional references can be found in [27,40,50,66,
77]. We shall also consider a third example, with a non-linearity corresponding to
the case of Fermi-Dirac statistics, which behaves like a power law for large, positive
values of u, and like an exponential function for large, negative values of u.

The functional framework of bounded solutions and a bootstrap argument
imply that we work with classical solutions. Apart from the condition that the
domain is star-shaped and satisfies the Poincaré inequality, e.g., is bounded in one
direction, with some compactness properties, we will assume no other geometrical
condition. In the local multiplicative case, several uniqueness results are known for
small A > 0, including in the case of Gelfand’s equation, see [46,64,65]. One should
note that in the framework of the larger space H}(€2), if the boundedness assump-
tion is relaxed, it is not even known if all solutions are radial when Q is a ball.
The results of [37] and subsequent papers almost always rely on the assumption
that the solutions are continuous or at least bounded on Q. Notice that, according
to [44,62], even for a ball, it is possible to prescribe a given isolated singularity
which is not centered. In [62], the case of our two basic examples, f(u) = e* and
flw) = (14+u)P, with % <p< g%é, d > 3, has been studied and then generalized
to several singularities in [61]. Also see [45,54] for an earlier result. These singu-
larities are in Hg () and, for a given value of a parameter \ set apart from zero,
they are located at an a priori given set of points. Similar problems on manifolds
were considered in [6].

We refer to [3,35] for bounds on the solutions to Gelfand’s problem, which
have been established earlier than uniqueness results but are actually a key tool.
Also see [48] for a more recent contribution. Concerning the uniqueness of the
solutions to Gelfand’s problem for d > 3 and A > 0, small, we refer to [46,64,65].
In the case of a ball, the result goes back to the paper of Joseph and Lundgren
[40], when combined with the symmetry result of [37].

The local multiplicative case corresponding to Problem (1) is the subject of
Sect. 2.1. The literature on such semilinear elliptic problems and associated bifur-
cation problems is huge. The results of non-existence of non-trivial solutions are
well known, see [26,57,64] and references therein. Also see [49] for an extension
to systems. Concerning the uniqueness result on non-trivial solutions, the method
was apparently discovered independently by several people including Mignot and
Puel [35] and Cabré and Majer [15], but it seems that the first published reference
on uniqueness results by Rellich-Pohozaev type estimates is due to Schmitt [65]
and later, to Schaaf [64]. A more general result for the multiplicative case has been
obtained in [13] to the price of more intricate reasonings. Numerous papers have
been devoted to the understanding of the role of the geometry and they extend the
standard results, mostly the non-existence results, to the case of non-strictly star-
shaped domains, see for instance [26,57,64] and several papers of McGough et al.
see [46-48], which are, as far as we know, the most up-to-date results on such issues.
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As already mentioned above, Problem (1) has been studied by Schmitt [65]
and Schaaf [64]. In [65, Theorem 2.6.7], it is proved that if one replaces f(u) in
(1) by a more general function f(z,u) in C?(Q2 x R*) satisfying

(i) f(z,u) >0, fulx,u) >0, u>0, x€Q,

(ii)  limsupsup _ 2dF@u) dF(z,u)
U—00 e (d - 2) uf(x,u)

(i) [VeF(z,u+1) = V.F(z,u) —uV.f(z,u) -2 <0 foru>l;x€Q,

<1,

then uniqueness holds for a star-shaped domain €. A survey on the existence and
continuation results for linear and superlinear (sub- and supercritical) growth of
the non-linear term f in (1) can also be found in [65], as well as a study of the influ-
ence of the geometry, topology and dimension of the domain, which is of interest
for our purpose.

In [64], Schaaf studies uniqueness results for the semilinear elliptic prob-

lem (1) under the asymptotic condition limsup,,_, uFJfE‘J) < 3 — M(Q), where
M(Q) = 1/d for star-shaped domains. In general M (2) is some number in the
interval (0, 1/d]. In the autonomous case, the above asymptotic condition is equiv-
alent to the Assumption (i) made by Schmitt [65] or to our Assumption (8), to
be found below. Our contribution to the question of the uniqueness for (1) relies
on a simplification of the proof in [64,65].

Imposing a non-local constraint dramatically changes the picture. For
instance, in case of Maxwell-Boltzmann statistics, f(u) = €%, in a ball of R?, the
solution of (1) has two solutions for any A € (0, \.) and no solution for A > A,
while uniqueness holds in (3) in terms of M, for any M for which a solution exists,
see [7,40]. Non-local constraints are motivated by considerations arising from phys-
ics. Also see [38] for the case of negative values of \. In the case of the exponential
non-linearity with a mass normalization constraint, a considerable effort has been
done in the 2D case for understanding the statistical properties of the so-called
Onsager solutions of the Euler equation, see [16,17,51]. The same model, but
rather in dimension d = 3, is relevant in astrophysical models for systems of gravi-
tating particles, see [13]. Other standard examples are the polytropic distributions,
with f(u) = uP, and Bose-Einstein or Fermi-Dirac distributions which result in
non-linearities involving special functions. Existence and non-existence results were
obtained for instance in [7] and [71,72], respectively, for Maxwell-Boltzmann and
Fermi-Dirac statistics.

An evolution model compatible with Fermi-Dirac statistics and the conver-
gence of its solutions towards steady states has been thoroughly examined in [9],
while the steady state problem was considered by Staniczy [71,72,74]. See [22] and
references therein for a model improved with respect to thermodynamics, [72] and
references therein for more elaborate models, and [23] for a derivation of an evolu-
tion equation involving a mean field term, which also provides a relevant, station-
ary model studied in [13,73]. Also see [21,30] for an alternative, phenomenological
derivation of drift-diffusion equations and their stationary counterparts, and [74]
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for the existence of radial solutions by fixed point methods in weighted function
spaces, under non-local constraints. The case of a decoupled, external potential
goes back to the work of Smoluchowski, see [20,68]. For this reason, the evolution
model is often referred to as the Smoluchowski—Poisson equation.

Our purpose is not to study the above mentioned evolution equations, but
only to emphasize that for the corresponding steady states, non-local constraints
are very natural, since they correspond to quantities which are conserved along
evolution. Hence, to identify the asymptotic state of the solutions to the evolu-
tion equation, we have to solve a semilinear elliptic equation with a non-local
constraint, which corresponds, for instance, to mass conservation.

2. The Multiplicative Case
2.1. The Local Bifurcation Problem

We consider Problem (1) on a domain € in RY. Our first assumption is the
geometrical condition that a Poincaré inequality holds:

/\u|2dx < Cp/\vmzdx (5)
Q Q

for any u € Hg () and some positive constant Cp > 0. Such an inequality holds
for instance if © is bounded in one direction. See [69, Proposition 2.1] for more
details, and also [70]. Inequality (5) is called Friedrichs’ inequality in some areas
of analysis (see [34,41,56] for historical references; we also refer to [39]). We shall
further require that

Ju € Hy(Q) such that « >0 and /|u|2 dz = Cp / |Vul? dz. (6)
Q Q

Such a property arises for instance as a consequence of the compactness of the
embedding H}(Q) — L%*(Q), if Q is connected. The compactness is granted if
the volume of € is finite. If 2 is unbounded, we refer to [5, Theorem 2.8] and
[1, Theorems 6.16 and 6.19] for compactness issues.

The goal of this section is to state a non-existence result for large values of A
and give sufficient conditions on f > 0 such that, for some Ay > 0, Equation (1)
has a unique solution in L> N HE () for any A € (0, \g). We assume that f is of
class C?. By standard elliptic bootstraping arguments, a bounded solution is then
a classical one.

Next we assume that for some A, > 0, there exists a branch of positive min-
imal solutions (A, ux)xe(o,x,) originating from (0,0) and such that

Alij& ([lexll oo @) + IVuall () =0 (7)

Sufficient conditions for such a property to hold can be found in various papers.
We can for instance quote the following result.
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Lemma 1. Assume that Q is bounded with smooth, i.e. C*7 for some v € (0,1),
boundary, f € C? is positive on [0,00) and inf,~o f(u)/u > 0. Then (7) holds.

We refer for instance to [65] for a proof. The solutions satisfying (7) can be
characterized as a branch of minimal solutions, using sub- and super-solutions.
Although this is standard, for the sake of completeness let us state a non-existence
result for values of the parameter X\ large enough.

Proposition 2. Assume that (5) and (6) hold. If A := inf,~¢ f(u)/u > 0, then there
exists Ay > 0 such that (1) has no non-trivial non-negative solution in Hg(Q) if
A > A

The lowest possible value of A, is usually called the critical explosion param-
eter.

Proof. Let ¢1 be a positive eigenfunction associated with the first eigenvalue \; =
1/Cp of —A in H(Q):

—Ag@l = )\1 »1 -
By multiplying this equation by u and (1) by 1, we get

Al/ucpldx:/Vu-Vgoldx:)\/f(u)galdeA)\/ucpldx,
Q Q Q Q

thus proving that there are no non-trivial non-negative solutions if A > A;/A. O

Next we present a simplified version of the proof of a uniqueness result stated
n [64], under slightly more restrictive hypotheses. We assume that d > 3 and f
has a supercritical growth at infinity, i.e., f is such that
F(u) d—2

lims =< —, 8

msup Sy =S 5 (8)
where F(u) := [ f(s)ds. Notice that, in Proposition 2, A > 0 if (8) holds and if
we assume that f is positive.

Theorem 3. Assume that Q is a bounded star-shaped domain in R®, d > 3, with
C?7 boundary, such that (5) holds for some Cp >0. If f(z) is positive for large val-
ues of z, of class C* and satisfies (7) and (8), then there exists a positive constant
Ao such that Eq. (1) has at most one solution in L° N H () for any A € (0, o).

Proof. We follow the lines of the proof of [64] with some minor simplifications. Up
to a translation, we can assume that € is star-shaped with respect to the origin.
Assume that (1) has two solutions, u and u+v. With no restriction, we can assume
that u is a minimal solution and satisfies (7). As a consequence, v is non-negative
and satisfies

Av+ X [f(u+v) — f(uw)] =0. 9)
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If we multiply (9) by v and integrate with respect to = € €2, we get

/\Vv|2d:r = )\/v [flu+v) — f(u)] dz. (10)

Q Q

Multiply (9) by z - Vo and integrate with respect to 2 € Q to get

%/\szder%/Wv\z(xou(x))da
Q 19}

:d/\/[F(quv) — F(u) — F'(u)v] dz
Q
2 [ 90) Fat o) = fw) - ()] do (1)
Q

where do is the measure induced by Lebesgue’s measure on 0f2. Recall that F is
a primitive of f such that F(0) = 0. Take n; € (1, (d—2)/(2d)) where n is defined
in Assumption (8). Since u = uy is a minimal solution and, therefore, uniformly
small as A — 04, for any € > 0, we obtain |z - Vu| < ¢ for any x € Q, provided
A > 0 is small enough. Define h. by

he(u,v) :=d [F(u+v) = F(u) = F'(u) v] + € [f(u+v) = f(u) = f(u)v]
—dmov [futv) = f(u)].

Because of the smoothness of f and by Assumption (8), the function h.(u,v)/v?
is bounded from above by some constant H, uniformly in € > 0, small enough. By
the assumption of star-shapedeness of the domain Q, = - v(x) > 0 for any x € 9.
From (10) and (11), it follows that

d—2
Airf/ﬁvm2¢ngdAf{/ﬂm2dx+dn1/ﬂvuPdm
Q Q Q

Due to the Poincaré inequality (5), the condition

VoL (d=2
CoH \ 24 ™

implies v = 0 and the uniqueness follows. O

Examples.

1. If f(u) = e*, Condition (8) is always satisfied. Notice that if d = 2 and Q is a
ball, the uniqueness result is not true, see [40].

2. If f(u) = (14 u)?, d > 3, Condition (8) holds if and only if p > 9+2. Also see
[40] for more details. Similarly in the same range of parameters for f(u) = u”

we only get the trivial, zero solution.
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3. The Fermi-Dirac distribution

fu) = fs(u) = [ ———dt (12)
0/ 1+e

behaves like ﬁllu‘;“ as u — oo. Condition (8) holds if and only if 6 +1 >
(d+2)/(d—2). The physically relevant examples require that 6 = d/2—1, i.e.,
d > 2 (14 +/2) ~ 4.83. For more properties of these functions see, e.g., [9,12].

2.2. The Non-Local Bifurcation Problem

In this section we address, in L N H}(Q), the non-local boundary value prob-
lem (3) with parameter x > 0. Here © is a bounded domain in R?, d > 3, with C*
boundary.

We start with a non-existence result. Computations are similar to the ones
of Sect. 2.1 and rely on Pohozaev’s method. First multiply (3) by u to get

/|Vu|2 dz = f};uf . (13)

Multiplying (3) by (z - Vu), we also get

72/|Vu\2d:c+%/|Vu|2 (m~y)do—dﬂm (14)
Q Gle)

where F is the primitive of f chosen so that F(0) = 0 and do is the measure
induced by Lebesgue’s measure on 9). A simple integration of (3) gives

n:f/Audx:f/qu/da.

Q o0

By the Cauchy—Schwarz inequality,
2

/Vu~uda < |am/|vu-u|2da=|am/|vu|2da,

where the last equality holds because of the boundary conditions. Assume that €2
is strictly star-shaped with respect to the origin

o= zle%fﬂ(x -v(x)) > 0. (15)

Because of the invariance by translation of the problem, this is equivalent to assume
that © is strictly star-shaped with respect to any other point in R?. Hence

/|Vu|2 (z-v)do > a /|vu\2 do > O
= =109

[2}9) o0
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Collecting this estimate with (13) and (14), we obtain

[l2ar@ - @-2usw) o |m|/f

Q
As a straightforward consequence, we obtain the following result.

Theorem 4. Assume that Q is a bounded domain in R, d > 3, with C* boundary
satisfying (15) for some o > 0. If f is a C* function such that for some C > 0,

2dF(u) < (d—2)u f(u) +C f(u) (16)
for any u > 0, then (3) has no solution in L™ N H}(Q) if kK > C'|0Q/a.

Standard examples, for which Condition (16) is satisfied, are:

1. Exponential case: f(u) = e* with C' = 2d, ¢f. [7]. A sharper estimate can be
easily achieved as follows. The function h(u) := Ce*+(d—2) ue* —2d (e*—1)
is non-negative if C' is such that 0 = h'(u) = h(u) for some u > 0. After elim-
inating u, we find

C=d+2+(d-2) 10g<d2d2> (17)
2. Pure power law case: If f(u) = uP, the result holds with p > % and C =0,
cf. [36,76]. There are no non-trivial solutions.

3. Power law case: If f(u) = (1 + w)? with p >

C=d-2.

Uniqueness results in the non-local case follow from Sect. 2.1, when the cou-
pling constant k is positive, small. In case of non-linearities of exponential type,
as far as we know, uniqueness results were guaranteed only under some additional
assumptions, see [10,11]. We are now going to extend such uniqueness results to
more general non-linearities satisfying (7) and (8) by comparing Problems (1)

922 then (16) holds with

and (3).
Denote by uy the solutions of (1 ) For A > O small, a branch of solutions
of (3) can be parametrized by A — (k(X) := A [, f(ux) dz, uy). Reciprocally, if ©2

is bounded and
0<g:= inf f(u),

then any solution u € L> N Hg(2) of (3) is also a solution of (1) with

)\ =

K < B
Jo flu) dz = BlQf

This implies that A is small for small x and, as a consequence, for small values
of k, all solutions to (3) are located somewhere on the local branch originating
from (0,0). Moreover, as k — 04, the solution of (3) also converges to (0,0). To
prove the uniqueness in L> N H}(Q) of the solutions of (3), it is, therefore, suf-
ficient to establish the monotonicity of A +— r(A) for small values of X\. Assume
that
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f(0) > 0 and f is monotone non-decreasing on R*. (18)

Under this assumption, we observe that 5 = f(0).
Let u; and ug be two solutions of (1) with A\ < Ay and let v := ugy — uy.
Then for some function 6 on €, with values in [0, 1], we have

—Av =X fl(ur +0v)v = (A2 — \) f(uz) >0,

so that, by the Maximum Principle, v is non-negative. Notice indeed that for A,
small enough, u; and wus are uniformly small since they lie on the local branch,
close to the point (0,0) and, therefore, A; f'(u; + 6 v) < 1/Cp. It follows that

/qu dl’—/ful+ﬂ dx>/fu1

thus proving that k(A2) = Xa [, f(uz) dz > Ay [, f(u1) dz = K(A1).

Corollary 5. Under the assumptions of Theorem 3, if moreover f satisfies (18),
then there exists a positive constant ko such that Equation (3) has at most one
solution in L> N HY(Q) for any k € (0, ko).

3. The Additive Case

3.1. The Local Bifurcation Problem

Consider in L>* N H}(Q) (2). In the two standard examples of this paper the

problem can be reduced to (1) as follows.

1. Ezponential case: If f(u) = e*, (2) is equivalent to (1) with A = e* and the
limit A — 04 corresponds to y — —oo.

2. Power law case: If f(u) = (1+u)?, (2) is equivalent to (1) with A = (14 pu)P~?
and the limit A — 04 corresponds to y — —14. If u is a solution of Au+ (1+
u+ )P = 0, one can indeed observe that v such that 1+u+p = (1+p)(1+v)
solves Av + A (14 v)P = 0 with A = (1 + p)P~ 1.

Equation (2) is however not completely equivalent to (1). To obtain a non-
existence result for large values of p, we impose the assumption that reads
e ACO R (19)
u— 00 u
Proposition 6. Assume that (5), (6) and (19) hold. There exists j1. > 0 such that
(2) has no positive, bounded solution in H}(Q) if p > pi..

Proof. The proof is similar to the one of Proposition 2. Let ¢; be a positive
eigenfunction associated with the first eigenvalue Ay = 1/Cp of —A in H}(Q2). For
any f > 0,

/\1/us01 dx:/f(ﬂ+u)<m dzZ/\(u)/(quu)sol deA(u)/uwl dz,

Q Q Q Q
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where A(p) := infg>,, f(s)/s, thus proving that there are no non-negative solutions
if A(p) > A1 O

Let us make a few comments on the existence of a branch of solutions,
although this is out of the main scope of this paper. Let f be a positive func-
tion of class C? on (fi,00), for some i € [—00,00), with lim, .z, f(p) = 0. We
shall assume that there is a branch of minimal solutions (p,u,) originating from
(f1,0) and such that

Jim, (Il (o) + [Vl o= @)) = 0. (20)

This can be guaranteed if € is bounded and if we additionally require that the
function f is increasing, as in [71] for the Fermi-Dirac model. This is also true
for exponential and power-like non-linearities. At least at a formal level, this can
easily be understood by taking ¢ = f’(u) as a bifurcation parameter. A solution
of (2) is then a zero of F(C,u) = u — (—A)"" f(u+ (f/)"(¢)) and it is therefore
easy to find a branch issued from (¢, u) = (0,0) by applying the implicit function
theorem at ({,u) = (0,0) with F(0,0) = 0, even if i = —oo. Using comparison
arguments, one can prove that this branch is a branch of minimal solutions.

We shall now address the uniqueness issues. We assume that (8) holds:

d—2 F(u) —
Vme(m;3)7 %ﬁ?“&uﬁgﬂm

As a consequence, for any p > i,

F(o+p) = F(p) — F'(p)v —mo [f(v+p) — f(1)]
is negative for large v, and the function H (v, u,71) defined by

VCH, pm) = Fo+p) — F(p) — F'(p)v —mo [f(v+ @) — f(w)]

achieves a maximum for some finite value of v. With H (x,n1) = sup,~o H(v, i, m1),
we have

Fv+p)— F(p) — F'(p)v—mo [f(v+p) — F(R)] < H(p,m) v*. (21)

Next we assume that, for some 7; € (77, %), we have

=n—-—n<0.

-2
24 — M, (22)

where Cp is the Poincaré constant. This condition is non-trivial. It relates H (i, 11),
a quantity attached to the non-linearity, to Cp which has to do only with Q. It is
satisfied for all our basic examples.

d
CP H(M»nl) <

1. Ezponential case: If f(u) = e*, we take p negative, with |u| big enough.
Indeed, using the homogeneity, one obtains H(v, u, 1) = e* H(v, 0,71 ). Since
lim, o, H(v,0,m) = (1 —27:)/2 and H(v,0,7:) becomes negative as v —
+00, as a function of v € RT, H(v,0,7;) admits a maximum value. To get
a more explicit bound, we take a Taylor expansion at second order, namely
e??(1 —2n, — 01 0v)/2 for some intermediate number § € (0,1). An upper
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bound is given by 7, e!/m =3 /2, which corresponds to the above expression
evaluated at fv = 1/n; — 3. According to (8), n = 0: taking 7; small enough
guarantees (22).

2. Power law case: If f(u) = (14u)?, we have H (v, p,m) = (1+p)P T H(w, 0,m1)
where w = v/(u+1). Since lim, o, H(v,0,71) = p(1—-2n1)/2 and H(v,0,7:)
becomes negative as v — +o00, H achieves a positive maximum.

3. Fermi-Dirac distribution case: If f(u) = fz/2—1(u), we observe that

) f(u) d—2

S ) 2w S 2d >
if d > 2(1 + +/2), which is stronger than Assumption (8), as can easily be
recovered by integrating f/(u) —n [u f(u) + 2 f'(u)] twice, for large values of
u. Take 1 € (n,(d —2)/(2d)). A Taylor expansion shows that

H(v, pym) = f'(w) —m (uf"(u) +2 f'(w) + pm f ()

= a | £ = T )+ 2 @) + (= by £ (w)

11:7727”7;1, = 2771("11:”’77?71) and u = pu+ v for some 6 € (0,1). Both

terms in the above right-hand side are negative for u large enough, which
proves the existence of a constant H(u,7;) such that (21) holds. Notice that
by [12, Appendix], f and its derivatives behave like exponentials for u < 0,
|u| large. Under the additional assumption d > 6, a tedious but elementary
computation shows that, as 4 — —oo, the maximum of

w a [f'(u) = TG (u " (u) + 2 /()] + (= bu)my [ (u)
is achieved at some uw = o(p), which proves that lim,_, o H(p,m) = 0.
Moreover, for any d > 2(1 + +/2) one can still show that this maximum value

behaves like exp () and thus can be made arbitrarily small for negative u with
|| large enough.

with a =

Assume that (2) has two solutions, v and u + v, with v > 0, and let us write
the equation for the difference v as

Av+ flud+v+p) — flu+p) =0. (24)

The method is the same as in Sect. 2. Multiply (24) by « - Vv and integrate with
respect to x € Q. If F' is a primitive of f such that F'(z) = 0, then

-2 1
dT/\VUFdx—I—§/|VU|2(x-y(x))dU
Q o0

=d/[F(U+v+u)—F(U+u)—F’(U+u)v]dw

Q
+/(I~VU)[f(U+v+u)—f(u+u)—f’(U+u)v}dx-
Q
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Assume that (22) holds for some 7;. If © is bounded, |z - Vu/| is uniformly small
as [t — [y, and we may assume that for any € > 0, arbitrarily small, there exists
1o > [, sufficiently close to i (i.e., o — i > 0, small if i > —o0, or pg < 0, |uol
big enough if i = —00), such that |z - Vu| < ¢ for any z € Q if u € (@, o). Next
we define
he(v) == d [F(z +v) — F(z) = F'(z)v] + €| f(z +v) = f(2) = f'(z) v
—dmuv[f(z+v) - f(2)].

where z = u + p. Using the star-shapedeness of the domain €2, we have

2 [P as < [hwastdn [oli+o) - s
Q Q

Q

Up to a small change of 71, so that Condition (22) still holds, for £ > 0, small
enough, we get

L he(v) < Fz+v) = F(2) — F'(z) o~ o [f( 4 0) ~ f(2)]

As e — 04, z converges to p uniformly and the above right-hand side is equivalent
to F(v+u) — F(u) — F'(p)v—m1v[f(v+p) — f(w)]. For some 6 > 0, arbitrarily
small, we obtain

S hel0) < (H () +6)2?

From (24) multiplied by v, after an integration by parts we obtain

/|Vv|2dx / (z +v) — f(2)] da.

Q

Hence we have shown that

d—2
(- m) [1vear < Gum) +6) [ i an
Q Q

By the Poincaré 1nequahty 5), the left-hand side is bounded from below by

-2
( - 771) / |Vol? dz > — (2d - 771> /|v|2dx.
)

Summarizing, we have proved that, if [, [v|* da # 0, then, for an arbitrarily small
6 >0,

1 [/d—2

o (—771) < H(p,m)+46

if w—p > 0issmall if @ > —o0, or u < 0, |u| big enough if i = —oo. This
contradicts (22) unless v = 0.
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Theorem 7. Assume that Q is a bounded star-shaped domain in R, with C*7
boundary, v € (0,1), such that (5) holds. If f € C? satisfies (8) and (22), if
lim, .z f(n) = 0, then there exists a pio € (i, 00) such that Equation (2) has at
most one solution in L> N HY(Q) for any u € (f, po)-

In cases of practical interest for applications, one often has to deal with the
equation Au + f(x,u + u) = 0. Our method can be adapted in many cases, that
we omit here for simplicity. The necessary adaptations are left to the reader.

3.2. The Non-Local Bifurcation Problem

In this section we address problem (4) with parameter M > 0, in a bounded star-
shaped domain  in R?. Consider in L> N HZ () the positive solutions of (4),
ie., of

Au+ f(u+p) =0 (25)
where p is determined by the non-local normalization condition
M = /f(u+u) dz. (26)
Q
We observe that in the exponential case, f(u) = e", (4) is equivalent to the

non-local multiplicative case (3). Condition (26) is indeed explicitly solved by
et [ et dr =M = k.

Non-existence results for large values of M can be achieved by the same
method as in the multiplicative non-local case. If we multiply (25) by u and (z-Vu),
we get

/|vu|2 do = /uf(u+u)dw,

Q Q
d—2 1
—5 / |Vu|?dz + 5 / |Vu|? (z - v)do = d /(F(u +u) — F(p))de.
Q [219) Q
The elimination of [, |[Vu|? dz gives

/[2d(F(U+u)—F(u))—(d—2)Uf(U+u)]darZ/\VUIQ(JC'V)dCL
Q o

By the Cauchy—Schwarz inequality, we know that
2

M? = /Vu-l/da < |6Q|/|vu|2da.
o o
If (15) holds, then, as in Sect. 2.2,

aM? < |09 / |Vul? (z - v)do.
o0
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Summarizing, we have found that
2

aM
> W' (27)

[ 24 (Pt ) = Fw) - @~ 2)u fu + ) da
Q

This suggests a condition similar to the one in the multiplicative case, (16). Define
Gu) = sup[2d (F(z) = F(p)) = (d=2) f(2) (= = )]/ f(2).
Z>p

If f is supercritical in the sense of (8), G is well defined, but in some cases, it also
makes sense for d = 2. For simplicity, we shall assume that G is a non-decreasing
function of p. As a consequence, we can state the following theorem, which gen-
eralizes known results on exponential and Fermi-Dirac distributions, c¢f. [7] and
[71,72], respectively.

Theorem 8. Assume that Q is a bounded domain in R?, d > 2, with C* boundary
satisfying (15) for some a > 0. If f is a C' positive, non-decreasing function such
that (8) holds and if G is non-decreasing, then (4) has no solution in L>°NHZ () if

M>@(Gof—1) <|QM|)

Here by f~! one has to understand the generalized inverse given by f~1(¢) :=
sup{s € R: f(s) < t}.

Proof. From the above definitions and computations, we have

aM?

—— < G(p) M.

0] = (1)
Since f is non-decreasing and the solution u of (25) is positive, while M = fQ fu+
wu)da > f(u) |, this completes the proof.

Theorem 8 can be illustrated by the following examples.

1. Exponential case: if f(u) = e* and d > 3, then G(u) = d+2+(d—2) log(%)
does not depend on p. If d = 2, G(u) = 4. In both cases (4) has no bounded
solution if M > |0Q| G/«. We recover here the condition corresponding to (17)
and Theorem 4.

2. Power law case: if f(u) = u? with p > %2 then G(p) = pG(1). Using
w < (M/|Q)YP, it follows that (4) has no bounded solution if

st GO o0

o Qe

3. Fermi-Dirac distribution case: If f(u) = fs(u) where f5 is the Fermi-Dirac
distribution defined by (12) with § = d/2 — 1 and d > 2(1 + /2), then f is
increasing, F = % fas2 is the primitive of f such that lim, . o F(u) =0,

Gy = sup [4fd/2(2') —(d— 2)zfd/2,1(z)} =sup[2d F(z) — (d—2) z f(2)]
z€R z€R
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is finite according to [12, Appendix] and depends only on the dimension d.
It is indeed known that f5 = 0 fs—1, f5(2) ~ I'(6 +1)e* as z — —oo and
f5(2) ~u’t1 /(6 +1) as z — +oo. From (27), we deduce that

on2

aa] = 2d (F(2) = F(p) = (d=2)z f(2)] do + (d = 2) [ pf(z) dx

Q Q

with 2z := u + . By dropping the term F(u), we see that the first integral in
the right-hand side is bounded by Gy \Q| and the second one by (d — 2)u M.
Since f is increasing and w positive, f(u) || < fQ z)dx = M and therefore
u< f~HM/|Q|)). As a consequence, (4) has no bounded solution if

aM2>|8§2|[Gd\QI+(d 2)M f~ (\QI)}

For a similar approach, one can refer to [72].

Denote by w, a branch of solutions of (2) satisfying (20). For p— > 0,
small if 1 > —o0, or 1 < 0, |u| big enough if ﬂ = —00, a branch of solutions of (4)
can be parametrized by p +— ( fQ (up + p)de, u#) Reciprocally, if Q
is bounded, then any solution u E L°o N H () of (4) is of course a solution of
(2) with u = pu(M) determined by (26). If f is monotone increasing, we addition-
ally know that i < p < f~1(M/|Q]). To prove the uniqueness in L> N H3 ()
of the solutions of (4), it is therefore sufficient to establish the monotonicity of
w— M(u). Assume that

lim f(p) = lim f'(u) =0 and f is monotone increasing on (j1,00). (28)
p— p—p
The function v := du,,/du is a solution in Hg () of
Av+ f'(u, 4+ p) (1+v) =0.

As in the proof of Corollary 5, by the Maximum Principle, v is non-negative when
1 is in a right neighborhood of fi, thus proving that

— [ F o)
Q

is non-negative. Using Theorem 7, we obtain the following result.

Theorem 9. Assume that Q is a bounded star-shaped domain in R¢ with C?7
boundary. If f € C? is non-negative, increasing, satisfies (5), (8), (22), and (28),
then there exists Mo > 0 such that (4) has at most one solution in L> N H ()
for any M € (0, My).

4. Concluding Remarks

Uniqueness issues in non-linear elliptic problems are difficult questions when no
symmetry assumption is made on the domain. In this paper, we have considered
only a few simple cases, which illustrate the efficiency of the approach based on
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Pohozaev’s method when dealing with bifurcation problems. Our main contribu-
tion is to extend what has been done in the local multiplicative case to the additive
case, and then to problems with non-local terms or constraints.

The key point is that Pohozaev’s method, which is well known to provide non-
existence results in supercritical problems, also gives uniqueness results. One can
incidentally notice that non-existence results in many cases, for instance super-
critical pure power law, are more precisely non-existence results of non-trivial
solutions. The trivial solution is then the unique solution.

The strength of the method is that minimal geometrical assumptions have
to be done, and the result holds true even if no symmetry can be expected. As
a non-trivial byproduct of our results, when the domain {2 presents some spe-
cial symmetry, for instance with respect to a hyperplane, then it follows from the
uniqueness result that the solution also has the corresponding symmetry.
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