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Poisson and Diffusion Approximation
of Stochastic Master Equations with Control

Clément Pellegrini

Abstract. Quantum Trajectories are solutions of stochastic differential
equations. Such equations are called Stochastic Master Equations and describe
random phenomena in the continuous measurement theory of Open Quantum
System. Many recent developments deal with the control of such models, i.e.
optimization, monitoring and engineering. In this article, stochastic models
with control are mathematically and physically justified as limits of concrete
discrete procedures called Quantum Repeated Measurements. In particular,
this gives a rigorous justification of the Poisson and diffusion approximations
in quantum measurement theory with control.

1. Introduction

The study of the evolution of a small quantum system H0 undergoing an indirect
and continuous measurement (the small system is in contact with an environment
and the measurement is performed on the environment) is central in the Theory
of Open Quantum System. Usually, the evolution of the system is described by
classical stochastic differential equations called Stochastic Master Equations. Two
characteristic examples are the diffusive equation and the jump equation.
1. The diffusive equation (Homodyne detection experiment) is given by

dρt = L(ρt) dt +
(
ρtC

� + Cρt − Tr
[
ρt(C + C�)

]
ρt

)
dWt, (1)

where Wt describes a one-dimensional Brownian motion.
2. The jump equation (photon counting experiment) is

dρt = L(ρt)dt +

(
J (ρt)

Tr
[J (ρt)

] − ρt

)(
dÑt − Tr

[J (ρt)
]
dt
)
, (2)

where Ñt is a counting process with stochastic intensity
∫ t

0
Tr[J (ρs)]ds.
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More complicated models are described by jump-diffusion equations which need
mixing of the both previous equations (see [6,33]). Solutions of such equations are
called Quantum Trajectories and they describe the evolution of the state of the
small system.

Recent progresses and developments in quantum optics and quantum infor-
mation theory need a highest precision in experimentations using measurement
[20] (sensitivity, miniaturization, optimization, etc.). This introduces the notion
of control and monitoring of quantum systems. Two types of control are usually
considered: deterministic and stochastic.

A basic example of deterministic control is the one of an atom monitored by
a laser. In this context, the control is represented by the modification of the inten-
sity of the laser. The word “deterministic” involves implicitly that the intensity
is a non-random function of time. This setup is also called Open Loop Control.
Experimentally, it is used to prepare systems in specific states.

Concerning stochastic control in the setup of continuous indirect measure-
ment, an important class is called Closed Loop Control or Feedback Control [10,
37]. Here, depending on the information resulting from the measurement, one can
choose special strategies of control. As a result of that measurement is random in
quantum mechanics, the control becomes naturally random.

From a theoretical point of view, an important question is to lay out a math-
ematical setup to model the control in order to describe the evolution of controlled
quantum systems.

Usually in the literature, in order to obtain and justify the stochastic master
equations (1) and (2), Quantum Filtering theory [11] or Instrumental Process the-
ory [8] is used. Such techniques are based on the Hilbertian formalism of Quantum
Mechanics and on the theory of Stochastic Quantum Calculus. It uses analytic
machinery and all the subtleties of the non-commutative character of quantum
probability (conditional expectation in Von Neumann Algebra, partially observed
system, etc.). The starting point is the description of interaction between a sys-
tem and an environment in terms of quantum stochastic differential equations (also
called Hudson Parthasarathy Equations [29]). In order to apply such frameworks in
the control setup, the theory must satisfied the non-commutative character of the
quantum mechanics theory. Even if it is satisfied, the derivation and the obtain-
ing of stochastic master equations with control are far from being obvious and
intuitive (see [13]).

Recently, in the framework of the description of the interaction of a small
system with an environment (without measurement), in [4], the authors have intro-
duced a discrete model of interaction: Quantum Repeated Interactions. The basic
model is the one of a small system H0 in contact with an infinite chain of quantum
system

⊗∞
j=1 H. One after the other, each copy of H interacts with H0 during a

time h.
Such an approach of open quantum system yields a “good” and “useful”

approximation model of continuous-time interaction models. Indeed by rescal-
ing this interaction with respect to the time h, it is shown that the models
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of interaction (described by quantum stochastic differential equations) can be
obtained as continuous limits (h goes to zero) of discrete models. In the mea-
surement setup, this approach has been adapted in [31] and [32]. In these arti-
cles, it is shown that solutions of (1) and (2) can be obtained as continuous lim-
its of discrete time models of quantum measurement. These models are called
Quantum Repeated Measurements. The idea of discrete indirect measurements
consists in performing a measurement of an observable of H after each inter-
action between H0 and a copy of H. The evolution of the state of H0 is then
described by a random discrete process called discrete quantum trajectory. In this
case, the approach of the theory of stochastic master equations via approximation
results is essentially based on classical probability theory (there are no problems of
commutativity).

The main aim of this article is to adapt such techniques in the framework of
control. The notion of control in the model of quantum repeated measurements is
presented. Next, by adapting convergence results of [31] and [32], we obtain the
description of stochastic master equations with control. Within this approach, all
the problems concerning non commutativity are avoided and the physical justifi-
cation of stochastic models is rigorous and intuitive.

This article is structured as follows:
The first section is devoted to present discrete models of quantum measure-

ment with control theory. We remind the mathematical model of quantum repeated
interactions. Next, we introduce an appropriate notion of control in this setup and
by introducing the measurement principle, we obtain the description of discrete
quantum trajectory with control. Next, in order to prepare final convergence results,
we adapt and enlarge the asymptotic assumptions presented in [4] to the context
of control. To investigate such problems, we focus on a central case in physical
applications: a two-level atom in contact with a spin chain.

The second section is then devoted to continuous models. The main aim
is to derive the equivalent of (1) and (2) with control. To this end, we apply
the asymptotic assumptions on the two-level atom model of Sect. 1. We then
obtain two different discrete evolution equations (in asymptotic form) describing
the evolution of the state of H0. Each evolution equation describes the evolu-
tion of a discrete quantum trajectory with control for a specific observable. For
each equation, we investigate the continuous limit equation and we show the
convergence.

In the last section, we present an application of a deterministic control: an
atom monitored by a laser. By modelling a suitable discrete model and by adapt-
ing the result of Sect. 2, we obtain the continuous stochastic model. Concerning
applications of stochastic control, we refer for example to the existing literature of
feedback control [10,25,36,37]. An important application of stochastic control is
the concept of Optimal Control (see [28,34] for a classical approach and [14,15,38]
for some quantum applications).
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2. Discrete Controlled Quantum Trajectories

This section is devoted to the presentation of the model of discrete quantum tra-
jectories in presence of external control.

2.1. Repeated Quantum Measurements with Control

In order to introduce the theory of control, we need to remind the general context
of quantum repeated interactions.

A small system, represented by a Hilbert space H0, is in contact with an
infinite chain of identical independent quantum systems. Each piece of the envi-
ronment is represented by a Hilbert space H and interacts, one after the other,
with H0 during a time interval h (a copy of H can represent an incoming photon
or a measurement apparatus, etc.).

The space describing the first interaction between H0 and H is defined by the
tensor product H0 ⊗ H. The evolution is given by a self-adjoint operator Htot on
the tensor product. This operator is called the total Hamiltonian and its general
form is

Htot = H0 ⊗ I + I ⊗ H + Hint,

where the operators H0 and H are the free Hamiltonians of each system. The
operator Hint represents the Hamiltonian of interaction. This allows to define a
unitary-operator of evolution

U = eih Htot .

In this way, the evolution of states of H0 ⊗ H, in the Schrödinger picture, is given
by

ρ �→ U ρU�.

After the first interaction, a second copy of H interacts with H0 in the same fash-
ion and so on. For the whole sequence of interactions, the state space is described
by

Γ = H0 ⊗
⊗
k≥1

Hk, (3)

where Hk denotes the kth copy of H. The countable tensor product
⊗

k≥1 Hk

means the following. Consider that H is of finite dimension and that {e0, e1, . . . , en}
is a fixed orthonormal basis of H. The orthogonal projector on Ce0 is denoted by
|e0〉〈e0|. This is the ground state (or vacuum state) of H. The tensor product is
taken with respect to e0 (for more details, see [4]).

The unitary evolution describing the kth interaction is given by Ũk which
acts like U on H0 ⊗Hk and acts like the identity operator on the rest of the space.
If ρ is a state on Γ, the effect of the kth interaction is then ρ �→ Ũk ρ Ũ�

k . Hence,
the sequence of interactions is described by a sequence of unitary operators (Vk)
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defined by Vk = Ũk Ũk−1 . . . Ũ1, for all k. In the Schrödinger picture, the effect of
k interactions is given by

ρ �→ Vk ρ V �
k .

Now, we are in the position to introduce the theory of control. An action of
control consists in modifying the interaction at each new step depending on the
previous step. Therefore, the operator Ũk, describing the kth interaction, depends
on two parameters. It depends on the time of interaction h and on a term uk−1,
which gives account of the control. The operator Ũk is then denoted by Ũk(h, uk−1).

The whole sequence u = (uk) is called a control strategy. For instance, we
leave non precise the definition of the terms (uk) (it can depend either on some
constraints, or on experimental conditions or on the evolution of the small system).
In terms of u, the k first interactions are then described by the unitary-operator
V u

k

V u
k = Ũk(h, uk−1) Ũk−1(h, uk−2) . . . Ũ1(h, u0). (4)

Finally, the evolution in presence of control is given by

ρ �→ V u
k ρ (V u

k )�. (5)

Now, we are in the condition to describe repeated quantum measurements in the
presence of control. Next, we make precise the definition of the control strategy.

Let us describe the basic procedure on each piece of the chain. Let A be
an observable on Hk with spectral decomposition A =

∑p
j=0 λjPj . Its natural

ampliation, as an observable on Γ, is given by

Ak :=
k−1⊗
j=0

I ⊗ A ⊗
⊗

j≥k+1

I. (6)

The accessible data with a measurement are the eigenvalues of Ak and the result
of the observation is random. If ρ is any state on Γ, we observe λj with probability

P
[
to observe λj

]
= Tr

[
ρP k

j

]
, j = 0, . . . , p,

where the operator P k
j corresponds to the ampliation (6) of the eigenprojector Pj .

If we have observed the eigenvalue λj , the wave packet reduction principle imposes
the state after the measurement to be

ρj =
P k

j ρP k
j

Tr
[
ρP k

j

] .

Quantum repeated measurements are the combination of this previous princi-
ple and the successive interactions (5). After each interaction, a quantum measure-
ment induces a random modification of the state of the system. It defines a discrete
process which is called discrete controlled quantum trajectory. The description is
as follows:
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The initial state on Γ is chosen to be

µ = ρ ⊗
⊗
j≥1

βj ,

where ρ is any state on H0 and each βi = β, where β is any state on H. The state
after k interactions is denoted by µu

k , and we have µu
k = V u

k µ (V u
k )�.

The probability space describing the experience is ΣN
�

, where Σ = {0, . . . , p}.
The integers i correspond to the indexes of the eigenvalues of A. We endow ΣN

�

with the cylinder σ-algebra C generated by the cylinder sets

Λi1,...,ik
=
{
ω ∈ ΩN

�

/ω1 = i1, . . . , ωk = ik
}
, k > 0.

Remarking that for all j, the unitary operator Ũj commutes with all the projectors
P k, for k < j, we can define the following operator:

µ̃u
k (i1, . . . , ik) = I ⊗ Pi1 ⊗ . . . ⊗ Pik

⊗ I . . . µu
k I ⊗ Pi1 ⊗ . . . ⊗ Pik

⊗ I . . .

= P k
ik

. . . P 1
i1 µu

k P 1
i1 . . . P k

ik
,

for any set {i1, . . . , ik}. This is the non-normalized state corresponding to the suc-
cessive observations of λi1 , . . . , λik

. Now, we can define the probability measure on
the cylinder sets

P
[
Λi1,...,ik

]
= P

[
to observe λi1, . . . , λik

]
= Tr

[
µ̃u

k (i1, . . . , ik)
]
.

This probability satisfies the Kolmogorov Consistency Criterion. Hence, this
defines a unique probability measure on ΣN

�

. The discrete quantum trajectory
with control strategy u on Γ is described by the following random sequence of
states:

ρ̃u
k : ΣN

� −→ B(Γ)

ω �−→ ρ̃u
k (ω1, . . . , ωk) =

µ̃u
k (ω1, . . . , ωk)

Tr
[
µ̃u

k (ω1, . . . , ωk))
] .

From this description, the following result is obvious:

Proposition 1. Let u be any strategy and let (ρ̃u
k ) be the above random sequence of

states. We have

ρ̃u
k+1(ω) =

P k+1
ωk+1

Ũk+1(h, uk) ρ̃u
k (ω) Ũ�

k+1(h, uk)P k+1
ωk+1

Tr
[
ρ̃u

k (ω) Ũ�
k+1(h, uk)P k+1

ωk+1 Ũk+1(h, uk)
] ,

for all ω ∈ ΣN
�

and all k > 0.

In general, one is only interested in the reduced state of the small system.
This state is given by the partial trace operation. Let us recall what partial trace
is. Let Z be any Hilbert space, the notation TrZ [W ] corresponds to the trace of
any trace-class operator W on Z.
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Definition-Theorem 1. Let H and K be any Hilbert spaces. Let α be a state on the
tensor product H ⊗ K. There exists a unique state η on H which is characterized
by the property

TrH[ η X ] = TrH⊗K[α(X ⊗ I) ],

for all X ∈ B(H). The state η is called the partial trace of α on H with respect
to K.

For any state α on Γ, denote E0[α] the partial trace of α on H0 with respect
to
⊗

k≥1 Hk. We then define the reduced discrete controlled quantum trajectory
(ρu

n) on H0 by putting

ρu
n(ω) = E0

[
ρ̃u

n(ω)
]
, (7)

for all ω ∈ ΣN
�

. The states, constituting the sequence (ρu
n), are called a posteriori

states. The following proposition is the equivalent of Proposition 1 for (ρu
n).

Proposition 2. Let u be any strategy and (ρu
k ) be the random sequence defined by

(7). For all k > 0, we consider the unitary operator Uk(h, uk−1) defined on H0 ⊗H
and acting as Ũk(h, uk−1) on H0 ⊗ Hk. Hence, we have

ρu
k+1(ω) = E0

[
I ⊗ Pωk+1 Uk+1(h, uk) (ρu

k (ω) ⊗ β) U�
k+1(h, uk) I ⊗ Pωk+1

Tr
[
(ρu

k (ω) ⊗ β) U�
k+1(h, uk) I ⊗ Pωk+1 Uk+1(h, uk)

]
]
,

for all ω ∈ ΣN
�

and all k > 0.

Let us stress that in this proposition, the partial trace is taken along H (we
have kept the same notation E0).

Remark. At this stage with Proposition 2, we can define clearly which kind of con-
trol strategies u = (uk) we consider in this article. Previously, we have introduced
these parameters in the quantum repeated interactions model without measure-
ment. In this setup, one could suppose that the control is fixed and not linked
with the procedure of measurement. However, a main aim of control theory is to
choose a new strategy uk at each step depending on the influence of the measure-
ment. As a consequence, at time k + 1, we consider that the control parameter
uk depends on the past of discrete quantum trajectory, that is, we consider terms
of form uk = uk(h, ρu

k , ρu
k−1, . . . , ρ

u
0 ) (in all the following formulas, we keep the

notation uk to enlighten the expressions). In this way, the control depends on the
observations through their effects on the small system.

Two special cases of control are the deterministic and the Markovian controls.
This is the topic of the following definition.

Definition 1. A control strategy u, corresponding to a trajectory (ρu
k ), is called

deterministic if there exists a function u from R to R
n such that for all k

uk = uk(h, ρu
k , . . . , ρu

0 ) = u(kh).
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A control strategy u, corresponding to a trajectory (ρu
k ), is called Markovian

if there exists a function u from R × B(H0) to R
n such that for all k

uk = uk(h, ρu
k , . . . , ρu

0 ) = u(kh, ρu
k ).

If for all k, we have uk = uk(h, ρu
k , . . . , ρu

0 ) = u(ρu
k ), then this is a homogeneous

Markovian strategy.

The following theorem is an easy consequence of Proposition 2 and of the
previous Definition.

Theorem 1. Let u be either a deterministic or a Markovian strategy. Then on
(ΣN

�

, C, P ), the sequence (ρu
n) is a Markov chain valued on the set of states of H0.

More precisely, if ρu
n = χn then ρu

n+1 takes one of the values

E0

[
I ⊗ Pi Un+1(h, un) (χn ⊗ β)U�

n+1(h, un) I ⊗ Pi

Tr
[
Un+1(h, un) (χn ⊗ β)U�

n+1(h, un) I ⊗ Pi

]
]
, i = 0 . . . p,

with probability Tr
[
Un+1(h, un) (χn ⊗ β)U�

n+1(h, un) I ⊗ Pi

]
.

With the description of Theorem 1, we can express a discrete evolution equa-
tion describing the discrete quantum trajectory (ρu

k ). By putting

Lu,k
i (ρ) = E0

[
I ⊗ Pi Uk(h, uk−1) (ρ ⊗ β)U�

k (h, uk−1) I ⊗ Pi

]
, i = 0 . . . p,

and 1k
i (ω) = 1i(ωk) for all ω ∈ ΣN

�

, the discrete process (ρu
k ) then satisfies

ρu
k+1(ω) =

p∑
i=0

Lu,k+1
i (ρu

k (ω))

Tr
[Lu,k+1

i (ρu
k (ω))

] 1k+1
i (ω), (8)

for all ω ∈ ΣN
�

and all k > 0. In expression (8), if Tr[Lu,k+1
i (ρu

k )] = 0, we consider

that
(
Lu,k+1

i (ρu
k )/Tr[Lu,k+1

i (ρu
k )]
)
1k+1

i is equal to zero. This is consistent with the

fact that 1k+1
i = 0 almost surely in this case.

The following section is devoted to the study of (8) in a particular case of a
two-level system in interaction with a spin chain.

2.2. A Two-Level Atom

The physical situation is described by H0 = H = C
2. In this case, an observable

A has two different eigenvalues, that is A = λ0P0 + λ1P1. Equation (8) becomes

ρu
k+1 =

Lu,k+1
0 (ρu

k )
pu

k+1

1k+1
0 +

Lu,k+1
1 (ρu

k )
qu
k+1

1k+1
1 , (9)

where pu
k+1 = Tr[Lu,k+1

0 (ρu
k )] = 1 − qu

k+1. Let us now introduce the centred and
normalized random variables (Xk) defined by

Xk+1 =
1k+1

1 − qu
k+1√

qu
k+1p

u
k+1

,



Vol. 10 (2009) Stochastic Master Equations with Control 1003

for all k > 0. We define the associated filtration (Fk) on {0, 1}N
�

by putting
Fk = σ(Xi, i ≤ k), for all k > 0. By construction, we have E[Xk+1/Fk] = 0 and
E[X2

k+1/Fk] = 1. In terms of (Xk) the discrete controlled quantum trajectory
satisfies

ρu
k+1 = Lu,k+1

0 (ρu
k ) + Lu,k+1

1 (ρu
k )

+

[
−
√

qu
k+1

pu
k+1

Lu,k+1
0 (ρu

k ) +

√
pu

k+1

qu
k+1

Lu,k+1
1 (ρu

k )

]
Xk+1. (10)

Equation (10) is a discrete version of a stochastic master equation with control.
To go further, we need to express the terms Lu,k+1

i (ρu
k ) in an explicit way. To this

end, we introduce a particular basis. Let (e0 = Ω, e1 = X) be the orthonormal
basis of H0 = H = C

2. For the space H0 ⊗ H, we consider the following basis
{Ω ⊗ Ω,X ⊗ Ω,Ω ⊗ X,X ⊗ X}. In this basis, the unitary operator can be written
as a 2 × 2 block matrix

Uk+1(h, uk) =

(
L00(kh, uk) L01(kh, uk)

L10(kh, uk) L11(kh, uk)

)
,

where each Lij(kh, uk) are operators on H0. Now, we need to specify the reference
state β of each copy of H; we choose the ground state β = |Ω〉〈Ω|. Let us also notice
that the terms Lu,k+1

i (ρu
k ) depend on the expression of the eigenprojectors of the

observable A. Finally, if the eigenprojector Pi is expressed as Pi = (pi
kl)0≤k,l≤1 in

the basis (Ω,X), we have

Lu,k+1
i (ρu

k ) = pi
00L00(kh, uk) ρu

k L�
00(kh, uk) + pi

01L00(kh, uk) ρu
k L�

10(kh, uk)

+ pi
10L10(kh, uk) ρu

k L�
00(kh, uk) + pi

11L10(kh, uk) ρu
k L�

10(kh, uk).
(11)

As the unitary evolution depends on h, the discrete quantum trajectory (ρu
k )

depends also on h. In Sect. 2, we consider the continuous time limits (h → 0) of the
discrete processes (ρu

k ). The next subsection is devoted to present the asymptotic
ingredients necessary to obtain the convergence results.

2.3. Description of Asymptotic Assumptions

In this section, we present suitable asymptotic conditions for the coefficients of the
unitary operators Uk(h, uk) in order to have an effective continuous time limit. Let
h = 1/n be the time of interaction, we have for (Uk)

Uk+1(n, uk) =

(
L00(k/n, uk) L01(k/n, uk)

L10(k/n, uk) L11(k/n, uk)

)
.

In our context, the choice of the coefficients Lij is an adaptation of the works of
Attal-Pautrat in [4]. In their work, they consider only an evolution of the type

Uk+1(n) =

(
L00(n) L01(n)

L10(n) L11(n)

)
,
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that is, a homogeneous evolution without control. They have shown that

V[nt] = Ũ[nt](n) . . . Ũ1(n)

converges (in operator theory) to a non-trivial process Vt, which is a solution of a
quantum stochastic differential equation. Besides, this convergence is valid only if
the coefficients Lij(n) obey certain normalization conditions. In their case, these
coefficients must be of the form

L00(n) = I +
1
n

(
−iH0 − 1

2
C�C

)
+ ◦

(
1
n

)
, (12)

L10(n) =
1√
n

C + ◦
(

1
n

)
, (13)

where H0 is the Hamiltonian of H0 and C is any operator on C
2. Hence, in the

control context, the coefficients Lij(k/n, uk) must follow similar expressions with
non homogeneous terms. Let k be fixed, we put

L00(k/n, uk(n)) = I +
1
n

(
−iHk(n, uk) − 1

2
C�

k(n, uk)Ck(n, uk)
)

+ ◦
(

1
n

)
,

(14)
L10(k/n, uk(n)) =

1√
n

Ck(n, uk) + ◦
(

1
n

)
,

where Hk(n, uk) is a self-adjoint operator and Ck(n, uk) is an operator on C
2. It

is straightforward that the expression (12) of Attal-Pautrat is a particular case
of the previous expression. Finally, we suppose that there exist some functions H
and C such that

H : R
+ × R −→ H2(C) and C : R

+ × R −→ M2(C)
(t, s) �−→ H(t, s) (t, s) �−→ C(t, s) ,

where H2(C) denotes the set of self-adjoint operators on C
2 and

Hk(n, uk) = H(k/n, uk), Ck(n, uk) = C(k/n, uk). (15)

Furthermore, we suppose that all the ◦ are uniform in k.
Now, we shall express (10) with these asymptotic assumptions. Depending

on the choice of the observable, we obtain two different behaviours.

1. If the observable A is diagonal in the basis (Ω,X), that is, it is of the form

A = λ0

(
1 0
0 0

)
+ λ1

(
0 0
0 1

)
, we obtain the asymptotic form for the proba-

bilities

pu
k+1(n) = 1 − 1

n
Tr
[
J (k/n, uk)(ρu

k (n))
]

+ ◦
(

1
n

)
,

qu
k+1(n) =

1
n

Tr
[
J (k/n, uk)(ρu

k (n))
]

+ ◦
(

1
n

)
.
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The discrete equation (10) becomes

ρu
k+1(n) − ρu

k (n)

=
1
n

(
L(k/n, uk)(ρu

k (n)) + ◦(1)
)

+

⎛
⎝ J (k/n, uk)(ρu

k (n))

Tr
[
J (k/n, uk)(ρu

k (n))
] − ρu

k (n) + ◦(1)

⎞
⎠
√

qu
k+1(n) pu

k+1(n) Xk+1(n),

(16)

where for all states ρ, we have defined

J (t, s)(ρ) = C(t, s) ρ C�(t, s) and

L(t, s)(ρ) = −i
[
H(t, s), ρ

]− 1
2
{
C�(t, s)C(t, s), ρ

}
+ J (t, s)(ρ). (17)

2. If the observable A is non diagonal in the basis (Ω,X), and if the eigen-pro-

jectors are expressed as P0 =
(

p00 p01

p10 p11

)
and P1 =

(
q00 q01

q10 q11

)
, we have

pu
k+1 = p00 +

1√
n

Tr
[
ρu

k

(
p01C(k/n, uk) + p10C

�(k/n, uk)
)]

+
1
n

Tr
[
ρu

k p00

(
C(k/n, uk) + C�(k/n, uk)

)]
+ ◦

(
1
n

)
,

qu
k+1 = q00 +

1√
n

Tr
[
ρu

k

(
q01C(k/n, uk) + q10C

�(k/n, uk)
)]

+
1
n

Tr
[
ρu

k q00

(
C(k/n, uk) + C�(k/n, uk)

)]
+ ◦

(
1
n

)
.

The discrete equation (10) becomes

ρu
k+1 − ρu

k

=
1
n

(
L(k/n, uk)(ρu

k ) + ◦ (1)
)

+
(
eiθC(k/n, uk)ρu

k + e−iθρu
kC�(k/n, uk)

−Tr
[
ρu

k

(
eiθC(k/n, uk) + e−iθC�(k/n, uk)

)]
ρu

k + ◦(1)
) 1√

n
Xk+1(n),

(18)

where θ is a real parameter. This parameter can be explicitly expressed with
the coefficients of the eigenprojectors (Pi). By putting Cθ(k/n, uk) = eiθ

C(k/n, uk), we have the same form for (18) for all θ; then we consider in
the following that θ = 0. The expression of L is the same as in (17).
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In order to prepare the final convergence result, in each case, we can define
a process (ρu

[nt]) which satisfies

ρu
[nt] = ρ0 +

[nt]−1∑
i=0

[
ρu

i+1 − ρu
i

]

= ρ0 +
[nt]−1∑

i=0

[
Lu,i+1

0 (ρu
i ) + Lu,i+1

1 (ρu
i ) − ρu

i

]

+
[nt]−1∑

i=0

[
−
√

qu
i+1

pu
i+1

Lu,i+1
0 (ρu

i ) +

√
pu

i+1

qu
i+1

Lu,i+1
1 (ρu

i )

]
Xi+1

= ρ0 +
[nt]−1∑

i=0

1
n

Y(i/n, ui, ρ
u
i ) +

[nt]−1∑
i=0

Z(i/n, ui, ρ
u
i )Xi+1, (19)

for some functions Y and Z which depend on the descriptions (16) or (18).
In the next section, we show that the processes (ρu

[nt]) converge to the solu-
tions of particular stochastic differential equations.

3. Convergence to Continuous Models

In this section, starting from the description (19) with a Markovian strategy and
following the asymptotic expressions (16) and (18), we show that discrete processes
(ρu

[nt]) converge in distribution to solutions of stochastic differential equations.
In this article, we obtain two different kinds of continuous equations which

are similar to (1) and (2) with control.
1. If (ρu

t ) denotes the state of a quantum system, the diffusive evolution is given
by

dρu
t = L

(
t, u(t, ρu

t )
)
(ρu

t ) dt + Θ
(
t, u(t, ρu

t )
)
(ρu

t ) dWt, (20)

where (Wt) describes a one-dimensional Brownian motion. The function L is
expressed in (17) and Θ is defined by

Θ(t, a)(µ) = C(t, a)µ + µC�(t, a) − Tr
[
µ
(
C(t, a) + C�(t, a)

)]
µ, (21)

for all t > 0, for all a in R and all operators µ in M2(C).
2. The evolution with jump is given by

dρu
t = L

(
t, u(t, ρu

t )
)
(ρu

t )dt

+

⎛
⎝ J (t, u(t, ρu

t )
)
(ρu

t )

Tr
[
J (t, u(t, ρu

t )
)
(ρu

t )
] − ρu

t

⎞
⎠
(
dÑt − Tr

[
J (t, u(t, ρu

t )
)
(ρu

t )
]
dt
)
,

(22)



Vol. 10 (2009) Stochastic Master Equations with Control 1007

where Ñt is a counting process with stochastic intensity
∫ t

0
Tr
[J (s, u(s, ρu

s )
)

(ρu
s )
]
ds. The functions L and J are as in (17).

In a natural way, we call such equations Controlled Stochastic Master Equations
and their solutions Controlled Quantum Trajectories.

For the moment, we do not speak about the regularity of the functions L,
Θ and J . This will be discussed when we deal with the question of existence and
uniqueness of solutions. Let us start by studying the diffusive equation.

3.1. Existence, Uniqueness and Approximation of the Diffusive Equation with
Control

In this section, we justify the diffusive model (20) of controlled stochastic master
equations by proving that the solution of (20) is obtained from the limit of par-
ticular quantum trajectories (ρu

[nt]). At the same time, we show that (20) admits
a unique solution with values in the set of states.

Let us start with the problem of existence and uniqueness of a solution for
(20). For the moment, let u be any measurable function which defines a Markovian
strategy. Usually, in order to prove the existence and the uniqueness of a solution
for a SDE of type (20), one imposes Lipschitz conditions [35]. However, even in
the homogeneous case without control, such conditions are not satisfied. Indeed,
in the homogeneous situation without control, for Θ we have

Θ(t, a)(µ) = Θ(µ) = Cµ + µC� − Tr
[
µ
(
C + C�

)]
µ,

where the last term is quadratic in µ. Nevertheless, this function is C∞ and then
local Lipschitz (see [31,32] for similar reasoning). With control, the local Lipschitz
condition is expressed as follows. For all integers k > 0 and all x ∈ R, we define
the function φk by

φk(x) = −k1]−∞,−k[(x) + x1[−k,k](x) + k1]k,∞[(x).

The function φk is called a truncation function. Its extension on the set of operator
on C

2 is given by

φ̃k(B) =
(
φk(Re(Bkl)) + iφk(Im(Bkl))

)
0≤k,l≤1

.

Now, let T > 0 and let k > 0, there exist constants Mk(T ) and Kk(T ) such that

sup{‖L(t, a)(φ̃k(µ)) − L(t, a)(φ̃k(ρ))‖, ‖Θ(t, a)(φ̃k(µ)) − Θ(t, a)(φ̃k(ρ))‖
≤ Kk(T )‖µ − ρ‖, (23)

sup
{‖L(t, a)(φ̃k(ρ))‖, ‖Θ(t, a)(φ̃k(ρ))‖} ≤ Mk(T )(1 + ‖ρ‖ + ‖a‖),

for all t ≤ T and all (µ, ρ) ∈ M2(C)2 (these conditions are the global Lipschitz
conditions for the functions L and Θ composed with φ̃k). As a consequence, we
have the following existence and uniqueness theorem:

Theorem 2. Let u be any measurable function. Let k > 0. Let (Ω,F ,Ft, P ) be a
probability space which supports a standard Brownian motion (Wt). Assume that
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L and Θ satisfy the conditions (23). The stochastic differential equation

dρu,k
t = L

(
t, u(t, φ̃k(ρu,k

t )
)(

φ̃k(ρu,k
t )

)
ds + Θ

(
t, u(t, φ̃k(ρu,k

t ))
)

×
(
φ̃k(ρu,k

t )
)

dWt, (24)

admits a unique continuous solution (ρu,k
t ).

This theorem is just a consequence of the local Lipschitz condition (23) (cf
[35]). The process (ρu,k

t ) is called a truncated solution. In order to link the solution
of (24) and the solution of (20), we define the random stopping time

Tk = inf
{
t > 0/∃(ij), Re(ρu,k

t (ij)) = k or Im(ρu,k
t (ij)) = k

}
.

For any k > 1, we have Tk > 0 almost surely since ρ0 is a state and the almost
surely continuity of (ρu,k

t ) (the coefficients of ρ0 satisfy namely |ρ0(ij)| ≤ 1).
Furthermore, on [0, Tk[, we have φ̃k(ρu,k

t ) = ρu,k
t . Therefore, the process (ρu,k

t )
satisfies

ρu,k
t = ρ0 +

t∫

0

L
(
s, u(s, ρu,k

s )
)
(ρu,k

s )ds +

t∫

0

Θ
(
s, u(s, ρu,k

s )
)
(ρu,k

s )dWs, (25)

for all t < Tk. Hence, the process (ρu,k
t ) is the unique solution of (20) on [0, Tk[.

Normally, in order to define a solution for all t ≥ 0, the next step consists in
showing that lim Tk = ∞.

In our situation, we prove in fact that Tk = ∞, for all k > 1. This is pro-
vided by proving that the process (ρu,k

t ) is valued in the set of states. Indeed, if
the process (ρu,k

t ) takes values in the set of states, we have |ρu,k
t (ij)| ≤ 1, for all

t ≥ 0, Tk = ∞. It remains then to prove that (20) preserves the property of being
a state. This result follows from the convergence. Indeed, let us assume that there
is a discrete quantum trajectory (ρu

[nt]) which converges in distribution to (ρu,k
t )

(for some k > 1). Therefore, for all measurable functions V defined on M2(C), we
have

V(ρu
[nt]) =⇒ V(ρu,k

t ),

where the symbol =⇒ denotes the convergence in distribution. We apply it for
the functions V(ρ) = Tr[ ρ ], for V(ρ) = ρ� − ρ and Vz(ρ) = 〈z, ρz〉, for all z ∈ C

2.
By definition, if ρ is a state, we have from the trace property Tr[ ρ ] = 1, from
self-adjointness ρ� − ρ = 0 and from positivity 〈z, ρz〉 ≥ 0 for all z ∈ C

2. As
discrete quantum trajectories take values in the set of states, these properties are
then conserved at the limit. The limit process (ρu,k

t ) takes then values in the set
of states. We shall now prove the convergence result.

Let us come back to the description (19) of discrete quantum trajectories.
With the asymptotic expression (18) in the case of a non-diagonal observable A
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and with a Markovian strategy, we have

ρu
[nt] = ρ0 +

[nt]−1∑
k=1

1
n

(
L
(
k/n, u(k/n, ρu

k )
)
(ρu

k ) + ◦ (1)
)

+
[nt]−1∑
k=1

(
Θ
(
k/n, u(k/n, ρu

k )
)
(ρu

k ) + ◦(1)
) 1√

n
Xk+1(n). (26)

From this description, we can define the following processes and functions

Wn(t) =
1√
n

[nt]∑
k=1

Xk(n),

Vn(t) =
[nt]
n

,

ρu
n(t) = ρu

[nt](n),
(27)

un(t,W ) = u([nt]/n,W ),
Θn(t, s) = Θ([nt]/n, s),
Ln(t, s) = L([nt]/n, s),

for all t > 0, for all s ∈ R and for all W ∈ M2(C).
By observing that these processes and these functions are piecewise constant,

we can describe the discrete quantum trajectory (ρu
n(t)) as a solution of the fol-

lowing stochastic differential equation:

ρu
n(t) = ρ0 +

t∫

0

[
Ln

(
s−, un(s−, ρu

n(s−))
)(

ρu
n(s−)

)
+ ◦(1)

]
dVn(s)

+

t∫

0

[
Θn

(
s−, un(s−, ρu

n(s−))
)(

ρu
n(s−)

)
+ ◦(1)

]
dWn(s)

= ρ0 +

t∫

0

[
Ln

(
s−, un(s−, φ̃k(ρu

n(s−))
)(

φ̃k(ρu
n(s−))

)
+ ◦(1)

]
dVn(s)

+

t∫

0

[
Θn

(
s−, un(s−, φ̃k(ρu

n(s−))
) (

φ̃k(ρu
n(s−))

)
+ ◦(1)

]
dWn(s), (28)

for all k > 1. Equation (28) appears then as a discrete version of (20). This
approach has already been used in [32] and the final convergence result has been
obtained by applying a convergence theorem of sequence of stochastic differential
equations (Theorem of Kurtz and Protter [26,27]). The main idea is to prove that
the discrete process (Wn(t)) converges to a Brownian motion (Wt). Next, as Ln,
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Θn and un converge to L, Θ and u, the result of Kurtz and Protter states that
the solution of (28) converges to the solution of (20).

Actually in the non-homogeneous case of control, special conditions for the
functions L, Θ and u must be satisfied to apply the Theorem of Kurtz and Protter.
In order to present these requirements, we need to introduce some notations.

For all T > 0, we define D[0, T ] the space of càdlàg process of M2(C) endowed
with the Skorohod topology.

Let T1[0,∞) denote the set of non-decreasing mapping λ from [0,∞) to [0,∞)
with λ(0) = 0 such that λ(t + h) − λ(t) ≤ h for all t, h ≥ 0. For any function G
defined from R

+ × M2(C) to M2(C), we define

G̃ : D[0,∞) × T1[0,∞) −→ D[0,∞)
(X,λ) �−→ G(X) ◦ λ,

such that for all t ≥ 0, we have G(X) ◦ λ(t) = G(λ(t),Xλ(t)). We introduce the
two following conditions concerning a function G̃ and a sequence G̃n as above:

(C1) For each compact subset K ∈ D[0,∞) × T1[0,∞) and t > 0,

sup
(X,λ)

sup
s≤t

‖G̃n(X,λ)(s) − G̃(X,λ)(s)‖ → 0.

(C2) For (Xn, λn)n ∈ D[0,∞) × T1[0,∞)/ sup
s≤T

‖Xn(s) − X(s)‖ → 0

and sup
s≤t

|λn(s) − λ(s)| → 0 for each t > 0 implies

sup
s≤t

‖G̃(Xn, λn)(s) − G̃(X,λ)(s)‖ → 0. (29)

In our context, we define for example L̃n by

L̃n(X) ◦ (λ)(t) = Ln(λ(t), un(λ(t),Xλ(t)))(Xλ(t)) + ◦(1),

for all t > 0, for all λ ∈ T1[0,∞) and all càdlàg process (Xt). We consider the
same definition for the other functions appearing in (28).

Furthermore, recall that the square-bracket [X,X] is defined for a semi-
martingale by the formula

[X,X]t = X2
t − 2

t∫

0

Xs−dXs.

We shall denote by Tt(V ) the total variation of a finite variation processes V on
the interval [0, t]. Now, we are in the position to express the Theorem of Kurtz
and Protter in our context.
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Theorem 3. Let ρ0 be any state on H0. Let (ρu
n(t)) be the discrete quantum trajec-

tory satisfying

ρu
n(t) = ρ0 +

t∫

0

[
Ln

(
s−, un(s−, ρu

n(s−))
)(

ρu
n(s−)

)
+ ◦(1)

]
dVn(s)

+

t∫

0

[
Θn

(
s−, un(s−, ρu

n(s−))
)(

ρu
n(s−)

)
+ ◦(1)

]
dWn(s). (30)

Let k > 1 be any integer. Let (ρu,k
t ) be the unique solution of

ρu,k
t = ρ0 +

t∫

0

L
(
s, u(s, φ̃k(ρu,k

s )
)(

φ̃k(ρu,k
s )

)
ds

+

t∫

0

Θ
(
s, u(s, φ̃k(ρu,k

s ))
)(

φ̃k(ρu,k
s )

)
dWs. (31)

Suppose that the function u is sufficiently regular such that (Ln, L) and
(Θn,Θ) composed with φ̃k satisfy the conditions (C1) and (C2). Suppose that there
exists a filtration (Fn

t ) such that (ρn(t)) is (Fn
t ) adapted. Suppose that (Wn, Vn)

converges in distribution in the Skorohod topology to (W,V ) where Vt = t, for all
t ≥ 0 and suppose that

sup
n

{
E
[
[Wn,Wn]t

]}
< ∞,

(32)
sup

n

{
E [Tt(Vn)]

}
< ∞.

Hence, the process (ρn(t)) converges in distribution in D[0, T ] for all T > 0
to the process (ρu,k

t ).

Concerning the filtration (Fn
t ), we define

Fn
t = σ(Xi, i ≤ [nt]). (33)

The process (ρn(t)) is then clearly (Fn
t ) adapted. Let us stress that the essential

result concerns the convergence of the process (Wn(t)). Next, in a natural way
this theorem expresses that if the discrete noise converges, under some technical
assumptions, the discrete stochastic differential equation converges to the con-
tinuous one. The properties concerning the process (Wn(t)) follow from the next
proposition (the property for (Vn(t)) is obvious).

Proposition 3. Let (Fn
t ) be the filtration defined by (33). We have the following

properties:

• The process (Wn(t)) defined by (27) is a (Fn
t ) martingale. (34)

• lim
n→∞ E

[|[Wn,Wn]t − t|] = 0. (35)
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As a consequence, the process (Wn(t)) converges to a standard Brownian motion
(Wt). Furthermore, we have

sup
n

E
[
[Wn,Wn]t

]
< ∞. (36)

Concerning the fact that the properties (34) and (35) imply the convergence,
this is a classical result in Probability Theory. This result is actually a generalisa-
tion of the Donsker invariant principle for dependant variables [18].

Proof. Thanks to the definition of the random variables (Xi), we have E
[
Xi+1/Fn

i

]

= 0, for all i > 0. This implies E
[∑[nt]

i=[ns]+1 Xi/Fn
s

]
= 0, for t > s and we get the

martingale property.
Concerning (35), we prove a L2 convergence

lim
n→∞ E

[|[Wn,Wn]t − t|2] = 0,

which implies the L1 convergence (35). To this end, we use the fact that E
[
X2

i

]
=

E
[
E[X2

i /σ{Xl, l < i}]
]

= 1. Hence, if i < j

E
[
(X2

i − 1)(X2
j − 1)

]
= E

[
(X2

i − 1)(X2
j − 1)/σ{Xl, l < j}]

]

= E
[
(X2

i − 1)
]
E
[
(X2

j − 1)
]

= 0.

Hence, we have

E

[(
[Wn,Wn]t − [nt]

n

)2
]

=
1
n2

[nt]∑
i=1

E
[
(X2

i − 1)2
]
+

1
n2

∑
i<j

E
[
(X2

i − 1)(X2
j − 1)

]

=
1
n2

[nt]∑
i=1

E
[
(X2

i − 1)2
]
.

According to the fact that p00 and q00 are not equal to zero (because the observable
A is not diagonal!), the terms E

[
(X2

i − 1)2
]

are bounded uniformly in i. Then, we
have

lim
n→∞ E

[(
[Wn,Wn]t − [nt]

n

)2
]

= 0.

The result holds since t �→ [nt]/n converges to t �→ t in L2.
Concerning the property (36), by definition of [Wn,Wn], we have

[Wn,Wn]t = Wn(t)2 − 2

t∫

0

Wn(s−)dWn(s) =
1
n

[nt]∑
i=1

X2
i .
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Thus, we have

E
[
[Wn,Wn]t

]
=

1
n

[nt]∑
i=1

E[X2
i ] =

1
n

[nt]∑
i=1

1 =
[nt]
n

.

This implies supn E
[
[Wn,Wn]t

] ≤ t < ∞, and the proof is complete. �

As regards conditions (C1) and (C2), the assumption for the function u is
satisfied, for example, when u is continuous. Indeed the local Lipschitz property
(23) of L and Θ implies that the functions Ln, Θn, L and Θ, composed with the
truncature φ̃k, satisfy conditions (C1) and (C2). Hence, we can express the final
convergence theorem which concludes the section.

Theorem 4. Suppose that the function u which defines a deterministic or
Markovian control strategy is continuous. Hence, the process (ρu

n(t)) describing
the discrete controlled quantum trajectory for a non-diagonal observable converges
to the unique solution (ρu

t ) of the stochastic differential equation

dρu
t = L

(
t, u(t, ρu

t )
)
(ρu

t )dt + Θ
(
t, u(t, ρu

t )
)
(ρu

t )dWt,

where (Wt) is an one-dimensional Brownian motion.

3.2. Existence, Uniqueness and Approximation of the Jump Equation
with Control

In this section, we investigate the convergence of a discrete quantum trajectory
which comes from repeated measurements of a diagonal observable.

In all this section, we fix a strategy u which defines a Markovian strategy.
Furthermore, as in the diffusive case, we suppose that this strategy is continuous.
Let A be any diagonal observable. With the use of description (16) and (19), the
discrete quantum trajectory satisfies

ρu
[nt] = ρ0 +

[nt]−1∑
k=0

1
n

[
L
(
k/n, u(k/n, ρu

k )
)
(ρu

k ) − J
(
k/n, u(k/n, ρu

k )
)
(ρu

k )

+ Tr
[
J
(
k/n, u(k/n, ρu

k )
)
(ρu

k )
]
ρu

k + ◦(1)

]

+
[nt]−1∑
k=0

⎡
⎣ J

(
k/n, u(k/n, ρu

k )
)
(ρu

k )

Tr
[
J
(
k/n, u(k/n, ρu

k )
)
(ρu

k )
] − ρu

k + ◦(1)

⎤
⎦1k+1

1 . (37)
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Following the idea presented in reference [31], we aim to show that the process
(ρ[nt]) converges (n → ∞) to a process (ρt) which satisfies

ρu
t = ρ0 +

t∫

0

[
L
(
s−, u(s−, ρu

s−)
)
(ρu

s−) + Tr
[
J
(
s−, u(s−, ρu

s−)
)
(ρu

s−)
]
ρu

s−

−J
(
s−, u(s−, ρu

s−)
)
(ρu

s−)
]
ds

+

t∫

0

∫

R

⎡
⎣ J

(
s−, u(s−, ρu

s−)
)
(ρu

s−)

Tr
[
J
(
s−, u(s−, ρu

s−)
)
(ρu

s−)
] − ρu

s−

⎤
⎦

×10<x<Tr[J (s−,u(s−,ρu
s−))(ρu

s−)]N(ds,dx), (38)

where N is a Poisson point process on R
2. As a consequence, if the process (ρu

t )
exists, this gives rise to the process (Ñt) defined by

Ñt =

t∫

0

∫

R

10<x<Tr[ J (s−,u(s−,ρu
s−))(ρu

s−) ]N(ds,dx) (39)

which is a counting process with stochastic intensity t → ∫ t

0
Tr[J (s−, u(s−, ρu

s−))
(ρu

s−)]ds.

Remark. Let us stress that (38) provides a rigorous way to consider (22) (see [31]
for a complete discussion regarding this topic). Indeed, with the expression (22)
the driving process is not rigorously defined since it depends on the existence of
the solution (ρu

t ). With (38), everything is defined in an intrinsic way.

Now, we consider (38) as the jump-model of continuous time measurement
with control. It will be justified later as limit of discrete quantum trajectories.

For instance, let us deal with the problem of existence and uniqueness of a
solution for this equation. Let us denote

R(t, a)(ρ) = L(t, a)(ρ) + Tr
[J (t, a)(ρ)

]
ρ − J (t, a)(ρ),

Q(t, a)(ρ) =
( J (t, a)(ρ)

Tr[J (t, a)(ρ)]
− ρ

)
1Tr[J (t,a)(ρ)]>0,

for all t ≥ 0, for all a ∈ R and all states ρ. Let us stress that we consider
Q(t, a)(ρ) = 0 if Tr[J (t, a)(ρ)] = 0. It is obvious that (38) is equivalent to

ρu
t = ρ0 +

t∫

0

R
(
s−, u(s−, ρu

s−)
)
(ρu

s−)ds

+

t∫

0

∫

R

Q
(
s−, u(s−, ρu

s−)
)
(ρu

s−)10<x<Tr[J (s−,u(s−,ρu
s−))(ρu

s−)]N(ds,dx).
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The existence and the uniqueness of a solution for such an equation relies again
on the Lipschitz property of functions R an J . As the diffusive case, only local
Lipschitz property are satisfied. We use again a truncature method to transform
(38) into an equation with Lipschitz property. The following remark concerns the
technical assumptions ensuring that (38) admits a unique solution.

Remark. First, we suppose that R and J satisfy the local Lipschitz condition (23)
defined in Sect. 2.1. Second, as the set of states is compact, we can suppose for
the stochastic intensity that for all T > 0 there exists a constant K(T ) such that

Tr
[J (t, u(t,Xt))(Xt)

] ≤ K(T ),

for all t ≥ T and for all càdlàg process (Xt) with values in M2(C). This previous
condition implies the fact the stochastic intensity is bounded. Finally, in order to
consider the stochastic differential equation for all càdlàg process, we consider the
function

Q̃(t, a)(ρ) =

⎛
⎝ J (t, a)(ρ)

Re
(
Tr
[J (t, a)(ρ)

]) − ρ

⎞
⎠1Re(Tr[J (t,a)(ρ)])>0, (40)

and the stochastic differential equation

ρu,k
t = ρ0 +

t∫

0

R
(
s−, u(s−, φ̃k(ρu,k

s− )
)
(φ̃k(ρu,k

s− ))ds

+

t∫

0

∫

R

Q̃
(
s−, u(s−, φ̃k(ρu,k

s− )
)
(φ̃k(ρu,k

s− ))

×10<x<Re(Tr[J (s−,u(s−,φ̃k(ρu,k
s− )))(φ̃k(ρu,k

s− ))]N(ds,dx). (41)

where φ̃k is a truncature function defined in Sect. 3.1. Let us notice that if ρ is a
state

Re
(
Tr
[J (t, a)(ρ)

])
= Tr

[J (t, a)(ρ)
] ≥ 0,

for all t ≥ 0 and for all a ∈ R. As a consequence, if a solution of (41) takes values
in the set of states, this is a solution of (38).

As in the diffusive case, we first show that the modified equation (41) admits
a unique solution. Next, we prove that a discrete quantum trajectory converges
in distribution to the solution of (41). The convergence result proves then that
the solution of (41) is valued in the set of states. Concerning the existence and
uniqueness of a solution of (41), we have the following theorem due to Jacod and
Protter in [21]:
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Theorem 5. Let (Ω,F , P ) be a probability space of a Poisson point process N . The
stochastic differential equation

ρu,k
t = ρ0 +

t∫

0

R
(
s−, u(s−, φ̃k(ρu,k

s− )
)
(φ̃k(ρu,k

s− ))ds

+

t∫

0

∫

R

Q̃
(
s−, u(s−, φ̃k(ρu,k

s− )
)
(φ̃k(ρu,k

s− ))

×10<x<Re(Tr[J (s−,u(s−,φ̃k(ρu,k
s− )))(φ̃k(ρu,k

s− ))]N(ds,dx) (42)

admits a unique solution (ρu,k
t ) defined for all t ≥ 0. Furthermore, the counting

process (N t) defined by

N t =

t∫

0

∫

R

10<x<Re(Tr[J (s−,u(s−,φ̃k(ρu,k
s− )))(φ̃k(ρu,k

s− ))]N(ds,dx)

allows to define the filtration (F t), where F t = σ{Ns, s ≤ t}. Hence, the process

N t −
t∫

0

[
Re
(
Tr
[
J
(
s−, u(s−, φ̃k(ρu,k

s− )
)
(φ̃k(ρu,k

s− ))
])]+

ds (43)

is a (F t) martingale.

In this theorem, the term (x)+ denotes max(0, x). The martingale property
(43) expresses that the process (

∫ t

0
[Re(Tr[J (s−, u(s−, φ̃k(ρu,k

s −))(φ̃k(ρu,k
s− ))])]+ds) is

the stochastic intensity of the counting process (N t). We do not prove this the-
orem in detail. A theorem similar to Theorem 5 is treated completely in [31] for
quantum trajectories without control. Here, we express the solution of (41) in a
particular case. Suppose that there exists a constant K such that

[
Re
(
Tr
[J (t, u(t,Xt))(Xt)

])]+

< K, (44)

for all t ≥ 0 and all càdlàg processes (Xt). With this property we can consider
only the points of N contained in R × [0,K]. The random function

Nt : t → N(., [0, t] × [0,K])

defines then a standard Poisson process with intensity K. Let T > 0, the Poisson
Random Measure and the previous process generate on [0, T ] a sequence {(τi, ξi),
i ∈ {1, . . . ,Nt)}}. Each τi represents the jump time of the process (Nt). Moreover,
the random variables ξi are random uniform variables on [0,K]. Let k > 1 be a
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fixed integer, we can write the solution of (41) in the following way:

ρu,k
t = ρ0 +

t∫

0

R
(
s−, u(s−, φ̃k(ρu,k

s− ))
)
(φ̃k(ρu,k

s− ))ds

+
Nt∑
i=1

Q
(
τi−, u(τi−, φ̃k(ρu,k

τi−)
)
(φ̃k(ρu,k

τi−))

(45)
×10≤ξi≤(Re(Tr[J (τi−,u(τi−,φ̃k(ρu,k

τi−)))(φ̃k(ρu,k
τi−)]))+

N t =
Nt∑
i=1

10≤ξi≤(Re(Tr[J (τi−,u(τi−,φ̃k(ρu,k
τi−)))(φ̃k(ρu,k

τi−)]))+ .

The expression (45) means that the solution of (41) is given by the solution of the
ordinary differential equation

dρu,k
t = R

(
t, u(t, φ̃k(ρu,k

t ))
)
(φ̃k(ρu,k

t )) dt

between the jump of the process N t. At the jump time of N t, a new initial con-
dition is implemented by the value of the jump defined by the function Q. The
process N t corresponds to the number of points of the Poisson point process N
included in the x axis and the curve

t �→
[
Re
(
Tr
[
J
(
t, u(t, φ̃k(ρu,k

t ))
)
(φ̃k(ρu,k

t ))
])]+

.

The general case is more technical, but can be expressed in the same way (see [21]).
Now, we investigate the convergence result. The starting point is to describe

a discrete stochastic differential equation. To this end, from expression (37), we
define

ρu
n(t) = ρu

[nt],

Nn(t) =
[nt]∑
k=1

1k
1 ,

Vn(t) =
[nt]
n

,

Rn(t, a)(ρ) = R([nt]/n, a)(ρ),
Qn(t, a)(ρ) = Q([nt]/n, a)(ρ),

un(t,W ) = u([nt]/n,W ),

for all t ≥ 0, for all a ∈ R and all W ∈ M2(C). Hence, the process (ρu
n(t)) satisfies

the stochastic differential equation
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ρu
n(t) =

t∫

0

[
Rn

(
s−, un(s−, ρu

n(s−)
)
(ρu

n(s−)) + ◦(1)
]
dVn(s)

+

t∫

0

[
Qn

(
s−, un(s−, ρu

n(s−))(ρu
n(s−)

)
+ ◦(1)

]
dNn(s).

Remark. In order to apply the Theorem of Kurtz and Protter, we should prove
that (Nn(t)) converges to (Ñt). Actually, this result cannot be proved indepen-
dently to the convergence of (ρu

n(t)) to (ρu
t ). Indeed, the counting process (Ñt) is

completely defined by its stochastic intensity. As the intensity depends on (ρu
t ), a

result of convergence for (Nn(t)) and (Ñt) should involve one for (ρu
n(t)) and (ρu

t ).
Actually, we cannot apply a similar result of the form of Theorem 3.

Here, the convergence is obtained by using a random coupling method, that
is, we realize the process (ρ[nt]) in the probability space of the Poisson point pro-
cess N . This method allows then to compare directly the continuous and discrete
quantum trajectories in the same probability space. It is described as follows:

Remember that the random variables (1k
1) satisfy

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1k+1
1 (0) = 0 with probability

pk+1(n) = 1 − 1
nTr[J (k/n, u(k/n, ρu

k ))(ρu
k )] + ◦ ( 1

n

)

1k+1
1 (1) = 1 with probability

qk+1(n) = 1
nTr[J (k/n, u(k/n, ρu

k ))(ρu
k )] + ◦ ( 1

n

)
,

for all k > 0. We define the sequence (ν̃k) of random variables which are defined
on the set of states by

ν̃k+1(η, ω) = 1N(ω,Gk(η))>0, (46)

for all k > 0, where Gk(η) =
{

(t, u)/ k
n ≤ t < k+1

n , 0 ≤ u ≤ −n ln
(
Tr
[Lu,k+1

0

(n)(η)
])}

. Let ρ0 = ρ be any state and T > 0, we define the process (ρ̃k) for
k < [nT ] by the recursive formula

ρ̃u
k+1 = Lu,k+1

0 (ρ̃u
k ) + Lu,k+1

1 (ρ̃u
k ) +

[
− Lu,k+1

0 (ρ̃u
k )

Tr
[Lu,k+1

0 (ρ̃u
k )
] +

Lu,k+1
1 (ρ̃u

k )

Tr
[Lu,k+1

1 (ρ̃u
k )
]
]

×
(
ν̃k+1(ρ̃u

k , .) − Tr
[Lu,k+1

1 (ρ̃u
k )
])

. (47)

Thanks to the properties of the Poisson probability measure, the random variables
(1k

1) and (ν̃k) have the same distribution. This involves the following property:

Proposition 4. Let T be fixed. The discrete process (ρ̃u
k )k≤[nT ] defined by (47) has

the same distribution of the discrete quantum trajectory (ρu
k )k≤[nT ] defined by the

quantum repeated measurement.
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The convergence result is then expressed as follows:

Theorem 6. Let T > 0. Let (Ω,F , P ) be a probability space of a Poisson point pro-
cess N . Let (ρ̃u

[nt])0≤t≤T be the discrete quantum trajectory defined by the recursive
formula (47).

Hence, for all T > 0 the process (ρ̃u
[nt])0≤t≤T converges in distribution in

D[0, T ] (for the Skorohod topology) to the process (ρu
t ) solution of the stochastic

differential equation

ρu
t = ρ0 +

t∫

0

R
(
s−, u(s−, ρu

s−)
)
(ρu

s−)ds

+

t∫

0

∫

R

Q
(
s−, u(s−, ρu

s−)
)
(ρu

s−)10<x<Tr[J (s−,u(s−,ρu
s−))(ρu

s−)]N(ds,dx).

This theorem relies on the fact that the process (ρ̃u
[nt]) satisfies the same

asymptotic of the discrete quantum trajectory (ρu
[nt]) [see (16)]. More details for

such techniques can be found in [31] where the case without control is entirely
developed (in particular, this result needs the convergence of the Euler scheme of
the jump equation).

4. Example

This section is devoted to develop an application of quantum measurement with
control.

Here, we describe a discrete model of an atom monitored by a laser. A mea-
surement is performed by a photon counter which detects the photon emission.
The setup of repeated quantum interactions is described as follows:

The time of interaction is chosen to be h = 1/n. In this setup, we need three
basis spaces. The atom system is represented by H0 equipped with a state ρ. The
laser is represented by (Hl, µl) and the photon counter by (Hc, βc). Each Hilbert
space is C

2 endowed with the orthonormal basis (Ω,X) and the unitary operator
is denoted by U . The compound system after the interaction is H0 ⊗Hl ⊗Hc, and
the state after the interaction is

α = U(ρ ⊗ µl ⊗ βc)U�.

The appropriate orthonormal basis of H0 ⊗Hl ⊗Hc, in this case, is Ω⊗Ω⊗Ω, X ⊗
Ω⊗Ω, Ω⊗X ⊗Ω, X ⊗X ⊗Ω,Ω⊗Ω⊗X, X ⊗Ω⊗X, Ω⊗X ⊗X, X ⊗X ⊗X. The
unitary operator is here considered as a 4 × 4 matrix U = (Li,j(n))0≤i,j≤3, where
each Lij(n) are operators on H0. Now, if the different states of the laser and the

counter are of the form µl =
(

a b
c d

)
and βc = |Ω〉〈Ω|, the state α = (αuv)0≤u,v≤3

is given by
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αuv =
(
aLu0(n)ρ + bLu1(n)ρ

)
L�

v0(n) +
(
cLu0(n)ρ + dLu1(n)ρ

)
L�

v1(n). (48)

The measurement is performed on the counter photon side. Let A denote
any observable of Hc then I ⊗ I ⊗ A denotes the corresponding observable on
H0 ⊗ Hl ⊗ Hc. We perform a measurement and by partial trace operation with
respect to Hl ⊗ Hc, we obtain a new state on H0.

The control is rendered by the modification at each interaction of the inten-
sity of the laser. This modification is taken into account by the reference state
of the laser. The reference state at the kth interaction is denoted by µl

k. In the
continuous case, the state of a laser is usually described by a coherent vector on a
Fock space (see [11]). From works of Attal and Pautrat in approximation of Fock
space ([1,30]), the state of the laser can be described by

µl
k =

(
a(k/n) b(k/n)

c(k/n) d(k/n)

)
=

1
1 + |h(k/n)|2

(
1 h(k/n)

h(k/n) |h(k/n)|2

)
. (49)

The function h represents the evolution of the intensity of the laser and depends
naturally on n.

Let ρk denote the state on H0 after k measurements. Hence, the state αk+1

(n) =
(
αk+1

uv (n)
)
0≤u,v≤3

= Uk+1(n)(ρk ⊗ µl
k ⊗ βc)U�

k+1(n), after interaction, satis-
fies

αk+1
uv (n) =

(
a(k/n)Lu0(n)ρk + b(k/n)Lu1(n)ρk

)
L�

v0(n)

+
(
c(k/n)Lu0(n)ρk + d(k/n)Lu1(n)ρk

)
L�

v1(n).

Remark. Let us stress that is not directly the framework of Sect. 1. Here, the con-
trol is namely not rendered by the modification of the unitary evolution. Moreover,
the interacting system is described by (Hl ⊗ Hc, µl

k ⊗ β) and µl
k ⊗ β is not of the

form |e0〉〈e0| as in Sect. 1. In order to translate this setting in the case of discrete
models of Sect. 1, one can use the G.N.S Representation theory of a finite dimen-
sional Hilbert space ([23,24]). This theory allows to consider the state µl

k ⊗ β as a
state of the form |e0〉〈e0| in an enlarged Hilbert space. The G.N.S representation
transforms then the expression of the operator Uk, and the control expressed in
µl

k ⊗ β is again expressed in the new expression of Uk (see [2] for more details).
In our case, we do not use such a theory because it is more explicit to make directly
computations to describe the discrete equation in asymptotic form.

Let us present the result. The principle of measurement is the same as in
Sect. 1. The counting case is also given by a diagonal observable of Hc. We shall
focus on this case which renders the emission of photons [11]. The asymptotic
properties for the unitary operator follows the asymptotic rules of Attal-Pautrat
in [4]. Let δij = 1, if i = j, we denote εij = 1/2(δ0i + δ0j). The coefficients must
follow the convergence condition

lim
n→∞ nεij (Lij(n) − δijI) = Lij

where Lij are operators on H0.
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Let P0 = |Ω〉〈Ω| and P1 = |X〉〈X| be the eigenprojectors of a diagonal
observable A. If ρk denotes the random state after k measurements we denote

Lk+1
0 (ρk) = E0

[
I ⊗ I ⊗ P0

(
Uk+1(n)(ρk ⊗ µl

k ⊗ β)U�
k+1(n)

)
I ⊗ I ⊗ P0

]

= αk+1
00 (n) + αk+1

11 (n),
(50)

Lk+1
1 (ρk) = E0

[
I ⊗ I ⊗ P1

(
Uk+1(n)(ρk ⊗ µl

k ⊗ β)U�
k+1(n)

)
I ⊗ I ⊗ P1

]

= αk+1
22 (n) + αk+1

33 (n).

These are the two non-normalized states, the operator Lk+1
0 (ρk) appears with prob-

ability pk+1 = Tr[Lk+1
0 (ρk)] and Lk+1

1 (ρk) with probability qk+1 = Tr[Lk+1
1 (ρk)].

Following the approximations and the asymptotic description of Fock space
developed by Attal-Pautrat, we put

h

(
k

n

)
=

1√
n

f

(
k

n

)
+ ◦

(
1
n

)
,

where f is a function from R to C. As in Sect. 2, we assume that the intensity of
the laser f is continuous.

With the same arguments of Sect. 1, the evolution of the discrete quantum
trajectory is described by

ρk =
Lk+1

0 (ρk)
pk+1

+

[
−Lk+1

0 (ρk)
pk+1

+
Lk+1

1 (ρk)
qk+1

]
1k+1

1 . (51)

For further use, convergence results will be established in the case L01 = −L�
10,

and L11 = L21 = L31 = L30 = 0. Conditions about asymptotic of U and the fact
that it is a unitary-operator imply that

L00 = −
(

iH +
1
2

2∑
i=1

L�
i0Li0

)
. (52)

As in Sect. 2.2, the convergence in this situation is expressed as follows:

Proposition 5. Let (Ω,F ,Ft, P ) be a probability space of a Poisson point process N
on R

2. The discrete quantum trajectory (ρ[nt])0≤t≤T defined by the equation (51)
weakly converges in D([0, T ]) for all T to the solution of the following stochastic
differential equation

ρt = ρ0 +

t∫

0

(
− i

[
H, ρs−

]− 1
2

{
2∑

i=1

L�
i0Li0, ρs−

}
+ L10 ρs− L�

10

+
[(

f(s−)L10ρs− − f(s−)L�
10

)
, ρs−

]
+ Tr

[
L20 ρs− L�

20

]
ρs−

)
ds

+

t∫

0

∫

R

(
−ρs− +

L20 ρs− L�
20

Tr
[
L20 ρs− L�

20

]
)

10<x<Tr[L20 ρs− L�
20]

N(dx,ds). (53)
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Proof. For example, we have the following asymptotic result for Lk+1
0 (ρk)

L0(ρk) = ρk +
1
n

(
L00ρ + ρL�

00 + L10ρL�
10

+ f

(
k

n

)[
L01ρ + ρL�

10

]
+ f

(
k

n

)[
L10ρ + ρL�

01

])
+ ◦

(
1
n

)
.

The above expression, the conditions about the operators Lij and the Theorem 6
prove the proposition. �

In this model, the control is deterministic. Before we give an application of
stochastic control, let us briefly expose a use of the model of a laser monitoring
an atom.

Consider the special case, where the Hamiltonian H = 0. Let us put

C =
(

0 1
0 0

)
, L10 = klC, L20 = kcC,

with |kl|2 + |kc|2 = 1. The constant kf and kc are called decay rates [11].
Without control, the stochastic model of a two-level atom in presence of a

photon counter [31] is given by

µt = µ0 +

t∫

0

(
− 1

2
{C�C, µs−} + Tr

[
Cµs−C�

]
µs−

)
ds

+

t∫

0

∫

R

(
−µs− +

Cµs−C�

Tr
[
Cµs−C�

]
)

10<x<Tr[Cµs−C�]N(dx,ds). (54)

Let denote Ñt =
∫ t

0

∫
R
10<x<Tr[Cµs−C�]N(dx,ds) and T = inf{t > 0; Ñt > 0}. In

[5] it is proved that

µt =
(

1 0
0 0

)
= |Ω〉〈Ω|, (55)

for all t > T . Physically, it means that at most one photon appears on the photon
counter. Mathematically, if we write (54) in the form

µt =

t∫

0

Ψ(µs−)ds +

t∫

0

Φ(µs−)dÑs,

then for µ = |Ω〉〈Ω|, we have Φ(µ) = Ψ(µ) = 0. The state |Ω〉〈Ω| is then an
invariant state of the dynamic.

In the presence of a laser, the control f gives rise to the term [fL10−fL�
10, .] =

[klfC −klfC�, .]. Hence, if µ = |Ω〉〈Ω|, we still have Φ(µ) = 0, but we do not have
anymore Ψ(µ) = 0 and the property (55) is not satisfied. The state |Ω〉〈Ω| is no
more an invariant state. As a consequence it is possible to observe more than one
photon in the photon counter.
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Henri Poincaré 7(1), 59–104 (2006)

[5] Attal, S., Pellegrini, C.: Return to equilibrium and heat bath for quantum trajecto-
ries (2007, preprint)

[6] Barchielli, A., Holevo, A.S.: Constructing quantum measurement processes via clas-
sical stochastic calculus. Stoch. Process. Appl. 58, 293–317 (1995)

[7] Barchielli, A., Lupieri, G.: Quantum stochastic models of two-level atoms and elec-
tromagnetic cross sections. J. Math. Phys. 41(11), 7181–7205 (2000)

[8] Barchielli, A., Lupieri, G.: Instrumental processes, entropies, information in quantum
continual measurements. Quantum Inf. Comput. 4(6-7), 437–449 (2004)

[9] Barchielli, A., Paganoni, A.M., Zucca, F.: On stochastic differential equations and
semigroups of probability operators in quantum probability. Stoch. Process. Appl.
73(1), 69–86 (1998)

[10] Barchielli, A., Gregoratti, M., Licciardo, M.: Feedback control of the fluorescence
light squeezing. Eur. Phys. Lett. 85, 14006 (2009)
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[30] Pautrat, Y.: From Pauli matrices to quantum Itô formula. Math. Phys. Anal.
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