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Bifurcations of Positive and Negative Continua
in Quasilinear Elliptic Eigenvalue Problems

Petr Girg and Peter Takáč

Abstract. The main result of this work is a Dancer-type bifurcation result for
the quasilinear elliptic problem{

−Δpu = λ|u|p−2u + h
(
x, u(x); λ

)
in Ω ;

u = 0 on ∂Ω .
(P)

Here, Ω is a bounded domain in R
N (N ≥ 1), Δpu

def
= div(|∇u|p−2∇u) denotes

the Dirichlet p-Laplacian on W 1,p
0 (Ω), 1 < p < ∞, and λ ∈ R is a spectral

parameter. Let μ1 denote the first (smallest) eigenvalue of −Δp. Under some
natural hypotheses on the perturbation function h : Ω×R×R → R, we show
that the trivial solution (0, μ1) ∈ E = W 1,p

0 (Ω) × R is a bifurcation point
for problem (P) and, moreover, there are two distinct continua, Z+

μ1 and Z−
μ1 ,

consisting of nontrivial solutions (u, λ) ∈ E to problem (P) which bifurcate
from the set of trivial solutions at the bifurcation point (0, μ1). The continua
Z+

μ1 and Z−
μ1 are either both unbounded in E, or else their intersection Z+

μ1 ∩
Z−

μ1 contains also a point other than (0, μ1). For the semilinear problem (P)
(i.e., for p = 2) this is a classical result due to E. N. Dancer from 1974. We
also provide an example of how the union Z+

μ1 ∩ Z−
μ1 looks like (for p > 2) in

an interesting particular case.
Our proofs are based on very precise, local asymptotic analysis for λ

near μ1 (for any 1 < p < ∞) which is combined with standard topological
degree arguments from global bifurcation theory used in Dancer’s original
work.

1. Introduction

This work is concerned with bifurcations of continua of “positive” and “negative”
solutions to quasilinear elliptic problems of the following type:{

−Δpu = λ|u|p−2u+ h
(
x, u(x);λ

)
in Ω ;

u = 0 on ∂Ω .
(1.1)
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Here, Ω denotes a bounded domain in R
N (N ≥ 1), Δp stands for the Dirichlet

p-Laplacian defined by Δpu
def= div(|∇u|p−2∇u) for 1 < p < ∞, λ (λ ∈ R) serves

as a bifurcation parameter, and h : Ω × R × R → R is a Carathéodory function
with h(x, · ; · ) continuous for a.e. x ∈ Ω. When considering bifurcations from a
trivial solution, we naturally assume also h(x, 0;λ) = 0 and h(x, u;λ)/|u|p−1 → 0
as u→ 0, pointwise for a.e. x ∈ Ω and uniformly for every λ ∈ R. A trivial solution
of (1.1) is any pair (0, λ) ∈ E

def= W 1,p
0 (Ω) × R.

In analogy with classical results of Dancer [10] for the semilinear case p = 2,
our main goal is to show the existence of two distinct continua of nontrivial (weak)
solutions to problem (1.1), “positive” and “negative” ones, that bifurcate from the
set of trivial solutions at the point (0, μ1) in the positive and negative directions ϕ1

and −ϕ1, respectively (see Lemma 3.6). As usual, μ1 denotes the first (smallest)
eigenvalue of −Δp which is known to be simple with a positive eigenfunction
ϕ1 ∈W 1,p

0 (Ω). Under a continuum in a Banach space we mean a closed connected
set which contains at least two distinct points. Similarly to bifurcations from zero
we treat also bifurcations from infinity under the condition h(x, u;λ)/|u|p−1 → 0
as |u| → ∞, pointwise for a.e. x ∈ Ω and uniformly for every λ ∈ R.

To be more specific about our present results, let us begin by considering
the semilinear case p = 2 first: The classical global bifurcation result of Rabi-
nowitz [31, Theorem 1.3] exhibits a continuum of nontrivial solutions to prob-
lem (1.1) which emanates from the set of trivial solutions at the bifurcation point
(0, μ1). Furthermore, Dancer’s result [10, Theorem 2] guarantees the bifurcation
of two continua of “positive” and “negative” solutions to problem (1.1) in the
directions ±ϕ1. Indeed, in a sufficiently small neighborhood of (0, μ1) these con-
tinua contain only solutions (u, λ) ∈ E of problem (1.1) satisfying u = τ(ϕ1 + v�)
where τ ∈ R and ‖v�/ϕ1‖L∞(Ω) → 0 as τ → 0. Hence, u > 0 in Ω (u < 0 in Ω,
respectively) if and only if τ > 0 (τ < 0), provided |τ | > 0 is small enough.

Now let us consider the quasilinear case p �= 2. The analogue of Rabinowitz’
result [31, Theorem 1.3] for problem (1.1) has been obtained in del Pino and
Manásevich [30] with a continuum of nontrivial solutions bifurcating from the point
(0, μ1) and having the same properties as in the case p = 2. In the work reported
here we obtain the corresponding analogue (Theorem 3.7 below) of Dancer’s re-
sult [10, Theorem 2] for 1 < p < ∞. We treat problems with a more general
(p−1)-homogeneous part than just (1.1) treated in [30]. Similarly to a bifurcation
from zero at (0, μ1) sketched above, under a bifurcation from infinity at (+∞, μ1)
((−∞, μ1), respectively) we mean a continuum of solutions (u, λ) ∈ E of prob-
lem (1.1) satisfying u = t−1(ϕ1 + v�) where 0 �= t ∈ R and ‖v�/ϕ1‖L∞(Ω) → 0 as
t → 0. Again, u > 0 in Ω (u < 0 in Ω, respectively) if and only if t > 0 (t < 0),
provided |t| > 0 is small enough.

In an analogy with the case p = 2, we use the fact that μ1 is a simple
eigenvalue of −Δp with a positive eigenfunction ϕ1 in an essential way. Under a
rather restrictive hypothesis, this extension of Dancer’s result has already been
stated in Drábek [14, Theorem 14.20, p. 191] without proof. His hypothesis [14,
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Eq. (14.43), p. 191] has been verified in Drábek et al. [16, Theorem 4.1] for the
special case h(x, u;λ) ≡ f(x) independent from u and λ, for bifurcations from
infinity at λ = μ1. Extending a new asymptotic technique developed recently in
Drábek et al. [16, Theorem 4.1] and Takáč [34, Section 5] and [35, Section 6], we
are able to verify Drábek’s hypothesis [14, Eq. (14.43), p. 191] and thus extend
Dancer’s result to a broader class of quasilinear elliptic operators of second order.

Last but not least, for the radially symmetric problem (1.1) in a ball Ω ⊂
R

N , a local bifurcation result of Crandall–Rabinowitz-type [9, Theorem 1.7, p. 325]
has been obtained in Garćıa–Melián and Sabina de Lis [21, Theorem 2, p. 30].
We remark that Crandall–Rabinowitz’ result guarantees only local existence of a
(smooth) bifurcation curve of nontrivial solutions together with their uniqueness,
whereas Dancer’s result guarantees global existence of “positive” and “negative”
bifurcation continua of nontrivial solutions without uniqueness. Since Crandall–
Rabinowitz’ result is concerned only with bifurcations from simple eigenvalues,
one can clearly determine the “positive” and “negative” parts of the (smooth
unique local) bifurcation curve of nontrivial solutions.

A direct consequence of our extension of Dancer’s result is the following
dichotomy for the simplified bifurcation problem{

−Δpu = λ|u|p−2u+ f(x) in Ω ;
u = 0 on ∂Ω ,

(1.2)

where f ∈ L∞(Ω), f �≡ 0 in Ω:
There exist two continua Z+

μ1
and Z−

μ1
(⊂ E) of solutions (u, λ) to

problem (1.2) bifurcating from (+∞, μ1) and (−∞, μ1), respectively,
such that either

(i) Z+
μ1

∩Z−
μ1

�= ∅, i.e., Z+
μ1

∪Z−
μ1

is a continuum connecting large
positive with large negative solutions of types (+∞, μ1) and
(−∞, μ1), respectively, or else

(ii) the intersections of both Z±
μ1

with the set {(u, λ) ∈ E : |λ −
μ1| > δ} are unbounded (in E) for every δ > 0 small enough.

This extension also fills the gap left open in several results on global bifurcations
from (±∞, μ1) for problem (1.1) obtained in Drábek et al. [16, Section 5] and in
Drábek, Girg, and Takáč [15, Section 3] as well.

This work is organized as follows. For the sake of clarity of our presentation
we always begin by treating the case of bifurcation from the trivial solution at
(0, μ1) in all details and then reduce our treatment of bifurcation from infinity at
(±∞, μ1) to highlighting the necessary changes.

In the next section (Section 2) we introduce basic notations, state our hy-
potheses, and deduce a few simple consequences. Our main results are stated in
Section 3: bifurcations from zero in Section 3.1 (Proposition 3.5 and Theorem 3.7)
and bifurcations from infinity in Section 3.2 (Proposition 3.8 and Theorem 3.10).
We begin Section 4 by showing the simplicity of the first eigenvalue μ1 for the
quasilinear eigenvalue problem (2.7) in Section 4.1 (Remark 4.1). In particular, we
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generalize also the well-known inequality of Dı́az and Saa which they have estab-
lished only for Δp; see Remark 4.4. In Section 4.2 we adapt some results from Ar-
coya and Gámez [6, Lemma 24, p. 1905] (proved there only for Δp and bifurcation
from infinity) on the asymptotic analysis of local bifurcation from zero to our set-
ting in problem (2.1); see Proposition 4.5. Analogous results for local bifurcations
from infinity are established in Section 4.3 (Proposition 4.10). Section 5 contains
the complete proofs of our main results, Proposition 3.5 and Theorem 3.7. In these
proofs we employ the topological degree due to Browder and Petryshyn [7] and
Skrypnik [33] which we describe in Section 5.1. The corresponding results for bifur-
cations from infinity, Proposition 3.8 and Theorem 3.10, respectively, are derived
from Proposition 3.5 and Theorem 3.7 by applying the standard transformation
u �→ v = u/‖u‖2

W 1,p
0 (Ω)

for u ∈ W 1,p
0 (Ω) \ {0}; see Remark 3.9.

Section 6 features an interesting example of problem (1.1) with Ω = (0, πp) ⊂
R

1 an interval and 2 < p < ∞, cf. (6.1). The nonhomogeneous perturbation
function h(x, u;λ) is chosen in such a way that the continuum Z+

μ1
∪ Z−

μ1
(⊂ E)

oscillates through the hyperplane {(u, λ) ∈ E : λ = μ1} in E while approaching the
bifurcation point (+∞, μ1) or (−∞, μ1). In other words, λ−μ1 oscillates about zero
as ‖u‖W 1,p

0 (Ω) → ∞. Rather involved asymptotic formulas from [16, Theorem 4.1]
are required to handle these oscillations.

Finally, we collect some auxiliary results in Appendices A, B, and C. An a pri-
ori boundedness result in L∞(Ω) (due to Anane [4, Théorème A.1, p. 96]) is stated
in Appendix A. Some useful consequences thereof (for bifurcations from zero and
infinity) follow in Appendix B. Our treatment of Example 6.1 is based on a rami-
fication of Erdélyi’s asymptotic formula [17, Theorem on p. 52] which we establish
in Appendix C.

2. Preliminaries

2.1. Notation

We set R+ = [0,∞) and N = {1, 2, 3, . . .}. The closure, interior, and boundary of a
set S ⊂ R

N are denoted by S, int(S), and ∂S, respectively, and the characteristic
function of S by χS : R

N → {0, 1}. We write |S|N def=
∫

RN χS(x) dx if S is
also Lebesgue measurable. Let Ω be a bounded domain in R

N (N ≥ 1). Given
an integer k ≥ 0 and 0 ≤ α ≤ 1, we denote by Ck,α(Ω) the Hölder space of
all k-times continuously differentiable functions u : Ω → R whose all (classical)
partial derivatives of order ≤ k possess a continuous extension up to the boundary
and are α-Hölder continuous on Ω. The norm ‖u‖Ck,α(Ω) in Ck,α(Ω) is defined
in a natural way. As usual, we abbreviate Ck(Ω) ≡ Ck,0(Ω). The linear subspace
of Ck(Ω) consisting of all Ck functions u : Ω → R with compact support is
denoted by Ck

c (Ω); we set C∞
c (Ω) = ∩∞

k=0C
k
c (Ω). Given 1 ≤ p ≤ ∞, we denote

by Lp(Ω) the Lebesgue space of all (equivalence classes of) Lebesgue measurable
functions u : Ω → R with the standard norm. Finally, for an integer k ≥ 1,
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we denote by W k,p(Ω) the Sobolev space of all functions u ∈ Lp(Ω) whose all
(distributional) partial derivatives of order ≤ k also belong to Lp(Ω). Again, the
norm ‖u‖k,p ≡ ‖u‖W k,p(Ω) in W k,p(Ω) is defined in a natural way. The closure in
W k,p(Ω) of the set of all Ck functions u : Ω → R with compact support is denoted
by W k,p

0 (Ω). We refer to Adams and Fournier [1] or Kufner, John, and Fuč́ık [24]
for details about these and other similar function spaces. All Banach and Hilbert
spaces used in this article are real.

The Euclidean inner product in R
N is denoted by 〈 · , · 〉. We work with

the standard inner product in L2(Ω) defined by 〈u, v〉L2(Ω)
def=
∫
Ω uv dx for u, v ∈

L2(Ω). The orthogonal complement in L2(Ω) of a set M ⊂ L2(Ω) is denoted by
M⊥,L2

,

M⊥,L2 def=
{
u ∈ L2(Ω) : 〈u, v〉L2(Ω) = 0 for all v ∈ M

}
.

The inner product 〈 · , · 〉L2(Ω) induces the canonical duality between the space of
test functions D(Ω) ≡ C∞

c (Ω) and the space of distributions D′(Ω). More generally,
if X is a Banach space, D(Ω) ⊂ X ⊂ D′(Ω), such that the embedding D(Ω) ↪→ X
is dense and continuous, we denote by 〈 · , · 〉X the duality between X and its
dual space X ′ induced by the canonical duality between D(Ω) and D′(Ω). Since
D(Ω) is reflexive, also the embedding X ′ ↪→ D′(Ω) is dense and continuous. If no
confusion may arise, we often leave out the index X in 〈 · , · 〉X . In particular, the
inner product 〈 · , · 〉L2(Ω) induces the duality 〈 · , · 〉Lp(Ω) between the Lebesgue
spaces Lp(Ω) and Lp′

(Ω), where 1 ≤ p <∞ and 1 < p′ ≤ ∞ with 1/p+ 1/p′ = 1,
and the duality 〈 · , · 〉W 1,p

0 (Ω) between the Sobolev space W 1,p
0 (Ω) and its dual

space W−1,p′
(Ω), as well. We use analogous notation also for the duality between

the Cartesian products [Lp(Ω)]N and [Lp′
(Ω)]N .

2.2. Structural hypotheses

Let us consider the following more general version of problem (1.1), namely,{
− div

(
a(x,∇u)

)
= λB(x) |u|p−2u+ h

(
x, u(x);λ

)
in Ω ;

u = 0 on ∂Ω .
(2.1)

In the sequel we always assume that the domain Ω satisfies the following
regularity hypothesis:

Hypothesis (Ω). If N ≥ 2 then Ω is a bounded domain in R
N whose boundary

∂Ω is a compact manifold of class C1,α for some α ∈ (0, 1), and Ω satisfies also
the interior sphere condition at every point of ∂Ω. If N = 1 then Ω is a bounded
open interval in R

1.

It is clear that for N ≥ 2, hypothesis (Ω) is satisfied if Ω ⊂ R
N is a bounded

domain with C2 boundary.
We always assume that the function A of (x, ξ) ∈ Ω × R

N and its partial
gradient ∂ξA ≡

(
∂A
∂ξi

)N
i=1

with respect to ξ ∈ R
N satisfy the following structural

hypothesis, upon the substitution a(x, ξ) def= 1
p ∂ξA(x, ξ) with ai = 1

p
∂A
∂ξi

:
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Hypothesis (A). A : Ω×R
N → R+ verifies the positive p-homogeneity hypothesis

A(x, tξ) = |t|p A(x, ξ) for all t ∈ R (2.2)

and for all (x, ξ) ∈ Ω×R
N . Furthermore, we assume that A ∈ C1(Ω×R

N ), and its
partial gradient ∂ξA : Ω×R

N → R
N satisfies 1

p
∂A
∂ξi

= ai ∈ C1(Ω× (RN \ {0})) for
all i = 1, 2, . . . , N , together with the following ellipticity and growth conditions :
There exist some constants γ,Γ ∈ (0,∞) such that

N∑
i,j=1

∂ai

∂ξj
(x, ξ) · ηiηj ≥ γ · |ξ|p−2 · |η|2 , (2.3)

N∑
i,j=1

∣∣∣∣∂ai

∂ξj
(x, ξ)

∣∣∣∣ ≤ Γ · |ξ|p−2 , (2.4)

N∑
i,j=1

∣∣∣∣ ∂ai

∂xj
(x, ξ)

∣∣∣∣ ≤ Γ · |ξ|p−1 , (2.5)

for all x ∈ Ω, all ξ ∈ R
N \ {0}, and all η ∈ R

N .

It is evident that it suffices to require inequalities (2.3), (2.4), and (2.5) for
|ξ| = 1 only; the general case ξ ∈ R

N \{0} follows from the positive p-homogeneity
hypothesis (2.2).

Hypothesis (2.2) forces A(x,0) = 0 and ∂A
∂ξi

(x,0) = 0 for all x ∈ Ω and
i = 1, 2, . . . , N . It follows that A(x, · ) is strictly convex and satisfies

γ

p− 1
|ξ|p ≤ A(x, ξ) ≤ Γ

p− 1
|ξ|p for all ξ ∈ R

N . (2.6)

These inequalities are a direct consequence of Taylor’s formula combined with (2.3)
and (2.4), which yields

γ

p− 1
|ξ|p ≤ A(x, ξ) −A(x,0) −

〈
∂ξA(x,0), ξ

〉
≤ Γ
p− 1

|ξ|p

for all (x, ξ) ∈ Ω × R
N .

The weight function B is assumed to satisfy

Hypothesis (B). B : Ω → R+ belongs to L∞(Ω) and does not vanish identically
(almost everywhere) in Ω, i.e., B �≡ 0 in Ω.

Now consider the (p− 1)-homogeneous nonlinear eigenvalue problem{
− div

(
a(x,∇u)

)
= λB(x) |u|p−2u in Ω ;

u = 0 on ∂Ω ,
(2.7)

with an eigenvalue λ ∈ R and an eigenfunction u ∈W 1,p
0 (Ω) \ {0}.
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Remark 2.1. The first (smallest) eigenvalue μ1 for problem (2.7) is given by the
Rayleigh quotient

μ1 = inf
{∫

Ω

A(x,∇u) dx : u ∈W 1,p
0 (Ω) with

∫
Ω

B(x) |u|p dx = 1
}
. (2.8)

Since the Sobolev embedding W 1,p
0 (Ω) ↪→ Lp(Ω) is compact, the infimum above is

attained and satisfies 0 < μ1 <∞. It is well-known that μ1 is a simple eigenvalue
for problem (2.7) with the associated eigenfunction ϕ1 normalized by ϕ1 > 0 in Ω
and

∫
Ω
B(x)ϕp

1dx = 1; see Takáč, Tello and Ulm [37, Theorem 2.6, p. 80]. The
special case of the positive Dirichlet p-Laplacian A = −Δp is due to Anane [3,
Théorème 1, p. 727] and in a more general domain Ω to Lindqvist [26, Theorem 1.3,
p. 157]. Moreover, it is shown in Anane [3, Théorème 2, p. 727] or Anane and
Tsouli [5, Prop. 2, p. 5] that μ1 is an isolated eigenvalue of A and the next eigen-
value μ2 > μ1 has a variational characterization. An interested reader can easily
derive this fact from the proof of the anti-maximum principle in Takáč [36, proof
of Theorem 4.4, Eq. (4.13) on p. 408].

2.3. Hypotheses on the nonhomogeneous perturbation

Finally, we assume that h satisfies hypothesis (H0) (for bifurcations from zero) or
hypothesis (H∞) (for bifurcations from infinity) stated below:

Hypothesis (H0). h : Ω×R×R → R is a Carathéodory function, i.e., h( · , u;λ) :
Ω → R is Lebesgue measurable for each pair (u, λ) ∈ R

2 and h(x, · ; · ) : R×R →
R is continuous for almost every x ∈ Ω. Furthermore, we assume that there exists a
constant C ∈ (0,∞) such that∣∣h(x, u;λ)

∣∣ ≤ C |u|p−1 (2.9)

for all a.e. x ∈ Ω and all (u, λ) ∈ R × R, and

h(x, u;λ)/|u|p−1 → 0 as u→ 0 (2.10)

uniformly for a.e. x ∈ Ω and uniformly in λ from bounded intervals in R.

Hypothesis (Hn
0 ). We say that a sequence of functions hn : Ω × R × R → R,

n ∈ N, satisfy hypothesis (Hn
0 ) if functions hn satisfy (H0) for each n ∈ N and the

bounds (2.9) and convergence in (2.10) are uniform in n ∈ N.

Hypothesis (H∞). h : Ω×R ×R → R is a Carathéodory function. Furthermore,
there exists a constant C ∈ (0,∞) such that∣∣h(x, u;λ)

∣∣ ≤ C
(
1 + |u|p−1

)
(2.11)

for all a.e. x ∈ Ω and all (u, λ) ∈ R × R, and

h(x, u;λ)/|u|p−1 → 0 as |u| → ∞ (2.12)

uniformly for a.e. x ∈ Ω and in λ from bounded intervals in R.
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As we work with the zero Dirichlet boundary conditions, sometimes it will
be necessary to assume inequality (2.9) also for bifurcations from infinity; this
inequality is stronger than (2.11).

These hypotheses are satisfied by the following “canonical” examples of
h(x, u;λ) = g(x, u) + f(x) for (x, u, λ) ∈ Ω × R × R:

• Condition (2.10) holds if f ≡ 0 in Ω and g takes either of the forms

g(x, u) =

{
c(x) |u|q(x)−2u ;

c(x) |u|q(x)−1 ,
(2.13)

for |u| ≤ 1, where c, q ∈ L∞(Ω) and q satisfies ess inf
Ω

q > p.

• Condition (2.12) holds if f ∈ L∞(Ω) and g takes either of the forms (2.13) for
|u| ≥ 1, where c, q ∈ L∞(Ω) and q satisfies q(x) > 1 for a.e. x ∈ Ω together
with ess sup

Ω
q < p.

The following simple lemma is a very useful consequence of hypothesis (H0)
or (H∞) in our functional formulation of problem (2.1).

Lemma 2.2. Let u ∈ L∞(Ω) be arbitrary, u �≡ 0 in Ω.
(a) If hypothesis (H0) is satisfied, then

h
(
x, u(x);λ

)
/‖u‖p−1

L∞(Ω) → 0 as ‖u‖L∞(Ω) → 0 (2.14)

holds pointwise for a.e. x ∈ Ω and uniformly for every λ ∈ R.
(b) If hypothesis (H∞) is satisfied, then

h
(
x, u(x);λ

)
/‖u‖p−1

L∞(Ω) → 0 as ‖u‖L∞(Ω) → ∞ (2.15)

holds pointwise for a.e. x ∈ Ω and uniformly for every λ ∈ R.

The proof is given in the Appendix, Section B.1.
In order to obtain easy-to-verify a priori estimates for the “positive” and

“negative” (nontrivial) branches of solutions to the bifurcation problem (2.1), we
impose the following additional hypothesis (H′

0) (for bifurcations from zero) or
(H′

∞) (for bifurcations from infinity) on the perturbation function h where we
assume that h is independent from λ:

Hypothesis (H′
0). h(x, u(x);λ) ≡ h(x, u(x)) and there exist a constant C0 ∈

(0,∞) and functions f0+, f0− ∈ L∞(Ω), f0± �≡ 0 in Ω, and g0 : R → R, g0
continuous with g0(τ) �= 0 for τ ∈ R \ {0}, g0 differentiable in (−δ, δ) \ {0} for
some δ > 0, such that∣∣h(x, u)

∣∣ ≤ C0

∣∣∣∣g0
(

u

ϕ1(x)

)∣∣∣∣ for a.e. x ∈ Ω and all u ∈ R ; (2.16)

h(x, u)
g0
(

u
ϕ1(x)

) → f0±(x) pointwise for a.e. x ∈ Ω as u→ 0± ; (2.17)

Γ0
def= sup

0<|τ |<δ

∣∣∣∣τ g′0(τ)g0(τ)

∣∣∣∣ <∞ . (2.18)
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Hypothesis (H′
∞). h(x, u(x);λ) ≡ h(x, u(x)) and there exist a constant C∞ ∈

(0,∞) and functions f±∞ ∈ L∞(Ω), f±∞ �≡ 0 in Ω, and g∞ : R → R, g∞ contin-
uous with g∞(τ) �= 0 for τ ∈ R \ {0}, g∞ differentiable in (−∞,−δ) ∪ (δ,∞) for
some δ > 0, such that∣∣h(x, u)

∣∣ ≤ C∞

∣∣∣∣g∞
(

u

ϕ1(x)

)∣∣∣∣ for a.e. x ∈ Ω and all u ∈ R ; (2.19)

h(x, u)
g∞
(

u
ϕ1(x)

) → f±∞(x) pointwise for a.e. x ∈ Ω as u→ ±∞ ; (2.20)

Γ∞
def= sup

|τ |>δ

∣∣∣∣τ g′∞(τ)
g∞(τ)

∣∣∣∣ <∞ . (2.21)

Some remarks on these hypotheses are in order.

Remark 2.3. Rewriting (2.17) as

h(x, u)
|u|p−1

·
∣∣ u
ϕ1(x)

∣∣p−1

g0
(

u
ϕ1(x)

) −→ f0±(x)
ϕ1(x)p−1

for a.e. x ∈ Ω as u→ 0±

we observe that (2.10) forces g0(τ)/|τ |p−1 → 0 as τ → 0. Similarly, combin-
ing (2.20) with (2.12) we arrive at g∞(τ)/|τ |p−1 → 0 as τ → ±∞ .

Remark 2.4. Condition (2.18) guarantees∣∣∣∣∣g0
(
τ(1 + θ)

)
g0(τ)

− 1

∣∣∣∣∣ ≤ 4 Γ0 |θ| (2.22)

for all τ, θ ∈ R such that 0 < |τ | ≤ 1/2δ and |θ| ≤ θ0
def= min{1/2, 1

4 Γ0
}.

This can be seen as follows. Let 0 < |τ | ≤ 1/2δ and |θ| ≤ θ0. From

g0
(
τ(1 + θ)

)
− g0(τ) = τ θ

∫ 1

0

g′0
(
τ(1 + s θ)

)
ds

we obtain ∣∣g0(τ(1 + θ)
)
− g0(τ)

∣∣ ≤ |τ | |θ| · sup
0≤s≤1

∣∣g′0(τ(1 + s θ)
)∣∣ .

Now we apply (2.18) and |θ| ≤ 1/2 to conclude that∣∣g0(τ(1+θ)
)
−g0(τ)

∣∣ ≤ 2 Γ0 |θ| · sup
0≤s≤1

∣∣g0(τ(1 + sθ)
)∣∣

≤ 2 Γ0 |θ| ·
{

sup
0≤s≤1

∣∣g0(τ(1+sθ)
)
−g0(τ)

∣∣+∣∣g0(τ)∣∣
}
. (2.23)

Since θ ∈ R is arbitrary with |θ| ≤ θ0, (2.23) yields
1
2
· sup

0≤s≤1

∣∣g0(τ(1 + sθ)
)
− g0(τ)

∣∣ ≤ 2 Γ0 |θ|
∣∣g0(τ)∣∣

from which (2.22) follows.
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Remark 2.5. Condition (2.21) guarantees∣∣∣∣∣g∞
(
τ(1 + θ)

)
g∞(τ)

− 1

∣∣∣∣∣ ≤ 4 Γ∞ |θ| (2.24)

for all τ, θ ∈ R such that |τ | ≥ 2δ and |θ| ≤ θ0
def= min{1/2, 1

4 Γ∞
}.

The proof of (2.24) is analogous to that of (2.22).

3. Main results

Set E def= W 1,p
0 (Ω) × R. Under a solution of problem (2.1) (in the weak sense) we

understand a pair (u, λ) ∈ E that satisfies the integral identity∫
Ω

〈
a(x,∇u),∇φ

〉
dx = λ

∫
Ω

B(x) |u|p−2uφdx+
∫

Ω

h
(
x, u(x);λ

)
φdx (3.1)

for all φ ∈W 1,p
0 (Ω). The last equation is equivalent to the operator equation

A(u) = λB(u) + H(u;λ) (3.2)

with all terms valued in the dual space X ′ = W−1,p′
(Ω) of X = W 1,p

0 (Ω) and the
operators A,B,H( · ;λ) : X → X ′ defined as follows, for all u, φ ∈ X and λ ∈ R:〈

A(u), φ
〉

X
=
∫

Ω

〈
a(x,∇u),∇φ

〉
dx ; (3.3)

〈
B(u), φ

〉
X

=
∫

Ω

B(x) |u|p−2uφdx ; (3.4)

〈
H(u;λ), φ

〉
X

=
∫

Ω

h(x, u;λ)φ(x) dx . (3.5)

Owing to our conditions (2.2) through (2.5), the operator A : X → X ′ is
continuous, coercive, and strictly monotone. The operator B̃ : X → X ′ can be
extended to a continuous operator B : Lp(Ω) → (Lp(Ω))′ = Lp′

(Ω) in a unique
way. Consequently, B decomposed as

B : X ↪→ Lp(Ω) B̃−→ Lp′
(Ω) ↪→ X ′

is compact by Rellich’s theorem. Finally, given λ ∈ R, also the operator H( · ;λ) :
X → X ′ can be extended to a continuous operator H̃( · ;λ) : Lp(Ω) → Lp′

(Ω)
in a unique way. Again, H : X × R → X ′ is compact by Rellich’s theorem.

Furthermore, given any F ∈ X ′, the mapping u �→ A(u) − F equals the
Fréchet derivative of the energy functional

J0(u) def=
1
p

∫
Ω

A(x,∇u) dx − 〈F, u〉X , u ∈ X = W 1,p
0 (Ω) , (3.6)

which is coercive and strictly convex on X . Thus, the equation A(u) = F has
exactly one solution u ∈ X , i.e., A is invertible with the inverse mapping A−1 :
X ′ → X which is continuous because X is a uniformly convex space (cf. Takáč,



Vol. 9 (2008) Bifurcations of Positive and Negative Continua 285

Tello, and Ulm [37, Prop. 4.3, p. 87]). Consequently, the operator λB + H( · ;λ)
on the right-hand side of equation (3.2) may be viewed as a compact perturbation
of the invertible operator A : X → X ′.

This setting will enable us to apply the Browder–Petryshyn degree theory
(Browder and Petryshyn [7] or Skrypnik [33]) to the mapping

Φλ(u) ≡ Φ(u, λ) def= A(u) − λB(u) −H(u;λ) , (u, λ) ∈ E = X × R . (3.7)

In terms of Φ(u, λ), equation (3.1) reads Φ(u, λ) = 0. Now consider the (p − 1)-
homogeneous nonlinear eigenvalue problem (2.7), i.e., A(u)−λB(u) = 0 for (u, λ) ∈
E; recall that E = X × R.

Definition 3.1. Let μ0 ∈ R. We say that (0, μ0) ∈ E is a bifurcation point (from
zero) for problem (2.1) if there exists a sequence of pairs {(un, λn)}∞n=1 ⊂ E
such that equation (3.1) holds with (u, λ) = (un, λn) for all n = 1, 2, . . . , and
(un, λn) → (0, μ0) in E as n→ ∞.

Proposition 3.2. Let (0, μ0) ∈ E be a bifurcation point (from zero) for prob-
lem (2.1). Then μ0 is an eigenvalue for the nonlinear eigenvalue problem (2.7),
i.e., A(u) − μ0B(u) = 0 with some u ∈ X \ {0}.

The proof follows a standard pattern for this kind of result (the necessary
condition for bifurcation via compactness). The reader is referred to the monograph
by Fuč́ık et al. [20, Proof of Theorem II.3.2, pp. 61–62] for details.

Definition 3.3. Let μ0 ∈ R. We say that (∞, μ0) is an (asymptotic) bifurcation point
from infinity for problem (2.1) if there exists a sequence of pairs {(un, λn)}∞n=1 ⊂ E
such that equation (3.1) holds with (u, λ) = (un, λn) for all n = 1, 2, . . . , and
(‖un‖X , λn) → (∞, μ0) as n→ ∞.

For u ∈ X , u �= 0, set v = u/‖u‖2
X. Then (3.2) is equivalent to

A(v) − λB(v) = ‖v‖2(p−1)
X H

(
v/‖v‖2

X ;λ
)
,

and so the term

G(v;λ) def=

{
‖v‖2(p−1)

X H
(
v/‖v‖2

X ;λ
)

if v �= 0 ;
0 if v = 0 ,

for λ ∈ R, represents a compact perturbation “of higher order” in the variable v
in the equation

A(v) − λB(v) = G(v;λ) . (3.8)

It follows immediately from this transformation that the pair (∞, μ0) is a
bifurcation point from infinity for (3.2) if and only if (0, μ0) is a bifurcation point
zero for (3.8). For C ⊂ X × R we define (the set) C̃ to be the closure in X × R of
the set of all pairs (v, μ) ∈ X ×R such that v �= 0 and (v/‖v‖2

X , μ) ∈ C. Using this
transformation, a necessary condition for bifurcations from infinity easily follows
from Proposition 3.2.
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Proposition 3.4. Let (∞, μ0) be a bifurcation point from infinity for problem (2.1).
Then μ0 is an eigenvalue for the nonlinear eigenvalue problem (2.7), i.e., A(u) −
μ0B(u) = 0 with some u ∈ X \ {0}.

In our treatment below we will prove a number of bifurcation results only
for bifurcations from zero and leave obvious adjustments for bifurcations from in-
finity to the interested reader. More precisely, the counterparts for bifurcations
from infinity corresponding to bifurcations from zero are obtained by the stan-
dard transformation described in Definition 3.3 above. We will make necessary
comments in case when this procedure is not straightforward.

3.1. Bifurcations from zero – main results

The closure of the set of all nontrivial solutions of problem (2.1) in E = W 1,p
0 (Ω)×R

will be denoted by S, i.e.,

S def=
{
(u, λ) ∈ E : Φ(u, λ) = 0, u �= 0

}E
.

Our first result concerns global bifurcation of solutions (u, λ) ∈ S from zero at the
point (0, μ1) ∈ E.

Proposition 3.5. Let μ1 be defined by formula (2.8) and assume that h satisfies
hypothesis (H0). Then the pair (0, μ1) is a bifurcation point (from zero) for prob-
lem (2.7). Moreover, there exists a maximal closed set C ⊂ S (in the ordering by
set inclusion), such that C is connected in E and has the following properties:

(i) there exists a sequence {(un, λn)}∞n=1 ⊂ C such that (un, λn) → (0, μ1) in E;
(ii) either C is unbounded, or else there exist another eigenvalue μ0 of A(u) −

λB(u) = 0 such that μ0 > μ1 and another sequence {(u′n, λ′n)}∞n=1 ⊂ C satis-
fying (u′n, λ

′
n) → (0, μ0) in E.

The proof of this result is postponed till Section 5.2.
Our main result below provides more details about the bifurcation from Pro-

position 3.5. In order to formulate and prove this result, it is convenient to intro-
duce Dancer’s notation [10]. Given any μ ∈ R and 0 < s < ∞, we consider an
open neighborhood of (0, μ) in E defined by

Es(μ) def=
{
(u, λ) ∈ E : ‖u‖W 1,p

0 (Ω) + |λ− μ| < s
}
.

Next, we define a functional � ∈W−1,p′
(Ω) by

�(φ) def= ‖ϕ1‖−2
L2(Ω)

∫
Ω

φϕ1 dx for all φ ∈ W 1,p
0 (Ω) .

Thus, �(ϕ1) = 1. Notice that, using the reflexivity of W 1,p
0 (Ω), we may identify �

with the function ‖ϕ1‖−2
L2(Ω)ϕ1. Finally, for any 0 < η < μ

−1/p
1 we define

Kη
def=
{
(u, λ) ∈ E : |�(u)| > η ‖u‖W 1,p

0 (Ω)

}
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and decompose it in a disjoint union Kη = K+
η ∪K−

η of the sets

K±
η

def=
{
(u, λ) ∈ E : ±�(u) > η ‖u‖W 1,p

0 (Ω)

}
. (3.9)

In particular, both Kν
η (ν = ±) are convex cones, K−

η = −K+
η , and νtϕ1 ∈ Kν

η for
every number t > 0. The symbol −ν will denote the sign opposite to ν.

For a precise formulation of our main result, we also need the following lemma
which is a variant of Rabinowitz’ result [31, Lemma 1.24] adapted to the quasilinear
problem (2.1) with λ in a neighborhood of the first eigenvalue μ1. Here we introduce
the (technical) constant

η0
def=
(

γ

(p− 1)
[
(μ1 + 1)‖B‖L∞(Ω) + C

]
|Ω|N

)1/p

· ‖ϕ1‖−1
L∞(Ω) > 0 , (3.10)

where γ > 0 and C > 0 are the constants from inequalities (2.6) and (2.9),
respectively.

Lemma 3.6. For every η ∈ (0, η0) there exists a number S, 0 < S ≤ 1, such that(
S \

{
(0, μ1)

})
∩ ES(μ1) ⊂ Kη .

Moreover, if (u, λ) ∈ (S \ {(0, μ1)}) ∩ ES(μ1) then u = τ(ϕ1 + v�), where τ =
�(u) ∈ R and v� ∈ C1,β′

(Ω) (0 < β′ < β) satisfy |τ | > η ‖u‖W 1,p
0 (Ω) and �(v�) = 0

together with |λ− μ1| → 0 and ‖v�‖C1,β′(Ω) → 0 as τ → 0.

The proof of this result is postponed till Section 5.2.
Let S > 0 be the constant from Lemma 3.6. For 0 < ε ≤ S and ν = ±

we define Dν
μ1,ε to be the component of {(0, μ1)} ∪ (S ∩ Eε ∩ Kν

η ) containing

(0, μ1), and Zν
μ1,ε to be the component of Zμ1 \ D−ν

μ1,ε containing (0, μ1). Finally,
we define Zν

μ1
to be the closure of

⋃
0<ε≤S Zν

μ1,ε in X . Clearly, Zν
μ1

is connected.
Thanks to the properties of S from Lemma 3.6, the definition of Z±

μ1
is independent

from the choice of η ∈ (0, η0). Moreover, Lemma 3.6 guarantees that the union
Zμ1 = Z+

μ1
∪Z−

μ1
coincides with the component of S containing the point (0, μ1), by

simple set-theoretical and topological arguments applied directly to the definition
of Zν

μ1
.

The following result is a close analogue of Dancer’s result [10, Theorem 2,
p. 1071] shown originally for abstract semilinear equations.

Theorem 3.7. Either Z+
μ1

and Z−
μ1

are both unbounded, or else Z+
μ1

∩ Z−
μ1

�=
{(0, μ1)}.

Our proof of this result for the quasilinear boundary value problem (2.1)
follows the same steps as does the proof for the semilinear case from [10]. Some
asymptotic estimates are needed in this proof which, unlike in the semilinear case,
are quite difficult to obtain due to the nonlinearity of the partial differential op-
erator. These asymptotic estimates are our main contribution. Another difference
consists in the fact that we use the Browder–Petryshyn degree instead of the
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more common Lerray–Schauder degree. The Browder–Petryshyn degree is better
suited for a weak formulation of a quasilinear boundary value problem; see e.g.,
Drábek [14]. As we need the aforementioned asymptotic estimates, we postpone
our proof of Theorem 3.7 until after the formulation and proof of these estimates.

3.2. Bifurcations from infinity – main results

In the preceding paragraph we considered (0, μ1) as a bifurcation point for prob-
lem (3.8); cf., [14, Theorem 14.18]. Let us reformulate Proposition 3.5 and The-
orem 3.7 in terms of bifurcation from infinity for problem (3.2) at (∞, μ1). For
simplicity, let us assume

h( · , 0;λ) �≡ 0 in Ω for every λ ∈ R . (3.11)

This assumption will guarantee that there is no bifurcation from zero. Recall that,
given a set C ⊂ X × R, C̃ denotes the closure in X × R of the set of all pairs
(v, μ) ∈ X × R such that v �= 0 and (v/‖v‖2

X , μ) ∈ C.

Proposition 3.8. Let h satisfy (H∞) and (3.11). Then the pair (∞, μ1) is a bi-
furcation point from infinity for (3.2). Moreover, there exists a maximal (in the
ordering by set inclusion) closed set C ⊂ X×R, such that C̃ is connected in X×R

and the following properties hold:
(i) there exists a sequence {(un, λn)}∞n=1 ⊂ C such that (‖un‖X , λn) → (∞, μ1);
(ii) either C is unbounded in the λ-direction, or else there exists an eigenvalue μ0

of the nonlinear eigenvalue problem (2.7) such that μ0 > μ1 and there is a
sequence {(un, λn)}∞n=1 ⊂ C satisfying (‖un‖X , λn) → (∞, μ0).

Remark 3.9. The assumption (3.11) implies that (3.2) cannot have a trivial solu-
tion (u, λ) = (0, λ) in E and, therefore, C contains no sequence of pairs (uk, λk)
with (uk, λk) → (0, μ̂) in E for some μ̂ ∈ R. Hence, the statement of Proposition 3.8
follows directly from Proposition 3.5 using the transformation u �→ v = u/‖u‖2

X.

Let S be as in Lemma 3.6. For 0 < ε ≤ S we define D̃±
μ1,ε as the component

of {(0, μ1)} ∪ (S̃ ∩ Eε ∩ K±
η ) containing (0, μ1), and Z̃±

μ1,ε as the component of

Z̃μ1 \ D̃∓
μ1,ε containing (0, μ1). Finally, we define Z̃±

μ1

def=
⋃

0<ε≤S Z̃±
μ1,ε. Recall

that S̃ (Z̃±
μ1

, respectively) denotes the closure in E = X ×R of the set of all pairs
(v, λ) ∈ E such that v �= 0 and (v/‖v‖2

X , μ) ∈ S ((v/‖v‖2
X , μ) ∈ Z±

μ1
).

Theorem 3.10. Let h satisfy (H∞) and (3.11). Then there is a pair of sets Z+
μ1
,Z−

μ1

⊂ S such that Z̃+
μ1

and Z̃−
μ1

are both unbounded, or else Z̃+
μ1

∩ Z̃−
μ1

�= {(0, μ1)}.

4. Asymptotic estimates for λ near μ1

Here we establish some local asymptotic estimates for λ near μ1. We consider the
energy functional

Jλ(u) def=
1
p

∫
Ω

A(x,∇u) dx − λ

p

∫
Ω

B(x) |u|p dx−
∫

Ω

H(x, u) dx (4.1)
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defined for u ∈W 1,p
0 (Ω) where

H(x, u) def=
∫ u

0

h(x, t) dt for x ∈ Ω and u ∈ R .

We assume that A and B satisfy hypotheses (A) and (B).
The critical points of Jλ coincide with the weak solutions of the bound-

ary value problem (2.1) where a(x, ξ) = 1/p ∂ξA(x, ξ) and h(x, u) = ∂uH(x, u).
Clearly, for h ≡ 0 in Ω × R, the functional

J (0)
λ (u) =

1
p

∫
Ω

A(x,∇u) dx − λ

p

∫
Ω

B(x) |u|p dx

is strictly convex on W 1,p
0 (Ω) provided λ ≤ 0; if λ > 0 the convexity of J (0)

λ is
known to be lost, see Fleckinger et al. [18, Example 2, p. 148] for 1 < p < 2 and
del Pino, Elgueta and Manásevich [29, Eq. (5.26), p. 12] for 2 < p < ∞, where
such examples are constructed in an open interval Ω ⊂ R

1. However, if u > 0
almost everywhere in Ω, one may substitute v = up and investigate the functional

Kλ(v) def= p · J (0)
λ (v1/p) =

∫
Ω

A
(
x,∇(v1/p)

)
dx− λ

∫
Ω

B(x) v dx (4.2)

instead, which is defined on the set
•
V +

def=
{
v : Ω → (0,∞) : v1/p ∈W 1,p

0 (Ω)
}
.

The second summand in (4.2) being linear in the variable v, it suffices to focus on
the convexity of the first one,

K(v) def=
∫

Ω

A
(
x,∇(v1/p)

)
dx , v ∈

•
V + . (4.3)

Notice that K is positively homogeneous, i.e.,

K(tv) = t · K(v) for any number t > 0 .

4.1. Convexity on the cone of positive functions

We would like to point out for future references that all results that are stated
throughout this paragraph remain valid for any bounded domain Ω ⊂ R

N ; the
smoothness of its boundary ∂Ω required in hypothesis (Ω) is not necessary here.

It is shown in Takáč, Tello, and Ulm [37, Lemma 2.4, p. 79] that
•
V + is a

convex cone, i.e., v0, v1 ∈
•
V + =⇒ α0v0 + α1v1 ∈

•
V + for all α0, α1 ∈ (0,∞), and

the functional K :
•
V + → R is ray-strictly convex , i.e., for all v0, v1 ∈

•
V + and

θ ∈ (0, 1) we have

K
(
(1 − θ)v0 + θv1

)
≤ (1 − θ)K(v0) + θK(v1)

where equality may hold only if v0 and v1 are colinear, i.e., v1 = αv0 for some α ∈
(0,∞). For the special case A(x, ξ) = |ξ|p, (x, ξ) ∈ Ω × R

N , this lemma is due to
Dı́az and Saa [12]. It has had a number of important consequences in the past; some
of them are surveyed in Takáč [36, Sect. 3]. However, several of these important
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consequences can be obtained in a “parallel” way we adopt here, using supporting
hyperplanes to the epigraph of K. In particular, also this method yields the sim-
plicity of the first (smallest) eigenvalue μ1 for the Euler equation corresponding
to the energy functional Jλ on W 1,p

0 (Ω); recall that μ1 is given by formula (2.8).
We begin with the notion of the subdifferential ∂K(v0) of the functional

K :
•
V + → R which we define as follows: Given v0 ∈

•
V +, we introduce the

weighted Sobolev space

D(v0)
def=
{
φ : Ω → R : φ v−(p−1)/p

0 ∈W 1,p
0 (Ω)

}
endowed with the natural norm

‖φ‖D(v0)
def=
∥∥∥φ v−(p−1)/p

0

∥∥∥
W 1,p

0 (Ω)
=
(∫

Ω

∣∣∣∇(φ v−(p−1)/p
0

)∣∣∣p)1/p

.

For φ ∈ D(v0) we set〈
∂K(v0), φ

〉 def=
∫

Ω

〈
a
(
x,∇(v1/p

0 )
)
,∇
(
φ v

−(p−1)/p
0

)〉
dx . (4.4)

Combining our hypotheses on a(x, ξ) = 1/p ∂ξA(x, ξ) with the Hölder inequality,
we conclude that the last integral is absolutely convergent and ∂K(v0) is a bounded
linear functional on D(v0).

An easy calculation reveals that v ∈ D(v0) whenever v ∈
•
V + satisfies v/v0 ∈

L∞(Ω).

Remark 4.1. It is easy to see that v0 ∈
•
V + ∩C0(Ω) implies ∂K(v0) ∈ D′(Ω). More

precisely, ∂K(v0) belongs to the dual space of the Fréchet space C1
c (Ω) and thus

to D′(Ω). Employing formal integration by parts, we may write in D′(Ω)

∂K(v0) = − v
−(p−1)/p
0 · div

(
a
(
x,∇(v1/p

0 )
))
. (4.5)

In addition, the expression 〈∂K(v0), φ〉 gives the directional derivative of the func-
tional K at v0 in direction φ ∈ C1

c (Ω).

The conclusion of the lemma below is very close to being equivalent to the

claim that K :
•
V + → R is ray-strictly convex. Its consequences are similar; see e.g.,

Picone’s identity for the p-Laplacian used in Allegretto and Huang [2, Theorem 2.1,
p. 821].

Lemma 4.2. For any pair v0, v ∈
•
V + with v ∈ D(v0) we have

K(v) ≥
〈
∂K(v0), v

〉
. (4.6)

Equality holds if and only if the functions v0 and v are colinear, i.e., v = αv0

for some α ∈ (0,∞). In particular, we may take any pair v0, v ∈
•
V + satisfying

v/v0 ∈ L∞(Ω).
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Proof. The function A(x, · ) being strictly convex on R
N , by the ellipticity con-

dition (2.3) (hypothesis (A)), we observe that the inequality

A(x, ξ) −A(x, ξ0) >
〈
∂ξA(x, ξ0), ξ − ξ0

〉
holds for all ξ, ξ0 ∈ R

N with ξ �= ξ0. Using the identities a(x, ξ0) = 1/p ∂ξA(x, ξ0)
and A(x, ξ0) = 〈a(x, ξ0), ξ0〉, we can rewrite it equivalently as

A(x, ξ) > p

〈
a(x, ξ0), ξ −

p− 1
p

ξ0

〉
for ξ �= ξ0 . (4.7)

Now let v, v0 ∈ (0,∞) and ξ, ξ0 ∈ R
N . Substituting the fractions ξ/v and ξ0/v0

for ξ and ξ0, respectively, from (4.7) we derive

A

(
x,
ξ

v

)
≥ p

〈
a
(
x,
ξ0
v0

)
,
ξ

v
− p− 1

p

ξ0
v0

〉
where equality holds if and only if ξ/v = ξ0/v0. Finally, we apply the positive
p-homogeneity hypothesis (2.2) to get

A

(
x,

ξ

p v(p−1)/p

)
≥ 1

v
(p−1)/p
0

〈
a

(
x,

ξ0

p v
(p−1)/p
0

)
, ξ − p− 1

p

v

v0
ξ0

〉
. (4.8)

Equality holds if and only if ξ/v = ξ0/v0.
To conclude our proof, we use the identities ∇(v1/p) = p−1v−(p−1)/p∇v and

∇
(

v

v
(p−1)/p
0

)
=

1

v
(p−1)/p
0

(
∇v − p− 1

p

v

v0
∇v0

)

for v0, v ∈
•
V +. If also v ∈ D(v0), we may take ξ = ∇v and ξ0 = ∇v0 a.e. in Ω,

substitute them into inequality (4.8), and then integrate the result over Ω, thus
arriving at∫

Ω

A
(
x,∇(v1/p)

)
dx ≥

∫
Ω

〈
a
(
x,∇(v1/p

0 )
)
,∇
(
v v

−(p−1)/p
0

)〉
dx . (4.9)

Equality holds if and only if v−1∇v = v−1
0 ∇v0 a.e. in Ω. The latter equality is

equivalent to v/v0 ≡ const in Ω. Clearly, (4.6) and (4.9) are the same.
The lemma is proved. �

Remark 4.3. Lemma 4.2 implies immediately that the first eigenvalue μ1 given by
the Rayleigh quotient (2.8) must be simple; cf. Takáč, Tello, and Ulm [37, proof
of Theorem 2.6, p. 81].

Indeed, since the Sobolev embedding W 1,p
0 (Ω) ↪→ Lp(Ω) is compact by Rel-

lich’s theorem, the infimum in (2.8) is attained and satisfies 0 < μ1 < ∞. Now
write u = u+ − u− where u+ = max{u, 0} and u− = max{−u, 0}, respectively,
denote the positive and negative parts of a real-valued function u ∈ W 1,p

0 (Ω). We
have u± ∈ W 1,p

0 (Ω), see Gilbarg and Trudinger [22, Theorem 7.8, p. 153]. More
precisely, also ∇u+ = ∇u almost everywhere in Ω+ = {x ∈ Ω : u(x) > 0} and
∇u+ = 0 almost everywhere in Ω \ Ω+. The corresponding result holds for u−
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and −u as well. It follows from the proof of Theorem 2.6 (p. 81) in [37] that if a
minimizer u ∈ W 1,p

0 (Ω) for μ1 in (2.8) changes sign in the set {x ∈ Ω : B(x) > 0},
then also both functions u+/

∫
ΩB(x)(u+)p dx and u−/

∫
ΩB(x)(u−)p dx are min-

imizers for μ1. We apply the strong maximum principle (due to Tolksdorf [38,
Prop. 3.2.1 and 3.2.2, p. 801] and Vázquez [40, Theorem 5, p. 200]) to conclude
that any minimizer u ∈ W 1,p

0 (Ω) for μ1 is either almost everywhere positive or
else almost everywhere negative in Ω; we may assume u > 0 a.e. in Ω. Hence,
K(up) = μ1. Denote by ϕ1 any such minimizer for μ1 (with ϕ1 > 0 a.e. in Ω).
From (4.5) we get ∂K(ϕp

1) = μ1B( · ) in Ω. We conclude that equality must hold
in K(up) ≥ 〈∂K(ϕp

1), u
p〉, which forces u/ϕ1 ≡ const in Ω, by Lemma 4.2.

Furthermore, if the boundary ∂Ω is of class C1,α for some α ∈ (0, 1), then
ϕ1 ∈ C1,β(Ω) for some β ∈ (0, α), by Proposition A.1. Finally, if Ω satisfies also
an interior sphere condition at a point x0 ∈ ∂Ω, then (∂ϕ1/∂ν)(x0) < 0, by the
Hopf maximum principle (see [38, Prop. 3.2.1 and 3.2.2, p. 801] or [40, Theorem 5,
p. 200]). We will need these facts throughout the rest of this work.

Remark 4.4. Lemma 4.2 implies also the monotonicity of the subdifferential ∂K
in the following sense: If u, v ∈

•
V + satisfy u/v, v/u ∈ L∞(Ω), then one has〈

∂K(u) − ∂K(v), u− v
〉
≥ 0 (4.10)

where equality holds if and only if u and v are colinear. Indeed, using inequal-
ity (4.6) we get 〈

∂K(u) − ∂K(v), u
〉

= K(u) −
〈
∂K(v), u

〉
≥ 0 ,〈

∂K(v) − ∂K(u), v
〉

= K(v) −
〈
∂K(u), v

〉
≥ 0 .

We obtain (4.10) by adding these two inequalities.
Notice that (4.10) is the well-known inequality of Dı́az and Saa established

in [12] for the special case A(x, ξ) = |ξ|p, (x, ξ) ∈ Ω × R
N : Let u0, u1 ∈ W 1,p

0 (Ω)
be such that u0 > 0 and u1 > 0 in Ω and both u0/u1 and u1/u0 are in L∞(Ω).
Then we have∫

Ω

(
−

div
(
a(x,∇u0)

)
up−1

0

+
div
(
a(x,∇u1)

)
up−1

1

)
(up

0 − up
1) dx ≥ 0 (4.11)

where equality holds if and only if v1/v0 ≡ const in Ω.

4.2. Bifurcations from zero for λ near μ1

Now, assuming hypothesis (H0), let us consider problem (2.1) again. By Lem-
ma B.2 in Appendix B.2, for any λ ∈ R sufficiently close to μ1, every weak solution
u ∈ W 1,p

0 (Ω) of problem (2.1) with a sufficiently small norm ‖u‖W 1,p
0 (Ω) takes the

form
u = t(ϕ1 + v�) where t ∈ R \ {0} and v� ∈ C1(Ω) , (4.12)

and v� satisfies 〈v�, ϕ1〉 = 0 together with |v�| ≤ 1/2ϕ1 in Ω. Moreover, one
has the asymptotic formulas λ → μ1 and ‖v�‖C1(Ω) → 0 as t → 0 (t �= 0). In
particular, we work only with such solutions u ∈ C1(Ω) of problem (2.1) that are
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either positive or negative throughout Ω. More precisely, we have t−1u ≥ 1/2ϕ1

in Ω.
We need a more accurate estimate on the difference λ − μ1 as t → 0 which

we derive from Lemma 4.2 next.

Proposition 4.5. Let hypothesis (H0) be satisfied. Then, for any t ∈ R \ {0} with
|t| small enough, we have

−
(
|t|p−2t

)−1
(∫

Ω

B (ϕ1 + v�)p dx
)−1 ∫

Ω

h
(
x, t(ϕ1 + v�);λ

)
(ϕ1 + v�) dx

≤ λ− μ1

≤ −
(
|t|p−2t

)−1
∫

Ω

h
(
x, t(ϕ1 + v�);λ

) (
1 +

v�

ϕ1

)−(p−1)

ϕ1 dx , (4.13)

where ‖v�/ϕ1‖L∞(Ω) → 0 as t→ 0.

Proof. We treat the case t > 0 only. The case t < 0 is analogous; one has to
replace u and h(x, u;λ) by −u and −h(x, u;λ), respectively.

The lower bound on λ−μ1 is obtained as follows. The Euler equation for the
minimizers in formula (2.8) for μ1 combined with the normalization of ϕ1 yield〈

∂K(ϕp
1), φ

〉
= μ1

∫
Ω

B φdx for every φ ∈ D(ϕ1) . (4.14)

Multiplying equation (2.1) by u and integrating over Ω we get

K(up) = λ

∫
Ω

B up dx+
∫

Ω

h(x, u;λ)u dx . (4.15)

From inequality (4.6) we obtain K(up) ≥ 〈∂K(ϕp
1), u

p〉. Combining this inequality
with (4.14) and (4.15) we arrive at

λ

∫
Ω

B up dx+
∫

Ω

h(x, u;λ)u dx ≥ μ1

∫
Ω

B up dx .

Finally, using (4.12), we get

(λ− μ1)
∫

Ω

B (ϕ1 + v�)p dx

≥ − t−(p−1)

∫
Ω

h
(
x, t(ϕ1 + v�);λ

)
(ϕ1 + v�) dx (4.16)

for t > 0 small enough.
Now we estimate λ− μ1 from above. From equation (2.1) we deduce〈

∂K(up), φ
〉

= λ

∫
Ω

B φdx+
∫

Ω

h(x, u;λ)u−(p−1) φdx (4.17)

for every φ ∈ D(ϕ1). Formula (2.8) for μ1 yields

K(ϕp
1) = μ1

∫
Ω

B ϕp
1 dx = μ1 . (4.18)
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From inequality (4.6) we obtain K(ϕp
1) ≥ 〈∂K(up), ϕp

1〉. We combine this inequality
with (4.17) and (4.18) to get

(λ− μ1)
∫

Ω

B ϕp
1 dx+

∫
Ω

h(x, u;λ)u−(p−1) ϕp
1 dx ≤ 0 .

Finally, using (4.12), we arrive at

λ− μ1 = (λ− μ1)
∫

Ω

B ϕp
1 dx

≤ − t−(p−1)

∫
Ω

h
(
x, t(ϕ1 + v�);λ

) (
1 +

v�

ϕ1

)−(p−1)

ϕ1 dx (4.19)

for t > 0 small enough.
Hence, (4.13) is a combination of inequalities (4.16) and (4.19). �

Our hypothesis (H0) on h(x, u;λ) implies the following asymptotic behavior
of the integrals ∫

Ω

h
(
x, t(ϕ1 + φ);λ

)
(ϕ1 + φ) dx (4.20)

and ∫
Ω

h
(
x, t(ϕ1 + φ);λ

) (
1 +

φ

ϕ1

)−(p−1)

ϕ1 dx (4.21)

from (4.13), for |t| → 0, t �= 0, and ‖φ/ϕ1‖L∞(Ω) small enough (φ ∈ C1(Ω)).
Given a number 0 < η ≤ 1/2, for each t ∈ R we define the expressions

Θ(1)
η (t) def= sup

|φ|≤ηϕ1
|λ−μ1|≤1

∣∣∣∣
∫

Ω

h
(
x, t(ϕ1 + φ);λ

)
(ϕ1 + φ) dx

∣∣∣∣ ; (4.22)

Θ(2)
η (t) def= sup

|φ|≤ηϕ1
|λ−μ1|≤1

∣∣∣∣∣
∫

Ω

h
(
x, t(ϕ1 + φ);λ

) (
1 +

φ

ϕ1

)−(p−1)

ϕ1 dx

∣∣∣∣∣ , (4.23)

where both suprema are taken over all functions φ ∈ C1(Ω) that satisfy |φ| ≤ ηϕ1

in Ω. Clearly, we have

Θ(1)
η (t) ≤ (1 + η)Θη(t) ≤ 3

2
Θη(t) ; (4.24)

Θ(2)
η (t) ≤ (1 − η)−(p−1) Θη(t) ≤ 2p−1 Θη(t) , (4.25)

where we have denoted

Θη(t) def=
∫

Ω

sup
|s|≤η

|λ−μ1|≤1

∣∣∣h(x, t(1 + s)ϕ1;λ
)∣∣∣ ·ϕ1 dx . (4.26)

Lemma 4.6. Let hypothesis (H0) be satisfied. Then, given any 0 < η ≤ 1/2, we
have Θη(t)/|t|p−1 → 0 as |t| → 0. In particular, also

Θ(1)
η (t)/|t|p−1 → 0 and Θ(2)

η (t)/|t|p−1 → 0 as |t| → 0 .
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Proof. We estimate

Θη(t) ≤ Θ1/2(t) =
∫

Ω

sup
|s|≤1/2

|λ−μ1|≤1

∣∣h(x, t(1 + s)ϕ1;λ
)∣∣ ·ϕ1 dx (4.27)

where

sup
|s|≤1/2

|λ−μ1|≤1

∣∣∣h(x, t(1 + s)ϕ1;λ
)∣∣∣ ≤ C|t|p−1

(
3
2
ϕ1

)p−1

for a.e. x ∈ Ω ,

by (2.9). It follows that

|t|−(p−1) · sup
|s|≤1/2

|λ−μ1|≤1

∣∣∣h(x, t(1 + s)ϕ1;λ
)∣∣∣ ≤ C

(
3
2
ϕ1

)p−1

for a.e. x ∈ Ω and 0 < |t| ≤ 1. Now we can apply the Lebesgue dominated
convergence theorem to the integral in (4.27) to obtain Θη(t)/|t|p−1 → 0 as |t| → 0,
by (2.10).

The remaining two claims now follow from inequalities (4.24) and (4.25),
respectively. �

Given any function u ∈ Lp(Ω), for every n = 1, 2, . . . we replace the reaction
function h(x, u) by the expression[
hn

(
u( · );λ

)]
(x) def= h

(
x, u(x);λ

)
+Rn(|t|)�(|t|)B(x)ϕ1(x)p−1 , x ∈ Ω , (4.28)

where t = ‖ϕ1‖−2
L2(Ω)

∫
Ω
uϕ1 dx, and � : R+ → (0,+∞) and Rn : R+ → R+ are

continuous functions with the following properties:

(i) For every 0 < r ≤ 1 we have

�(r) > 2
(

1 + η

1 − η

)max{1, p−1}
sup

0<|t|≤r

Θη(t)
|t|p−1

(4.29)

and �(r) → 0 as r → 0.
(ii) We require Rn(r) = rp−1 if 0 ≤ r ≤ 1/(2n), Rn(r) is monotone decreasing

for 1/(2n) ≤ r ≤ 1/n, and Rn(r) = 0 if 1/n ≤ r <∞.

The following lemma guarantees that the integrals in (4.13), with [hn(u;λ)](x)
in place of h(x, u;λ), are positive.

Lemma 4.7. Assume that hypothesis (H0) is satisfied. Let 0 < η ≤ 1/2 and n ∈ N

be arbitrary. Then, for every u ∈ C1(Ω) such that u = t(ϕ1 + φ), where 0 < |t| ≤
1/(2n),

∫
Ω
φϕ1 dx = 0, and ‖φ/ϕ1‖L∞(Ω) ≤ η, we have∫

Ω

hn

(
x, t(ϕ1 + φ);λ

)
(ϕ1 + φ) dx ≥ 1

2
(1 − η) |t|p−1 �(|t|) > 0 (4.30)
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and

∫
Ω

hn

(
x, t(ϕ1 + φ);λ

) (
1 +

φ

ϕ1

)−(p−1)

ϕ1 dx

≥ 1
2
(1 + η)−(p−1) |t|p−1 �(|t|) > 0 . (4.31)

Proof. Recall that 0 < |t| ≤ 1/(2n) implies Rn(|t|) = |t|p−1. We combine (4.24)
with (4.29) to get∫

Ω

hn

(
x, t(ϕ1 + φ);λ

)
(ϕ1 + φ) dx

≥ −Θ(1)
η (t) +Rn(|t|) �(|t|)

∫
Ω

B ϕp−1
1 (ϕ1 + φ) dx

≥ − (1 + η)Θη(t) + (1 − η) |t|p−1 �(|t|) ≥ 1
2
(1 − η) |t|p−1 �(|t|) > 0 .

Similarly, a combination of (4.25) with (4.29) yields

∫
Ω

hn

(
x, t(ϕ1 + φ);λ

) (
1 +

φ

ϕ1

)−(p−1)

ϕ1 dx

≥ −Θ(2)
η (t) +Rn(|t|) �(|t|)

∫
Ω

B ϕp
1

(
1 +

φ

ϕ1

)−(p−1)

dx

≥ − (1 − η)−(p−1) Θη(t) + (1 + η)−(p−1) |t|p−1 �(|t|)

≥ 1
2
(1 + η)−(p−1) |t|p−1 �(|t|) > 0 .

The lemma is proved. �

We finish this section by inserting the integrals from Lemma 4.7 into Propo-
sition 4.5. Thus, the boundary value problem they relate to reads{

− div
(
a(x,∇u)

)
= λB(x) |u|p−2u+

[
hn(u;λ)

]
(x) in Ω ;

u = 0 on ∂Ω ,
(4.32)

where [hn(u;λ)](x) has been defined in (4.28). In analogy with (4.12), we decom-
pose a solution of (4.32) with ‖u‖L∞(Ω) sufficiently small as

u = t(ϕ1 + v�) where t ∈ R \ {0} and v� ∈ C1(Ω) , (4.33)

and v� satisfies 〈v�, ϕ1〉 = 0 together with |v�| ≤ 1/2ϕ1 in Ω. We insert esti-
mates (4.30) and (4.31) into (4.13) in order to obtain the following asymptotic
formulas for λ− μ1. Again, we work only with such solutions u ∈ C1(Ω) of prob-
lem (4.32) that are either positive or negative throughout Ω.
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Corollary 4.8. Let hypothesis (H0) be satisfied. Then, for any t ∈ R \ {0} with |t|
small enough, we have

λ− μ1 ≥ 1
2
(1 + η)−p(1 − η) �(−t) > 0 if t < 0 ; (4.34)

λ− μ1 ≤ − 1
2
(1 + η)−(p−1) �(t) < 0 if t > 0 (4.35)

together with ‖v�n /ϕ1‖L∞(Ω) → 0 as t→ 0.

In the following lemma, Θ(i) with i = 1, 2 are given by

Θ(1)(t) def=
∫

Ω

h
(
x, t(ϕ1 + v�)

)
(ϕ1 + v�) dx (4.36)

and

Θ(2)(t) def=
∫

Ω

h
(
x, t(ϕ1 + v�)

) (
1 +

v�

ϕ1

)−(p−1)

ϕ1 dx , (4.37)

respectively.

Lemma 4.9. Let hypotheses (H0) and (H′
0) be satisfied. Then we have

Θ(i)(t)
g0(t)

→
∫

Ω

f0±ϕ1 dx as t→ 0± , (4.38)

and, in particular,

Θ(i)(t)
|t|p−1

→ 0 as |t| → 0 , |t| > 0 . (4.39)

Proof. For t ∈ R \ {0} we compute

Θ(1)(t)
g0(t)

=
∫

Ω

h
(
x, t(ϕ1 + v�)

)
g0(t)

(ϕ1 + v�) dx

=
∫

Ω

h
(
x, t(ϕ1 + v�)

)
g0
(
t
(
1 + v�

ϕ1

)) · (ϕ1 + v�) ·
g0
(
t
(
1 + v�

ϕ1

))
g0(t)

dx (4.40)

→
∫

Ω

f0±ϕ1 dx

by the Lebesgue dominated convergence theorem which makes use of (2.16)
and (2.17) combined with Remark 2.4 and ‖v�/ϕ1‖L∞(Ω) → 0 as |t| → 0. The
case of Θ(2) is analogous. �

4.3. Bifurcations from infinity for λ near μ1

Given a Banach space X (X = W 1,p
0 (Ω) in our case), we apply a standard method

to transform bifurcations from infinity to bifurcations from zero using the transfor-
mation ·̃ : u �→ ũ

def= ‖u‖−2
X u which maps bijectively {u ∈ X : 1/r < ‖u‖X < ∞}

onto {ũ ∈ X : 0 < ‖ũ‖X < r}, for 0 < r <∞ small enough.
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More precisely, in our case we take r > 0 small enough and thus obtain u =
τ(ϕ1 + v�) with |τ | → ∞ and ‖v�‖C1(Ω) → 0 as r → 0. This yields ũ = t(ϕ1 + v�)
with

t = τ‖u‖2
X = τ−1‖ϕ1 + v�‖−2

X = τ−1
(
‖ϕ1‖−2

X + o(r)
)

as r → 0 .

This means that it suffices to replace the scalar τ ∈ R\{0} in u = τ(ϕ1 +v�),
|τ | → ∞ as r → 0, by t ∈ R \ {0} from ũ = t(ϕ1 + v�), t → 0 as r → 0.
Consequently, we can easily reformulate all our results from the previous section
(Section 4.2) as follows.

Proposition 4.10. Let hypothesis (H∞) be satisfied. Then, for any τ ∈ R\{0} with
|τ | large enough, we have

−|τ |p−2τ

(∫
Ω

B (ϕ1 + v�)p dx
)−1 ∫

Ω

h
(
x, τ(ϕ1 + v�);λ

)
(ϕ1 + v�) dx

≤ λ− μ1 (4.41)

≤ −|τ |p−2τ

∫
Ω

h
(
x, τ(ϕ1 + v�);λ

) (
1 +

v�

ϕ1

)−(p−1)

ϕ1 dx ,

where ‖v�/ϕ1‖L∞(Ω) → 0 as |τ | → ∞.

Our hypothesis (H∞) on h(x, u;λ) implies the following asymptotic behavior
of the integrals (4.20) and (4.21) from (4.41), for |τ | large enough (τ ∈ R) and
‖φ/ϕ1‖L∞(Ω) small enough (φ ∈ C1(Ω)).

Lemma 4.11. Let hypothesis (H∞) be satisfied. Then, given any 0 < η ≤ 1/2, we
have Θη(τ)/|τ |p−1 → 0 as |τ | → ∞. In particular, also

Θ(1)
η (τ)/|τ |p−1 → 0 and Θ(2)

η (τ)/|τ |p−1 → 0 as |τ | → ∞ .

Given any function u ∈ Lp(Ω), for every n = 1, 2, . . . next we replace the
reaction function h(x, u;λ) by the expression[

hn

(
u( · );λ

)]
(x) def= h

(
x, u(x);λ

)
+Rn(|τ |) �(|τ |)B(x)ϕ1(x)p−1 , x ∈ Ω , (4.42)

where τ = ‖ϕ1‖−2
L2(Ω)

∫
Ω uϕ1 dx, and � : R+ → (0,∞) and Rn : R+ → R+ are

continuous functions with the following properties:
(i) For every 1 ≤ r <∞ we have

�(r) > 2
(

1 + η

1 − η

)max{1, p−1}
sup
|τ |≥r

Θη(τ)
|τ |p−1

(4.43)

and �(r) → 0 as r → +∞.
(ii) We require Rn(r) = 0 if 0 ≤ r ≤ n, Rn(r) is monotone increasing for n ≤

r ≤ 2n, and Rn(r) = rp−1 if 2n ≤ r <∞.
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The following lemma guarantees that the integrals in (4.41), with [hn(u;λ)](x)
in place of h(x, u;λ), are positive.

Lemma 4.12. Assume that hypothesis (H∞) is satisfied. Let 0 < η ≤ 1/2 and
n ∈ N be arbitrary. Then for every u ∈ C1(Ω) such that u = τ(ϕ1 + φ), where
|τ | ≥ 2n,

∫
Ω φϕ1 dx = 0, and ‖φ/ϕ1‖L∞(Ω) ≤ η, we have∫

Ω

hn

(
x, τ(ϕ1 + φ);λ

)
(ϕ1 + φ) dx ≥ 1

2
(1 − η) |τ |p−1 �

(
|τ |
)
> 0 (4.44)

and ∫
Ω

hn

(
x, τ(ϕ1 + φ);λ

) (
1 +

φ

ϕ1

)−(p−1)

ϕ1 dx

≥ 1
2
(1 + η)−(p−1) |τ |p−1 �(|τ |) > 0 . (4.45)

We finish this section by inserting the integrals from Lemma 4.12 into Pro-
position 4.10. Thus, the boundary value problem they relate to reads{

− div
(
a(x,∇u)

)
= λB(x) |u|p−2u+

[
hn(u;λ)

]
(x) in Ω ;

u = 0 on ∂Ω ,
(4.46)

where [hn(u;λ)](x) has been defined in (4.42). In analogy with (4.12), we decom-
pose a solution of (4.46) with ‖u‖L∞(Ω) sufficiently large as

u = τ(ϕ1 + v�) where τ ∈ R \ {0} and v� ∈ C1(Ω) , (4.47)

and v� satisfies 〈v�, ϕ1〉 = 0 together with |v�| ≤ 1/2ϕ1 in Ω. We insert esti-
mates (4.44) and (4.45) into (4.41) in order to obtain the following asymptotic
formulas for λ− μ1. Again, we work only with such solutions u ∈ C1(Ω) of prob-
lem (4.46) that are either positive or negative throughout Ω.

Corollary 4.13. Let hypothesis (H∞) be satisfied. Then, for any τ ∈ R \ {0} with
|τ | large enough, we have

λ− μ1 ≥ 1
2
(1 + η)−p(1 − η) �(−τ) > 0 if τ < 0 ; (4.48)

λ− μ1 ≤ − 1
2
(1 + η)−(p−1) �(τ) < 0 if τ > 0 , (4.49)

together with ‖v�/ϕ1‖L∞(Ω) → 0 as τ → ∞.

In the following lemma, Θ(i) with i = 1, 2 are given by (4.36) and (4.37),
respectively.

Lemma 4.14. Let hypotheses (H∞) and (H′
∞) be satisfied. Then we have

Θ(i)(τ)
g∞(τ)

→
∫

Ω

f±∞ϕ1 dx as τ → ±∞ , (4.50)
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and, in particular,
Θ(i)(τ)
|τ |p−1

→ 0 as |τ | → ∞ . (4.51)

Proof. For τ ∈ R \ {0} we compute

Θ(1)(τ)
g∞(τ)

=
∫

Ω

h
(
x, τ(ϕ1 + v�)

)
g∞(τ)

(ϕ1 + v�) dx

=
∫

Ω

h
(
x, τ(ϕ1 + v�)

)
g∞
(
τ
(
1 + v�

ϕ1

)) · (ϕ1 + v�) ·
g∞
(
τ
(
1 + v�

ϕ1

))
g∞(τ)

dx (4.52)

→
∫

Ω

f±ϕ1 dx

by the Lebesgue dominated convergence theorem which makes use of (2.19) and
(2.20) combined with Remark 2.5 and ‖v�/ϕ1‖L∞(Ω) → 0 as |τ | → ∞. �

5. Global bifurcation results

This section is divided into three paragraphs. The first one is devoted to prelimi-
nary results concerning Browder–Petryshyn and Skrypnik degree for perturbations
of monotone operators. The definition and basic properties thereof can be found,
e.g., in [42, Chapter 36, pp. 1002–1007]. Then we present proofs of global bi-
furcation results of Rabinowitz type, i.e., Propositions 3.5 and 3.8 in the second
paragraph. Our main results, Theorems 3.7 and 3.10, which are global bifurcation
results of Dancer’s type, are proved in the third paragraph.

5.1. The Browder–Petryshyn and Skrypnik degree

Definition 5.1. Let us consider an operator T : X → X ′ whereX is a real separable
reflexive Banach space. The operator T is said to satisfy condition α(X) if for an
arbitrary sequence {un}∞n=1 ⊂ X the relations

un ⇀ u0 weakly in X and lim sup
n→∞

〈
T (un), un − u0

〉
X

≤ 0 (5.1)

imply un → u0 strongly in X .

It is proved in [14, Chapter 5, p. 188] that in the special case a(x,v) def=
|v|(p−2)v and B(x) = 1 for all x ∈ Ω and all v ∈ R

N the operator T def= A −
λB satisfies condition α(X) from [33] (which is nothing else but condition (S+)
from [7]) and so its (Browder–Petryshyn) degree can be defined.

The following well-known inequalities,
(Ai) 〈A(u) − A(v), u − v〉X ≥ γ(‖u‖X + ‖v‖X)p−2‖u − v‖2

X for all 1 < p < 2,
u, v ∈ X , and some constant γ > 0;

(Aii) 〈A(u) −A(v), u − v〉X ≥ γ‖u− v‖p
X for all 2 < p <∞, u, v ∈ X , and some

constant γ > 0,
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cf. [8, Thm. 3; p. 736], play the crucial role in the verification of condition α(X)
for T = A.

We prove only (Ai); the proof of (Aii) is analogous and well-known. So let
1 < p < 2. From (2.3) we deduce

[
a(x,u) − a

(
x,v

)]
· (u − v) dx =

∫
Ω

N∑
i,j=1

(∫ 1

0

∂ai

∂ξj

(
x,u (5.2)

+ s(v − u)
)
ds
)

(ui − vi)(uj − vj) dx

≥ γ

∫
Ω

(∫ 1

0

∣∣u + s(v − u)
∣∣p−2 ds

)
|u − v|2 dx

≥ γ

∫
Ω

(
max

0≤s≤1

∣∣u + s(v − u)
∣∣)p−2

|u − v|2 dx .

Next, we use the classical Hölder inequality with the exponents 2/p and 2
2−p (note

that p/2 + 2−p
2 = 1) to get the “reversed” Hölder inequality∫

Ω

f(x)g(x) dx ≥
(∫

Ω

f(x)p/2 dx
)2/p(∫

Ω

g(x)p/(p−2) dx
)(p−2)/p

(5.3)

for any measurable functions f, g : Ω → R, f ≥ 0 and g > 0 a.e. in Ω, such
that f g ∈ L1(Ω) and 1/g ∈ Lp/(2−p)(Ω); hence, fp/2 ∈ L1(Ω). Now take any
vector-valued functions u,v ∈ [Lp(Ω)]N , ‖u‖Lp(Ω) + ‖v‖Lp(Ω) > 0. Inserting

f
def= |u− v|2 and g

def=
(

max
0≤s≤1

∣∣u + s(v − u)
∣∣)p−2

into (5.3) we arrive at∫
Ω

|u− v|2
(

max
0≤s≤1

∣∣u + s(v − v)
∣∣)p−2

≥
(∫

Ω

|u − v|p dx
)2/p(∫

Ω

(
max

0≤s≤1

∣∣u
+ s(v − u)

∣∣)p
)(p−2)/p

(5.4)

≥ ‖u− v ‖2
Lp(Ω)

(∫
Ω

(
|u| + |v|

)p)(p−2)/p

= ‖u− v‖2
Lp(Ω)

∥∥|u| + |v|
∥∥p−2

Lp(Ω)

≥ ‖u− v‖2
Lp(Ω)

(
‖u‖Lp(Ω)+‖v‖Lp(Ω)

)p−2
.

Combining inequalities (5.2) and (5.4) we conclude that∫
Ω

[
a(x,u) − a(x,v)

]
(u − v)dx ≥ γ

(
‖u‖Lp(Ω) + ‖v‖Lp(Ω)

)p−2‖u− v‖2
Lp(Ω)

which proves inequality (Ai).

By means of (Ai) and (Aii), condition α(X) for T def= A can be verified.
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Proposition 5.2. The operator A : X → X ′ defined by identity (3.3) satisfies
condition α(X).

Proof. Assume that A and {un}∞n=1 ⊂ X satisfy (5.1), i.e., un ⇀ u0 weakly
in X and lim supn→∞(A(un), un − u0)X ≤ 0. We combine the last inequality with
limn→∞〈A(u0), un − u0〉X = 0 to obtain

lim sup
n→∞

〈
A(un) −A(u0), un − u0

〉
X

≤ 0 . (5.5)

Now we distinguish between the cases 1 < p < 2 and p ≥ 2.
Let 1 < p < 2. From (Ai) we find〈
A(un) −A(u0), un − u0

〉
X

≥ γ
(
‖un‖X + ‖u0‖X

)p−2‖un − u0‖2
X (5.6)

for n = 1, 2, 3 . . . . Since every weakly convergent sequence in X is also bounded,
we have (‖un‖X +‖u0‖X)p−2 ≥ C > 0 for some constant C. We apply (5.5) to (5.6)
to get ‖un − u0‖X → 0 as n→ ∞ which verifies condition α(X).

For p ≥ 2 we use inequality (Aii) in place of (Ai) to get the same conclu-
sion. �

A standard method for proving a discontinuity in the Browder–Petryshyn
degree (cf. [14, Chapter 5, Thm. 14.18, p. 189] for the p-Laplacian) is based on the
variational structure of the p-homogeneous part A−λB of the operator A−λB−H.
For the sake of completeness we begin by proving the following result.

Proposition 5.3. For all r > 0 and all 0 < δ < μ2 − μ1 we have

Deg
[
A− (μ1 ± δ)B;Br(0), 0

]
= ∓1 . (5.7)

Proof. GivenR > 0 fixed, we define ψ : R+ → R as follows: ψ(t) = 0 for 0 ≤ t ≤ R,
ψ(t) = δ/R (t−R)2 for R < t < 2R, and ψ(t) = 2δ(t− 2R) + δR for 2R ≤ t <∞.
Clearly, ψ is continuously differentiable, monotone increasing, and convex on R+,
with 0 ≤ ψ′(t) ≤ 2δ for every t ∈ R+.

Now consider the functional Fλ : X → R defined by

Fλ(u) def=
1
p

〈
A(u), u

〉
X
− λ

p

〈
B(u), u

〉
X

+ ψ

(
1
p

〈
B(u), u

〉
X

)
, u ∈ X .

Every critical point u0 ∈ X of Fλ is a solution of the operator equation

F ′
λ(u) = A(u) −

[
λ− ψ′

(
1
p

〈
B(u), u

〉
X

)]
B(u) = 0 in X ′ . (5.8)

Of course, u = 0 ∈ X is a solution. Assuming −∞ < λ ≤ μ1 + δ (< μ2) we have

(λ− 2δ ≤)λ− ψ′
(

1
p

〈
B(u), u

〉
X

)
≤ λ ≤ μ1 + δ (< μ2) .

Therefore, if u0 ∈ X \ {0} is a nonzero solution of (5.8), we must have

λ− ψ′
(

1
p

〈
B(u0), u0

〉
X

)
= μ1
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and u0 = αϕ1 for some constant α ∈ R\{0}, where α satisfies λ−ψ′ (|α|p/p) = μ1.
(Recall that 〈B(ϕ1), ϕ1〉X =

∫
Ω
B(x)ϕp

1 dx = 1.) Since ψ′(t) = 0 for 0 ≤ t ≤ R,
ψ′(t) = 2δ

R (t − R) for R ≤ t ≤ 2R, and ψ′(t) = 2δ for 2R ≤ t < ∞, the last
equation for α ∈ R possesses a nonzero solution α = ±αλ (αλ > 0) if and only
if λ ∈ [μ1, μ1 + 2δ]. If λ = μ1, we may take any α ∈ R with 0 < |α|p/p ≤ R. If
μ1 < λ ≤ μ1 + δ, we determine α ∈ R from

ψ′(|α|p/p) =
2δ
R

(
|α|p
p

−R

)
= λ− μ1 ∈ (0, δ] ; (5.9)

hence, R < |α|p
p ≤ 3/2R (< 2R).

Let μ1 − δ ≤ λ < μ1. The only critical point of Fλ is the zero function
u = 0 ∈ X ; it is the global minimizer for Fλ. We apply Skrypnik [33, Thm. 1.5.1,
p. 42] to conclude that

Deg
[
Fλ;Br(0), 0

]
= 1 for all r > 0 . (5.10)

More precisely, this claim is proved in [33, Thm. 1.5.1, p. 42] for r > 0 small
enough only. Arbitrary r > 0 is then allowed by the fact that u = 0 ∈ X is the
only critical point of Fλ.

Now let us consider the case μ1 < λ ≤ μ1 + δ. The functional Fλ is coercive
on X , owing to the following inequalities which hold for all u ∈ X such that
1/p〈B(u), u〉X ≥ 2R:

Fλ(u) =
1
p

〈
A(u), u

〉
X
− λ

p

〈
B(u), u

〉
X

+ 2δ
(

1
p

〈
B(u), u

〉
X
−R

)

=
1
p

〈
A(u), u

〉
X
− λ− 2δ

p

〈
B(u), u

〉
X
− 2δR

≥ 1
p

〈
A(u), u

〉
X
− μ1 − δ

p

〈
B(u), u

〉
X
− 2δ

≥ 1
p

(
1 − μ1 − δ

μ1

)〈
A(u), u

〉
X
− 2δR

= δ

(
1
pμ1

〈
A(u), u

〉
X
− 2R

)
−→ +∞

as ‖u‖X → ∞. Recall that αλ ∈ (0,∞) is uniquely determined by equation (5.9)
and satisfies R <

αp
λ

p ≤ 3/2R (< 2R). It is easy to see that Fλ(±αlϕ1) < 0 = Fλ(0).
Since Fλ has no other critical points than 0 ∈ X and ±αλϕ1, both ±αλϕ1 must
be the global minimizers for Fλ. By [33] again, we find

Deg
[
F ′

λ;B�(±αλϕ1), 0
]

= 1 for every � > 0 small enough. (5.11)

We assume also � < 1/2αμ1+δ‖ϕ1‖X .
Set rδ = 2αμ1+δ‖ϕ1‖X ; hence, μ1 < λ ≤ μ1 + δ implies αλ ≤ αμ1+δ and

therefore rδ > αλ‖ϕ1‖X + �. Thus, by an argument with a homotopy connecting
F ′

μ1−δ with F ′
μ1+δ we get

Deg
[
F ′

μ1+δ;Br(0), 0
]

= Deg
[
F ′

μ1−δ;Br(0), 0
]

= 1 for every r > rδ . (5.12)
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Now, since u = 0 ∈ X is an isolated solution to (5.8), the degree Deg[F ′
μ1+δ;B�′(0),

0] is well defined for every �′ > 0 small enough; we assume �′ < 1/2αμ1+δ‖ϕ1‖X .
From the additivity property of the degree we deduce

Deg
[
F ′

μ1+δ;B�(αμ1+δϕ1), 0
]

+ Deg
[
F ′

μ1+δ;B�(−αμ1+δϕ1), 0
]

+ Deg
[
F ′

μ1+δ;B�′(0), 0
]

= Deg
[
F ′

μ1+δ;Br(0), 0
](

= Deg
[
F ′

μ1−δ;Br(0), 0
]

= 1
)

for every r > rδ. Finally, we apply (5.11) to get Deg[F ′
μ1+δ;B�′(0), 0] = −1.

Since

A(u) − (μ1 + δ)B(u) = A(u) −
[
(μ1 + δ) + ψ′

(
1
p

〈
B(u), u

〉)]
B(u) = F ′

μ1+δ

holds whenever 〈B(u), u〉X < R, we find

Deg
[
A− (μ1 + δ)B;B�′(0), 0

]
= Deg

[
F ′

μ1+δ;B�′(0), 0
]

= −1

provided �′ > 0 from above is taken so small that also 〈B(u), u〉X ≤ 1
μ1
〈A(u), u〉X

< R holds for every u ∈ B�′(0) ⊂ X . Since u = 0 ∈ X is the only solution to the
operator equation A(u) − (μ1 + δ)B(u) = 0 in X ′, we arrive at

Deg
[
A− (μ1 + δ)B;Br(0), 0

]
= −1 for every r > 0 .

By analogous arguments, we infer from (5.10) that

Deg
[
A− (μ1 − δ)B;Br(0), 0

]
= 1 for every r > 0 .

The proof is now complete. �

5.2. Proof of a Rabinowitz-type bifurcation theorem

As in the semilinear case, in order to prove Theorem 3.7, we begin with the proof
of Proposition 3.5 (which is a Rabinowitz-type bifurcation theorem).

Proof of Proposition 3.5. We have 0 < μ1 < μ2 by Remark 2.1. We begin the
proof by showing that for every 0 < δ < μ2 − μ1 there exists R > 0 such that

Deg
[
Φμ1±δ;Br(0), 0

]
= ∓1 whenever 0 < r < R . (5.13)

By Proposition 3.2, for each λ ∈ (−∞, μ2)\{μ1}, u = 0 ∈ X is an isolated solution
of Φλ(u) = 0. Thus one can findR > 0 small enough, such that Deg[Φμ1±δ;Br(0), 0]
remains constant with respect to r ∈ (0, R). We will show later that there exists
R′ ∈ (0, R) such that

A(u) − (μ1 ± δ)B(u) − αH(u;μ1 ± δ) �= 0 . (5.14)

holds for all u ∈ ∂BR′(0) and α ∈ [0, 1]. Therefore, the homotopy

A(u) − (μ1 ± δ)B(u) − αH(u;μ1 ± δ) , α ∈ [0, 1] ,
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connecting Φμ1±δ with A− (μ1 ± δ)B, is admissible with respect to BR′(0) and 0.
Consequently, we have

Deg
[
Φμ1±δ;Br(0), 0

]
= Deg

[
Φμ1±δ;BR′(0), 0

]
= Deg

[
A− (μ1 ± δ)B;BR′(0), 0

]
= ∓1 ,

by Lemma 5.3.
Using Deg[Φμ1±δ;Br(0), 0] = ∓1 we can proceed step by step as in the origi-

nal proof of Rabinowitz [31, Theorem 1.3, pp. 490–491], cf. also Drábek [14, The-
orem 14.9, pp. 178–183].

It remains to prove (5.14). Suppose the contrary, i.e., for all R′ ∈ (0, R) there
exist u ∈ ∂BR′(0) and α ∈ [0, 1] such that

A(u) − (μ1 ± δ)B(u) − αH(u;μ1 ± δ) = 0 . (5.15)

Thus, we can find a sequence {rn}∞n=1 ⊂ (0, R), rn → 0, together with {un}∞n=1 ⊂
X , un ∈ ∂Brn(0), and {αn}∞n=1 ⊂ [0, 1], such that (5.15) holds with un and
αn in place of u and α, respectively. Since un ∈ ∂Brn(0), we have ‖un‖X → 0.
Observe that the functions αn h( · , · ; · ) : Ω × R × R → R satisfy (Hn

0 ) because
h : Ω × R × R → R satisfies (H0) and αn ∈ [0, 1]. We apply Lemma B.2 with
λn = μ1 ± δ (< μ2) to equation (5.15) to conclude that λn → μ1 as n→ ∞, which
is absurd (δ > 0). This concludes the proof. �

Now we continue by giving the proof of Lemma 3.6 which is another ingredient
in the proof of Theorem 3.7.

Proof of Lemma 3.6. Suppose that for some η ∈ (0, η0) such a number 0 < S ≤ 1
does not exist. Then we can find a decreasing sequence 0 < Sn ≤ 1 with Sn ↘ 0
and another sequence (un, λn) ∈ (S \ {(0, μ1)}) ∩ ESn(μ1) such that |�(un)| ≤
η ‖un‖W 1,p

0 (Ω) for each n = 1, 2, . . . . Notice that owing to (un, λn) �= (0, μ1) we
must have un �≡ 0 in Ω for all n ≥ 1 large enough, because μ1 is an isolated eigen-
value of the (p− 1)-homogeneous operator A, as shown in Anane [3, Théorème 2,
p. 727] or Anane and Tsouli [5, Prop. 2, p. 5]. Discarding a finite number of
members of this sequence if necessary, we may assume un �≡ 0 in Ω for all n ≥ 1.

Since (un, λn) ∈ S and Sn ↘ 0 as n→ ∞, we have also ‖un‖L∞(Ω) → 0 and
‖un‖C1,β(Ω) → 0, by Lemma B.2 (Appendix B). This lemma shows also that the

normalized sequence wn
def= un/‖un‖L∞(Ω), with ‖wn‖L∞(Ω) = 1, is the union of

two disjoint subsequences {w′
n}∞n=1 and {w′′

n}∞n=1, one of them possibly empty, such
that, if nonempty, they satisfy w′

n → ϕ1/‖ϕ1‖L∞(Ω) and/or w′′
n → −ϕ1/‖ϕ1‖L∞(Ω)

in C1,β′
(Ω) as n→ ∞. Consequently, we get∣∣�(wn)

∣∣→ �
(
ϕ1/‖ϕ1‖L∞(Ω)

)
= ‖ϕ1‖−1

L∞(Ω) as n→ ∞ .

Furthermore, by our assumption we have

∣∣�(wn)
∣∣ =

|�(un)|
‖un‖L∞(Ω)

≤ η
‖un‖W 1,p

0 (Ω)

‖un‖L∞(Ω)
for each n = 1, 2, . . . .
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Combining the last two facts we arrive at

‖ϕ1‖−1
L∞(Ω) ≤ η · lim inf

n→∞

‖un‖W 1,p
0 (Ω)

‖un‖L∞(Ω)
. (5.16)

To find an upper bound for the fraction above, we first take (u, λ) = (un, λn)
and φ = un in equation (2.1) which yields∫

Ω

A(x,∇un) dx = λn

∫
Ω

B(x) |un|p dx+
∫

Ω

h
(
x, un(x);λn

)
un(x) dx .

Now we apply inequalities (2.6), λn ≤ μ1 + Sn ≤ μ1 + 1, and (2.9) to get

γ

p− 1

∫
Ω

|∇un|p dx ≤
∫

Ω

A(x,∇un) dx

≤ (μ1 + 1)
∫

Ω

B(x) |un|p dx+ C

∫
Ω

|un|p dx

≤
[
(μ1 + 1)‖B‖L∞(Ω) + C

] ∫
Ω

|un|p dx

≤
[
(μ1 + 1)‖B‖L∞(Ω) + C

]
|Ω|N ‖un‖p

L∞(Ω) .

Consequently, we have ‖un‖W 1,p
0 (Ω) ≤ c0 ‖un‖L∞(Ω) where

c0
def=
(

(p− 1)
[
(μ1 + 1)‖B‖L∞(Ω) + C

]
|Ω|N

γ

)1/p

> 0 .

Combining the last inequality with (5.16) we obtain ‖ϕ1‖−1
L∞(Ω) ≤ η c0 or, equiv-

alently, η ≥ η0 with η0 > 0 defined by (3.10). But this contradicts our choice of
η ∈ (0, η0). The lemma is proved. �

Let us consider the sequence of boundary value problems{
− div

(
a(x,∇u)

)
= λB(x) |u|p−2u+ hn(x, u;λ) in Ω ;

u = 0 on ∂Ω ,
(5.17)

where the sequence of functions hn : Ω×R×R → R satisfies condition (Hn
0 ). With〈

Hn(u; λ), φ
〉

X
=
∫

Ω

hn(x, u;λ)ϕdx satisfied for all u, φ ∈ X ,

the operator formulation of (5.17) reads as follows,

A(u) − λB(u) −Hn(u;λ) = 0 in X ′ .

For each n ∈ N, we also define

Sn
def=

{
(u, λ) ∈ E : A(u) − λB(u) −Hn(u;λ) = 0, u �= 0

}E
.

The following lemma is a version of Lemma 3.6 for (5.17) which is uniform
in n ∈ N.
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Lemma 5.4. Let hn : Ω×R×R → R satisfy condition (Hn
0 ). For every η ∈ (0, η0)

there exists a number S, 0 < S ≤ 1, such that(
Sn \

{
(0, μ1)

})
∩ES(μ1) ⊂ Kη for all n ∈ N .

Moreover, if (u, λ) ∈ (Sn \ {(0, μ1)}) ∩ ES(μ1) then u = τ(ϕ1 + v�), where τ =
�(u) ∈ R and v� ∈ C1,β′

(Ω) (0 < β′ < β) satisfy |τ | > η ‖u‖W 1,p
0 (Ω) and �(v�) = 0

together with |λ− μ1| → 0 and ‖v�‖C1,β′(Ω) → 0 as τ → 0.

The proof of Lemma 5.4 is almost identical with the proof of Lemma 3.6. The
only difference is that we consider (um, λm) ∈ Snm (here {Snm}∞m=1 ⊂ {Sn}∞n=1).
Then we continue literally as in the proof of Lemma 3.6 because all estimates are
uniform with respect to n ∈ N due to (Hn

0 ).

5.3. Proof of a Dancer-type bifurcation theorem

As in the semilinear case in Dancer [10, Theorem 2, p. 1071], our proof of Theo-
rem 3.7 is based on the following three lemmas.

Lemma 5.5. Suppose δ1, δ2 > 0 are such that 0 < δ1 + δ2 < S and Φλ(u) �= 0
if ‖u‖X = δ1 and |λ − μ1| ≤ δ2. If 0 < σ < δ2 and β > 0 is sufficiently small,
β ≡ β(σ), then ‖u‖X < β together with Φμ1±σ(u) = 0 imply u = 0 and, moreover,

Deg
[
Φμ1+σ;W ν , 0

]
− Deg

[
Φμ1−σ;W ν , 0

]
= 1

where

W ν def=
{
u ∈ X : (u, λ) ∈ Kν

η and β < ‖u‖X < δ1
}
, ν = ± .

Recall that η is arbitrary with 0 < η < μ
−1/p
1 , and Kν

η ⊂ X × R has been
defined in (3.9). In the definition W ν ⊂ X above we can use any λ ∈ R.

Proof. We follow Dancer [10, Proof of Lemma 1, p. 1071]. We define

H−(u;λ) def=

⎧⎪⎪⎨
⎪⎪⎩

H(u;λ) if
∫
Ω
uϕ1 dx ≤ −η‖u‖X ;∫

Ω uϕ1 dx

η‖u‖X
H(u;λ) if − η‖u‖X <

∫
Ω
uϕ1 dx ≤ 0 ;

−H(−u;λ) if
∫
Ω
uϕ1 dx > 0 ,

and
Φ−

λ (u) def= A(u) − λB(u) + H−(u;λ) . (5.18)
The mapping Φ−

λ : X → X ′ is odd. Since the (p − 1)-homogenous part of Φ−
λ is

the same as that of Φλ, also Φ−
λ satisfies condition α(X).

By our hypothesis, the equation Φμ1+σ(u) = 0 has no solution on ∂Eδ1 , ∂Eβ ,
or in

Eδ1 \
(
W+ ∪W− ∪ Eβ

)
,

see Lemma 3.6. It follows that

Deg
[
Φ−

μ1+σ;Eδ1 , 0
]

= Deg
[
Φ−

μ1+σ;Eβ , 0
]
+ Deg

[
Φ−

μ1+σ;W−, 0
]

+ Deg
[
Φ−

μ1+σ;W+, 0
]
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which is

Deg
[
Φ−

μ1+σ;W−, 0
]
+ Deg

[
Φ−

μ1+σ;W+, 0
]

= Deg
[
Φ−

μ1+σ, Eδ1 , 0
]

− Deg
[
Φ−

μ1+σ, Eβ , 0
]
.

By the oddness of Φ−
μ1+σ : X → X ′ and the definition of the Browder–Petryshyn

degree, we find that

Deg
[
Φ−

μ1+σ,W
+, 0

]
= Deg

[
Φ−

μ1+σ,W
−, 0

]
and so

2 · Deg
[
Φ−

μ1+σ,W
−, 0

]
= Deg

[
Φ−

μ1+σ, Eδ1 , 0
]
− Deg

[
Φ−

μ1+σ, Eβ , 0
]
. (5.19)

Analogously,

2 · Deg
[
Φ−

μ1−σ,W
−, 0

]
= Deg

[
Φ−

μ1−σ, Eδ1 , 0
]
− Deg

[
Φ−

μ1−σ, Eβ , 0
]
. (5.20)

As in the proof of Proposition 3.5 (in Section 5.2) one can show that

Deg
[
Φ−

μ1−σ;Eβ , 0
]

= −1 and Deg
[
Φ−

μ1+σ;Eβ , 0
]

= 1 . (5.21)

Subtracting (5.20) from (5.19) and using (5.21), we arrive at

2 ·
(
Deg

[
Φ−

μ1+σ;W−, 0
]
− Deg

[
Φ−

μ1−σ;W−, 0
])

= Deg
[
Φ−

μ1−σ;Eβ , 0
]

− Deg
[
Φ−

μ1+σ;Eβ , 0
]

= 1 − (−1) = 2 .

Since Φ−
μ1−σ(u) = Φμ1−σ(u) for all u ∈W− and all λ ∈ R, due to the definition of

Φ−
λ , we must have

Deg
[
Φμ1+σ;W−, 0

]
− Deg

[
Φμ1−σ;W−, 0

]
= Deg

[
Φ−

μ1+σ;W−, 0
]

− Deg
[
Φ−

μ1−σ;W−, 0
]

= 1 .

If ‖u‖X = δ1 and |λ − μ1| ≤ δ2, we have Φλ(u) �= 0 by our assumptions. Conse-
quently, for σ ∈ (0, δ2) the homotopy Φ−

λ (where μ1−σ ≤ λ ≤ μ1+σ) is admissible
on Eδ1 whence

Deg
[
Φ−

μ1−σ;Eδ1 , 0
]

= Deg
[
Φ−

λ ;Eδ1 , 0
]

= Deg
[
Φ−

μ1+σ;Eδ1 , 0
]

holds for all λ ∈ [μ1 − σ, μ1 + σ]. �
Remark 5.6. It is worthwhile to note that in proving a Dancer-type bifurcation
result for an elliptic boundary value problem we have to consider an abstract
functional differential equation; observe that the definition of H− contains ‖u‖X

and
∫
Ω
uϕ1 dx.

For 0 < ε < S we define T−
μ1,ε to be the component of Zμ1 \ (Eε(μ1) ∩K+

η )
containing (0, μ1).

Lemma 5.7. If 0 < ε < S, zero is an isolated solution of Φμ1(u) = 0, and T−
μ1,ε

is bounded in E, then
∂Eε(μ1) ∩K+

η ∩ T−
μ1,ε �= ∅ .
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The proof of Lemma 5.7 would almost literally copy that of its semilinear
counterpart in Dancer [10, Proof of Lemma 2, p. 1072], and therefore is omitted.

In Lemmas 5.5 and 5.7 we have assumed that zero is an isolated solution
of Φμ1(u) = 0. This is the case when, e.g., the function h(x, u;λ) satisfies not
only (H0) but also (H′

0) and, moreover,
∫
Ω
f0±ϕ1 dx �= 0. (Recall that functions

f0± are defined in (H′
0).) Under these assumptions it follows from the asymptotic

estimates (4.13) in Proposition 4.5 that there exists c > 0 such that, for any
sequence {(un, λn)}∞n=1 ⊂ X×R of solutions to Φλn(un) = 0 satisfying ‖un‖X → 0
and λn → μ1, one must have λn �= μ1. Thus Φμ1(u) �= 0 provided 0 < ‖u‖X < c,
and so u = 0 is an isolated solution of Φμ1(u) = 0.

In the following lemma we drop the assumption that zero is an isolated so-
lution to Φμ1(u) = 0. This is possible with help from an approximation scheme
based on the results from Lemma 4.7.

Lemma 5.8. The statement of Lemma 5.7 holds without the assumption that zero
is an isolated solution of Φμ1(u) = 0.

Proof. We proceed as in the proof of [10, Lemma 3, p. 1072] by considering a
sequence of boundary value problems Φ(n)

λ (u) = 0, where

Φ(n)
λ (u) def= A(u) − λB(u) −Hn(u;λ) , (5.22)

with Hn(u;λ) being defined by (3.5) with [hn(u)](x) defined by (4.28) in place of
h(x, u;λ). Note that, by Lemma 4.7, the corresponding integrals with [hn(u)](x)
defined by (4.28) in place of h(x, u;λ) in (4.13) are positive for each n ∈ N.
Thus, for all n ∈ N, zero is an isolated solution of Φ(n)

μ1 (u) = 0 and, consequently,
Lemma 5.7 applies.

By Lemma 5.4, let us first fix η ∈ (0, η0) and then choose S, 0 < S ≤ 0, such
that

Sn \
{
(0, μ1)

}
∩ ES(μ1) ⊂ Kη for all n ∈ N .

Now let 0 < ε < S and assume that T−
μ1,ε is bounded in E. Let Tn be a component

of Sn\(Eε(μ1)∩K+
ε ) containing (0, μ1). Suppose that the conclusion of our lemma

is false. This means that

∂Eε(μ1) ∩K+
η ∩ T−

μ1,ε = ∅ .
Recall that, by the definition of T−

μ1,ε, this set is connected and satisfies

Eε(μ1) ∩K+
η ∩ T−

μ1,ε = ∅ .
In addition, as T−

μ1,ε is assumed to be bounded, we can find R > 0 such that
T−

μ1,ε ⊂ ER(μ1).
We combine these facts with a classical topological result from Whyburn [41,

Chap. I, Statement (9.3), p. 12], to conclude that(
S ∩ ER(μ1)

)
\
(
Eε(μ1) ∩K+

η

)
= k1 ∪ k2

where k1, k2 are compact sets in E, such that k1 ∩ k2 = ∅, T−
μ1,ε ⊂ k1, and(

S ∩ ∂ER(μ1)
)
∪
(
S ∩ ∂Eε(μ1) ∩K+

η

)
⊂ k2 .
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Consequently, there exists a bounded open set U in E such that k1 ⊂ U and
k2 ∩ U = ∅. The properties of k1 and k2 entail{

(0, μ1) ∈ U , ∂U ∩ S ⊂ Eε(μ1) ∩K+
η , and

∂Eε(μ1) ∩K+
η ∩ U = ∅ .

(5.23)

Recalling our definition of Tn as the component of Sn \ (Eε(μ1) ∩K+
ε ) con-

taining (0, μ1), we can apply Lemma 5.7 to the mapping Φ(n)
λ in place of Φλ, thus

obtaining
∂Eε(μ1) ∩K+

η ∩ Tn �= ∅ for each n ∈ N . (5.24)

Note that our asymptotic estimates (4.13), (4.30), and (4.31) guarantee the crucial
assumption of Lemma 5.7, namely, that zero is an isolated solution of Φ(n)

μ1 (u) = 0
for each n ∈ N.

Combining the facts (5.23) and (5.24), we arrive at ∂U ∩ Tn �= ∅. So let us
choose (un, λn) ∈ ∂U ∩ Tn for each n ∈ N. Since U is bounded in E, we may pass
to a subsequence {unk

, λnk
}∞k=1 that converges weakly in E, that is, unk

⇀ u∗

weakly in W 1,p
0 (Ω) and λnk

→ λ∗ in R as k → ∞. Consequently, unk
→ u∗

strongly in Lp(Ω), by Rellich’s theorem. Since Φ(nk)
λnk

(unk
) = 0 for each k ∈ N, with

Φ(nk)
λnk

defined by (5.22), we conclude that

A(unk
) → λ∗ B(u∗) + H(u∗;λ∗) in Lp′

(Ω) as k → ∞ .

This implies unk
→ u∗ strongly in W 1,p

0 (Ω) as k → ∞. (Note that A−1 : X ′ →
X is continuous due to (Ai) or (Aii).) The embeddings W 1,p

0 (Ω) ↪→ Lp(Ω) and
Lp′

(Ω) ↪→ W−1,p′
(Ω) being compact, we have also A(unk

) → A(u∗) strongly in
W−1,p′

(Ω). It follows that

Φλ∗(u∗) ≡ A(u∗) − λ∗ B(u∗) −H(u∗;λ∗) = 0 . (5.25)

The boundary ∂U being closed, we conclude that (u∗, λ∗) ∈ ∂U . Moreover, by
(5.25), we have also

(u∗, λ∗) ∈
(
S ∩ ER(μ1)

)
\
(
Eε(μ1) ∩K+

η

)
⊂ k2 .

However, this contradicts ∂U ∩ k2 = ∅. �

Proof of Theorem 3.7. With Lemma 5.8 in hand, the proof of Theorem 3.7 follows
the same pattern as in Dancer [10, Proof of Theorem 2, p. 1073]. Therefore, we
omit the details. �

6. Parameter oscillations about μ1

This section provides an example of oscillations of the parameter λ around μ1 for
solutions (u, λ) ∈ E, where ‖u‖W 1,p

0 (Ω) → ∞ and λ → μ1. We need some subtle
regularity properties of ϕ1 to perform some computations in the following example.
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Unfortunately, these properties are known only for p > 2 in the one-dimensional
case to which we restrict ourselves.

In the one-dimensional case it is convenient to work with Ω = (0, πp), where

πp
def= 2

∫ 1

0

1
(1 − sp)1/p

ds =
2π

p sin π
p

.

In the following example, we will use an asymptotic formula from [16] that
takes a more readable form if the positive eigenfunction ϕ1 is normalized by∫ πp

0 ϕp
1 dx = 1. For this asymptotic formula we also need the weighted Sobolev

space Dϕ1 defined to be the completion of W 1,p
0 (0, πp) with respect to the norm

‖u‖Dϕ1

def= (
∫ πp

0 |ϕ′
1(x)|p−2|u′(x)|2dx)1/2. We have the embedding Dϕ1 ↪→ Cβ [0, πp]

where β = 1
p−1 ∈ (0, 1) (see [34, Lemma 4.5] or [35, Lemma 4.4]).

Example 6.1. Take p > 2, 0 ≤ α < p−2, and f� ∈ L∞(0, πp) with
∫ πp

0
f�ϕ1dx = 0

and f� �≡ 0. Let us consider the boundary value problem{
−
(
|u′|p−2u′

)′ − λ|u|p−2u+ |u|α sin(u) = f� + aϕ1 in (0, πp)

u(0) = u(πp) = 0 .
(6.1)

Note that Theorem 3.10 applies to this problem. Below we will show that if either
of the conditions a = 0 or α > 1/p′ = 1 − (1/p) (p′ def= p/(p − 1)) is satisfied,
then there exist two continua Z±

μ1
⊂ S as in Theorem 3.10 and such that Z+

μ1
and

Z−
μ1

exhibit the following additional “oscillation” phenomenon (with λ oscillating
about μ1). We write down this phenomenon for Z+

μ1
only; for Z−

μ1
it is analogous:

(OC) There exist a number δ > 0 and two sequences {βn}∞n=1, {γn}∞n=1 ⊂ R,
0 < βn < γn < βn+1 < γn+1 for all n ∈ N, with βn, γn → +∞ as n → ∞,
and such that for all (u, λ) ∈ Z+

μ1
∪ Z−

μ1
with |λ− μ1| < δ we have

(i)
∫ πp

0
uϕ1 dx = βn =⇒ λ > μ1;

(ii)
∫ πp

0 uϕ1 dx = γn =⇒ λ < μ1.

As a consequence, the set Z+
μ1

being connected, for every n ∈ N large enough
there exists (un, μ1) ∈ Z+

μ1
such that βn <

∫ πp

0
unϕ1 dx < γn; see Figure 1. Clearly,∫ πp

0 unϕ1 dx→ +∞ as n→ ∞.

Notice that, in this example,
∫ πp

0
unϕ1 dx → +∞ as n → ∞ forces

‖un‖W 1,p
0 (Ω) → ∞. This means that Drábek’s hypothesis [14, Eq. (14.43), p. 191]

for bifurcations from infinity at (±∞, μ1) is violated for the boundary value prob-
lem (6.1).

This example relates to results from Dancer [11] obtained for the semilinear
case p = 2 and for α = 0.

Proof of the statement (OC ) in Example 6.1. Our proof is based on asymptotic
estimate proved in [16] and stationary phase argument, see, e.g., [17].
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Let f = f� + aϕ1 We take t ∈ R \ {0} with |t| small enough. Multiplying
equation (6.1) by tα and denoting w = tα/(p−1)u, we arrive at⎧⎪⎪⎨
⎪⎪⎩

−
(
|w′|p−2w′)′ − λ|w|p−2w = tα

(
f� + aϕ1

)
− |t|α(p−α−1)/(p−1)|w|α sin

(
t−α/(p−1)w

)
;

w(0) = w(πp) = 0

(6.2)

The right-hand side satisfies the assumptions of Theorem 4.1 from [16] and we
thus obtain that large solutions (u, λ) ∈ Z+

μ1
satisfy u = t−1(ϕ1 +v�) with t→ 0+

and

λ− μ1 = −tp−1−α

∫ πp

0

[
tαaϕ1 + |ϕ1 + v�|α sin

(
t−1(ϕ1 + v�)

)]
ϕ1 dx

+ (p− 2)t2(p−1−α) Q0(V �, V �) + o
(
|t|2(p−1−α)

)
(6.3)

where V � ∈ Dϕ1 is the limit t−p+α+1v� → V � in Dϕ1 as t→ 0+. Thanks to the
generalized Riemann–Lebesgue lemma [32, Prop. 2.1], we have

|ϕ1 + v�|α sin
(
t−1(ϕ1 + v�)

) ∗
⇀ 0

weakly∗ in L∞(0, 1). Hence, the right hand-side of equation (6.2) converges
weakly∗ in L∞(0, 1) to a function f∗ given by f∗ = 0 if α > 0, and f∗ = f�

if α = 0 (in which is case a = 0 by our hypothesis). The limit function V � ∈ Dϕ1

is the solution of the linearization of problem (6.2) at (u, λ) = (ϕ1, μ1), that is,

d
dx

(∣∣∣∣dϕ1

dx

∣∣∣∣
p−2 dV �

dx

)
−μ1ϕ

p−2
1 V � =

1
p−1

(
f∗−ϕp−1

1

∫ πp

0

(f∗ϕ1)dx
)

in (0, 1) ;

V �(0) = 0, V �(1) = 0 ;∫ 1

0

V �ϕ1dx = 0 ; (6.4)

see [16, Thm. 4.1, pp. 445–446].
Owing to 0 ≤ α < p − 2, we find that t−1v� → 0 in Dϕ1 as t → 0+. This

fact will later allow us in Corollary C.2 to use a “stationary phase argument” to
our problem and prove that∫ πp

0

|ϕ1 + v�|α sin
(
t−1(ϕ1 + v�)

)
ϕ1dx = −K

∣∣ϕ1(πp/2)
∣∣αϕ1(πp/2)

· sin
(
− π

2p′
+ t−1ϕ1(πp/2)

)

· t−1/p′
+ o
(
t−1/p′)

(6.5)
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holds as t → 0+. Here 1/p+1/p′ = 1 and K > 0 is independent of t. Inserting (6.5)
in the asymptotic estimate (6.3) and dividing it by tp−1−α+1/p′

we get

(λ− μ1)/tp−1−α+1/p′
= −K |ϕ1(πp/2)|α ϕ1(πp/2) · sin

(
− π

2p′
+ t−1ϕ1

(
πp/2

))

+ o(1) − tα−1/p′
a

∫ πp

0

ϕ2
1 dx

+ (p− 2)tp−1−α−1/p′
Q0(V �, V �) + o

(
|t|p−1−α−1/p′)

)
.

An easy calculation shows that

p− 1 − α− 1/p′ =
(p− 1)2 − αp

p
> 0

thanks to 0 < α < p− 2. This means that

(λ− μ1)/tp−1−α+1/p′
= −K

∣∣ϕ1(πp/2)
∣∣αϕ1(πp/2) · sin

(
− π

2p′
+ t−1ϕ1(πp/2)

)

− tα−1/p′
a

∫ πp

0

ϕ2
1 dx+ o(1)

as t→ 0+. For α > 1/p′ we find that

(λ− μ1)/tp−1−α+1/p′
= −K|ϕ1(πp/2)|αϕ1(πp/2)

· sin
(
− π

2p′
+ t−1ϕ1(πp/2)

)
+ o(1)

as t→ 0+. Then the desired numbers βn and γn are, for instance,

βn =
(
3/2 + 1/(2p′) + 2n+ 2n0

)
π

∫ πp

0

ϕ1(x)2 dx/ϕ1(πp/2)

and

γn =
(
1/2 + 1/(2p′) + 2n+ 2n0

)
π

∫ πp

0

ϕ1(x)2 dx/ϕ1(πp/2)

with n0 ∈ N large enough. This completes the proof. �

Appendices

Appendix A. A priori regularity results

Here we state the main regularity result for a weak solution u ∈ W 1,p
0 (Ω) of the

Dirichlet boundary value problem

− div
(
a(x,∇u)

)
= h

(
x, u(x)

)
in Ω ; u = 0 on ∂Ω . (A.1)

This a priori regularity is used throughout the entire article.
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γn+5

βn+5

γn+4
βn+4

γn+3
βn+3

γn+2

βn+2

γn+1

βn+1

γn
βn

λμ1

c

Z+
μ1

Figure 1. Bifurcations from infinity of solutions to (6.1): a sketch
of the set Z+

μ1
for large positive solutions; here c def=

∫ πp

0
uϕ1 dx.

Proposition A.1. Let 1 < p < ∞ and let hypotheses (A) and (H) be satisfied.
Assume that u ∈ W 1,p

0 (Ω) is a weak solution of problem (A.1). Then u ∈ C1,β(Ω)
where β ∈ (0, 1) is a constant independent from u. If, in addition, ∂Ω is a compact
manifold of class C1,α for some α ∈ (0, 1), then β ∈ (0, α) can be chosen such
that u ∈ C1,β(Ω). Moreover, β is again independent from u, and ‖u‖C1,β(Ω) ≤ C

where C > 0 is some constant depending solely upon Ω, A, h, N , p, and the norm
‖u‖Lp0(Ω) with

p0 =

{
p∗ = Np

N−p if p < N ;

2p if p ≥ N .

Notice that, owing to the Sobolev embedding W 1,p
0 (Ω) ↪→ Lp0(Ω), we have

also ‖u‖C1,β(Ω) ≤ C′, where the constant C′ depends solely upon Ω, A, h, N , p,
and the norm ‖u‖W 1,p

0 (Ω). Similarly, one obtains ‖u‖C1,β(Ω) ≤ C′′ as well, where
the constant C′′ depends solely upon Ω, A, h, N , p, and the norm ‖u‖L∞(Ω). These
two consequences of Proposition A.1 will be used quite often in the sequel.
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Proposition A.1 is, in fact, a combination of the following two lemmas, in
which we keep our hypotheses and notation from the proposition:

Lemma A.2. Let g : Ω × R → R be a Carathéodory function such that g( · , s) ∈
L1

loc(Ω) for every s ∈ R, and the following inequality holds with some constants
a > 0 and b ≥ 0:

s · g(x, s) ≤ a|s|p + b|s| for all s ∈ R and a.e. x ∈ Ω .

Assume that u ∈W 1,p
0 (Ω) satisfies∫

Ω

〈
a(x,∇u),∇φ

〉
dx =

∫
Ω

g
(
x, u(x)

)
φdx for all φ ∈ C∞

c (Ω) .

Then u ∈ L∞(Ω) and there exists a constant c > 0 such that ‖u‖L∞(Ω) ≤ c,
where c depends solely upon a, b, N , p, and ‖u‖Lp0(Ω).

This is a special case of a more general result shown in Anane’s thesis [4,
Théorème A.1, p. 96]. Although his proof is carried out only for

a(x, ξ) ≡ 1
p
∂ξA(x, ξ) = |ξ|p−2ξ , (x, ξ) ∈ Ω × R

N , (A.2)

one can rewrite it directly for our more general case.

Lemma A.3. Assume that u ∈ W 1,p
0 (Ω) is a weak solution of problem (A.1) such

that u ∈ L∞(Ω). Then u ∈ C1,β(Ω) where β ∈ (0, 1) is a constant independent
from u. If, in addition, ∂Ω is a compact manifold of class C1,α for some α ∈
(0, 1), then β ∈ (0, α) can be chosen such that u ∈ C1,β(Ω). Moreover, β is again
independent from u, and ‖u‖C1,β(Ω) ≤ C′ where C′ > 0 is some constant depending
solely upon Ω, A, h, N , p, and the norm ‖u‖L∞(Ω).

The first statement of this lemma, interior regularity in C1,β(Ω), was estab-
lished independently by DiBenedetto [13, Theorem 2, p. 829] and Tolksdorf [39,
Theorem 1, p. 127]. The second statement, regularity near the boundary, is due
to Lieberman [25, Theorem 1, p. 1203]. The constant β depends solely upon α, N
and p. We keep the meaning of the constants α and β throughout the entire article
and denote by β′ an arbitrary, but fixed number such that 0 < β′ < β < α < 1.
Last but not least, Lieberman’s regularity results have been shown for the Neu-
mann boundary conditions as well.

While Anane’s proof of Lemma A.2 is based on the special form of a(x, ξ) ≡
1/p ∂ξA(x, ξ) with the positively p-homogeneous potential A(x, · ) satisfying also
hypothesis (2.2), Lemma A.3 is valid with any vector field a ≡ (ai)N

i=1 : Ω×R
N →

R
N satisfying

ai ∈ C0(Ω × R
N ) ∩ C1

(
Ω ×

(
R

N \ {0}
))

(i = 1, 2, . . . , N)

together with the ellipticity and growth conditions (2.3), (2.4) and (2.5).
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Appendix B. Bifurcations from zero or infinity

Let us consider a sequence of nontrivial solutions {(un, λn)}∞n=1 ⊂ S of prob-
lem (2.1), i.e., for each n = 1, 2, . . . the integral identity∫

Ω

〈
a(x,∇un),∇φ

〉
dx = λn

∫
Ω

B |un|p−2un φdx+
∫

Ω

h(x, un;λn)φdx (B.1)

holds for all φ ∈W 1,p
0 (Ω). We assume

−∞ < λn ≤ μ2 − δ (n = 1, 2, . . . ) (B.2)

where δ ∈ (0, μ2 −μ1) is a constant and μ2 stands for the second eigenvalue of the
quasilinear operator

A : W 1,p
0 (Ω) →W−1,p′

(Ω) : u �→ − div
(
a
(
· ,∇u( · )

))
.

A variational characterization of μ2 by a minimax formula is due to Anane [4,
Remarques 2.2, pp. 15–16]. It is shown in Anane and Tsouli [5, Prop. 2, p. 5] that
there is no eigenvalue in the open interval (μ1, μ2). Although the last two claims
have been proved only for the case of the positive Dirichlet p-Laplacian −Δp, that
is, for

a(x, ξ) ≡ 1
p
∂ξA(x, ξ) = |ξ|p−2ξ , (x, ξ) ∈ Ω × R

N ,

their proofs carry over directly to our more general case.
Now we need to distinguish between solutions (un, λn) with un having arbi-

trarily small or arbitrarily large norm (bifurcations from zero or infinity, respec-
tively). More precisely, we will show that for this purpose any of the three norms
‖un‖W 1,p

0 (Ω), ‖un‖L∞(Ω), or ‖un‖C1,β(Ω) can be employed. Recall that 0 < β <

α < 1 are constants from Proposition A.1. To verify this claim, we need to employ
Lemma 2.2, the proof of which is given next.

B.1. Proof of Lemma 2.2

To verify (a), we first notice that h(x, u(x);λ) = 0 if u(x) = 0, and estimate∣∣h(x, u(x);λ
)∣∣

‖u‖p−1
L∞(Ω)

=

∣∣h(x, u(x);λ
)∣∣∣∣u(x)

∣∣p−1

(
|u(x)|

‖u‖L∞(Ω)

)p−1

≤
∣∣h(x, u(x);λ)∣∣

|u(x)|p−1
(B.3)

if u(x) �= 0. From ‖u‖L∞(Ω) → 0 we get u(x) → 0 uniformly for a.e. x ∈ Ω. Finally,
using (2.10) we arrive at (2.14).

To prove (b), let us take a sequence {un}∞n=1 ⊂ L∞(Ω) with ‖un‖L∞(Ω) → ∞
as n→ ∞. We split the domain Ω = An ∪Bn where

An =
{
x ∈ Ω :

∣∣un(x)
∣∣ ≤ ‖un‖

1
2
L∞(Ω)

}
,

Bn =
{
x ∈ Ω :

∣∣un(x)
∣∣ > ‖un‖

1
2
L∞(Ω)

}
.
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For x ∈ An we infer from inequality (2.11) that∣∣h(x, un(x);λ
)∣∣

‖un‖p−1
L∞(Ω)

=

∣∣h(x, un(x);λ
)∣∣

1 +
∣∣un(x)

∣∣p−1 ·
1 +

∣∣un(x)
∣∣p−1

‖un‖p−1
L∞(Ω)

≤ C
1 + ‖un‖(p−1)/2

L∞(Ω)

‖un‖p−1
L∞(Ω)

. (B.4)

For x ∈ Bn we infer from (B.3) that∣∣h(x, un(x);λ
)∣∣

‖un‖p−1
L∞(Ω)

≤
∣∣h(x, un(x);λ

)∣∣
|un(x)|p−1

. (B.5)

Now let χAn and χBn denote the characteristic functions of the sets An and Bn,
respectively. Combining inequalities (B.4) and (B.5) we arrive at

|h(x, un(x);λ)|
‖un‖p−1

L∞(Ω)

≤ C
1 + ‖un‖(p−1)/2

L∞(Ω)

‖un‖p−1
L∞(Ω)

χAn(x)

+
|h(x, un(x);λ)|
|un(x)|p−1

χBn(x) (B.6)

for x ∈ Ω. The first summand clearly tends to zero as n→ ∞, whereas the second
one tends to zero pointwise for a.e. x ∈ Ω and uniformly for every λ ∈ R, by (2.12).
This proves (2.15). �

Lemma 2.2 has the following important corollary.

Corollary B.1. Let 1 ≤ q < ∞. In both alternatives, (a) and (b), of Lemma 2.2
we have ∥∥h( · , u( · );λ

)∥∥
Lq(Ω)

/‖u‖p−1
L∞(Ω) → 0 (B.7)

as ‖u‖L∞(Ω) → 0 or ‖u‖L∞(Ω) → ∞, respectively, uniformly for every λ ∈ R.

Proof. In the situation of alt. (a), we can combine inequality (2.9) with the Le-
besgue dominated convergence theorem to obtain (B.7) as ‖u‖L∞(Ω) → 0.

The same argument applies to alt. (b), of course, with (2.9) replaced by (2.11).
�

B.2. A priori results – bifurcations from zero

Lemma B.2. Let {(un, λn)}∞n=1 ⊂ S be as specified above. Then the following three
statements are equivalent, as n→ ∞:

(i) ‖un‖W 1,p
0 (Ω) → 0;

(ii) ‖un‖L∞(Ω) → 0;
(iii) ‖un‖C1,β(Ω) → 0.

Moreover, in all three cases we have λn → μ1 and the sequence wn
def= un/

‖un‖L∞(Ω) is the union of two disjoint subsequences {w′
n}∞n=1 and {w′′

n}∞n=1, one
of them possibly empty, such that, if nonempty, they satisfy w′

n → ϕ1/‖ϕ1‖L∞(Ω)
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and/or w′′
n → −ϕ1/‖ϕ1‖L∞(Ω) in C1,β′

(Ω) as n → ∞. Here, β′ ∈ (0, β) is arbi-
trary.

Proof. Clearly, (iii) implies (i) and (ii). We will prove (i) =⇒ (ii) and (ii) =⇒ (iii).
(i) =⇒ (ii): The function wn

def= un/‖un‖W 1,p
0 (Ω) satisfies ‖wn‖W 1,p

0 (Ω) = 1
together with ∫

Ω

〈
a(x,∇wn),∇φ

〉
dx =

∫
Ω

gn

(
x,wn(x)

)
φdx (B.8)

for all φ ∈W 1,p
0 (Ω), by equation (B.1), where we have abbreviated

gn(x, s) def= λnB(x) |s|p−2s+
h
(
x, s‖un‖W 1,p

0 (Ω);λn

)
‖un‖p−1

W 1,p
0 (Ω)

, (x, s) ∈ Ω × R .

Our hypotheses 0 ≤ B ∈ L∞(Ω) and (2.9) guarantee

s · gn(x, s) ≤ a|s|p + b|s| for all s ∈ R and a.e. x ∈ Ω ,

where
a = (μ2 − δ)‖B‖L∞(Ω) + C > 0 and b = 0 .

We may apply Lemma A.2 to (B.8) to conclude that wn ∈ L∞(Ω) and there
exists a constant c > 0 such that ‖wn‖L∞(Ω) ≤ c, where c is independent from
n = 1, 2, . . . . Consequently, we have ‖un‖L∞(Ω) ≤ c ‖un‖W 1,p

0 (Ω) for n = 1, 2, . . . ,
which proves (i) =⇒ (ii).

(ii) =⇒ (iii): This time we take wn
def= un/‖un‖L∞(Ω) which satisfies

‖wn‖L∞(Ω) = 1 together with∫
Ω

〈
a(x,∇wn),∇φ

〉
dx = λn

∫
Ω

B(x) |wn|p−2wn φdx

+
∫

Ω

h
(
x,wn(x)‖un‖L∞(Ω);λn

)
‖un‖p−1

L∞(Ω)

φdx . (B.9)

for all φ ∈W 1,p
0 (Ω), by equation (B.1). We claim: lim infn→∞ λn ≥ μ1.

On the contrary, suppose that there is a subsequence of {(un, λn)}∞n=1, de-
noted again in the same way, such that for some δ′ ∈ (0, μ1) and for each n =
1, 2, . . . we have λn ≤ μ1 − δ′. Taking φ = wn in equation (B.9) we obtain∫

Ω

A(x,∇wn) dx = λn

∫
Ω

B(x) |wn|p dx

+
∫

Ω

h
(
x,wn(x)‖un‖L∞(Ω);λn

)
‖un‖p−1

L∞(Ω)

wn(x) dx .

Now we use λn ≤ μ1 − δ′ and the variational characterization of μ1 from (2.8) to
get

δ′

μ1

∫
Ω

A(x,∇wn) dx ≤
∫

Ω

∣∣h(x,wn(x)‖un‖L∞(Ω);λn

)∣∣
‖un‖p−1

L∞(Ω)

|wn(x)| dx . (B.10)
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Next, we apply Corollary B.1, alt. (a), and ‖wn‖L∞(Ω) = 1 to the right-hand side
of equation (B.10) to conclude that

∫
Ω
A(x,∇wn) dx → 0 as n → ∞. But this

means ‖wn‖W 1,p
0 (Ω) → 0 as n→ ∞, by inequality (2.6). Finally, let us define zn

def=
wn/‖wn‖W 1,p

0 (Ω). This function satisfies ‖zn‖W 1,p
0 (Ω) = 1 together with∫

Ω

〈
a(x,∇zn),∇φ

〉
dx = λn

∫
Ω

B(x) |zn|p−2zn φdx

+
∫

Ω

h
(
x, νnzn(x);λn

)
νp−1

n

φdx

for all φ ∈ W 1,p
0 (Ω), by equation (B.9), where νn

def= ‖wn‖W 1,p
0 (Ω)‖un‖L∞(Ω) → 0

as n→ ∞. The same arguments we have used above in the proof of (i) =⇒ (ii) now
reveal that also ‖wn‖L∞(Ω) → 0 as n → ∞, a contradiction with ‖wn‖L∞(Ω) = 1
for n = 1, 2, . . . . Therefore, our claim lim infn→∞ λn ≥ μ1 must be valid.

Taking n ∈ N large enough and using (B.2), we may assume 0 ≤ λn ≤ μ2 − δ
for every n = 1, 2, . . . . Thus, applying 0 ≤ B ∈ L∞(Ω) and (2.9) we observe that
the function

fn(x) def= λnB(x) |wn|p−2wn +
h
(
x,wn(x)‖un‖L∞(Ω);λn

)
‖un‖p−1

L∞(Ω)

, x ∈ Ω ,

on the right-hand side of equation (B.9) is uniformly bounded a constant,∣∣fn(x)
∣∣ ≤M = (μ2 − δ)‖B‖L∞(Ω) + C > 0 , x ∈ Ω .

Now we may apply Lemma A.3 to (B.9) to conclude that wn ∈ C1,β(Ω) and there
exists a constant c′ > 0 such that ‖wn‖C1,β(Ω) ≤ c′, where c′ is independent from
n = 1, 2, . . . . Consequently, we have ‖un‖C1,β(Ω) ≤ c′ ‖un‖L∞(Ω) for n = 1, 2, . . . ,
which proves (ii) =⇒ (iii).

To complete the proof, we will derive λn → μ1 from our proof of (ii) =⇒ (iii).
Let us fix any β′ ∈ (0, β). The embedding C1,β(Ω) ↪→ C1,β′

(Ω) being compact
by Arzelà–Ascoli’s theorem, the sequence {wn}∞n=1 contains a subsequence that
converges in C1,β′

(Ω) to some w; we denote it again by wn → w. Notice that
‖w‖L∞(Ω) = 1. Extracting yet another convergent subsequence from {λn}∞n=1 we
may assume also λn → λ∗. We let n→ ∞ in equation (B.9) and use Corollary B.1,
alt. (a), to conclude that w ∈ C1,β′

(Ω) must satisfy∫
Ω

Y 〈a(x,∇w),∇φ
〉

dx = λ∗
∫

Ω

B(x) |w|p−2wφdx (B.11)

for all φ ∈ W 1,p
0 (Ω). Since 0 ≤ λ∗ ≤ μ2 − δ and μ1 is the only eigenvalue of

the operator A in the open interval (−∞, μ2), we must have λ∗ = μ1. In addi-
tion, μ1 being a simple eigenvalue, we have w = κϕ1 in Ω where κ ∈ R satisfies
|κ| · ‖ϕ1‖L∞(Ω) = 1.

The sequence {λn}∞n=1 ⊂ [0, μ2 − δ] being bounded and the cluster point
λ∗ = μ1 unique, we conclude that λn → μ1 (n → ∞) holds not only for a
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suitable subsequence of {λn}∞n=1, but also for the entire original sequence as
well. Finally, the original sequence {wn}∞n=1 can have at most two cluster points,
±ϕ1/‖ϕ1‖L∞(Ω).

The lemma is proved. �

B.3. A priori results – bifurcations from infinity

Lemma B.3. Let {(un, λn)}∞n=1 ⊂ S be as specified above. Then the following two
statements are equivalent, as n→ ∞:

(i) ‖un‖W 1,p
0 (Ω) → ∞;

(ii) ‖un‖L∞(Ω) → ∞.
Moreover, if

(B′) 0 < b0 ≤ B(x) ≤ b1 <∞ for a.e. x ∈ Ω (b0, b1 – constants),

then in both cases we have λn → μ1 and the sequence wn
def= un/‖un‖L∞(Ω) is the

union of two disjoint subsequences {w′
n}∞n=1 and {w′′

n}∞n=1, one of them possibly
empty, such that, if nonempty, they satisfy w′

n → ϕ1/‖ϕ1‖L∞(Ω) and/or w′′
n →

−ϕ1/‖ϕ1‖L∞(Ω) in C1,β′
(Ω) as n→ ∞. Here, β′ ∈ (0, β) is arbitrary.

Finally, either of the statements (i) and (ii) is equivalent to (as n→ ∞)
(iii) ‖un‖C1,β(Ω) → ∞
provided that, in addition to (B′), either of the following two conditions is satisfied:
(I) −∞ < Λ ≤ λn ≤ μ2 − δ for all n = 1, 2, . . . (Λ, δ – constants, δ > 0);

(II) inequality (2.9) holds.

Notice that (all or some of) (B), (B.2), and (2.11), respectively, have been
replaced by stronger hypotheses (B′), (I), and (2.9).

Proof. It is obvious that either of (i) and (ii) implies (iii).
(ii) =⇒ (i) is proved by contradiction using similar arguments as in the proof

of (i) =⇒ (ii) in Lemma B.2 above.
(i) =⇒ (ii) is proved by contradiction, as well. Taking φ = un in equa-

tion (B.1) we obtain∫
Ω

A(x,∇un) dx = λn

∫
Ω

B(x) |un|p dx+
∫

Ω

h
(
x, un(x);λn

)
un(x) dx. (B.12)

Now we apply inequalities (2.6), λn ≤ μ2 − δ, and (2.11) to get

γ

p− 1

∫
Ω

|∇un|p dx ≤
∫

Ω

A(x,∇un) dx

≤ (μ2 − δ)
∫

Ω

B(x) |un|p dx+ C

∫
Ω

(
|un|p + |un|

)
dx .

Consequently, if {un}∞n=1 contains a subsequence bounded in L∞(Ω), then the
same subsequence must be bounded also in W 1,p

0 (Ω), thus contradicting (i).
To verify the remaining claims, we assume (B′) throughout the rest of the

proof.
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Knowing (i) ⇐⇒ (ii) already, let us assume (i). We begin by establishing

λn > −2C/b0 for all n ≥ n0 , (B.13)

where C > 0 is the constant from (2.11) and n0 ∈ N is taken large enough.
Contrary to (B.13), suppose that a subsequence of {λn}∞n=1, denoted identically,
satisfies λn ≤ −2C/b0 (< 0) for every n ≥ 1. We apply inequalities (2.6), (2.11),
and (B′) to equation (B.12) to estimate

γ

p− 1

∫
Ω

|∇un|p dx ≤
∫

Ω

A(x,∇un) dx

= λn

∫
Ω

B(x) |un|p dx+
∫

Ω

h
(
x, un(x);λn

)
un(x) dx

≤ λn b0

∫
Ω

|un|p dx+ C

∫
Ω

(
|un|p + |un|

)
dx

≤ (λnb0 + 2C)
∫

Ω

|un|p dx+ C |Ω|N ≤ C |Ω|N .

This is a contradiction to (i), so (B.13) must be valid. The convergence λn → μ1,
together with all the remaining claims for wn

def= un/‖un‖L∞(Ω), is now derived in
the same way as in the proof of Lemma B.2.

Finally, assume that (iii) and (B′) hold together with (I) or (II). First, it
turns out that condition (II) implies (I); this can be deduced from equation (B.12),
using (II): If λn ≤ 0 and un �≡ 0 in Ω, then in equation (B.12) we can estimate∫

Ω

A(x,∇un) dx− λn b0

∫
Ω

|un|p dx ≤ C

∫
Ω

|un|p dx .

In particular, we must have −λn b0 ≤ C. Thus, condition (I) holds with Λ =
−C/b0. Assuming now condition (I), we may apply Lemma A.3 to equation (B.1)
to conclude that if {un}∞n=1 contains a subsequence bounded in L∞(Ω), then
the same subsequence is bounded also in C1,β(Ω), which contradicts (iii). Hence,
(iii) =⇒ (ii). �

Appendix C. Stationary phase argument

We restrict ourselves to 2 < p <∞ throughout this section.

Lemma C.1 (A generalization of Erdélyi [17, Theorem on p. 52]). Let g : [0, πp/2]×
R+ → C be continuous with g( · , τ) → ĝ uniformly on [0, πp/2] as τ → +∞.
(Hence, also ĝ : [0, πp/2] → C is continuous.) Assume that the functions g( · , τ) :
[0, πp/2] → C are absolutely equicontinuous, that is,
(AEC ) for every ε > 0 there is δ > 0 such that∫

M

dx < δ =⇒
∫

M

∣∣∣∣∂g∂x(x, τ)
∣∣∣∣ dx < ε

holds for every Lebesgue-measurable set M ⊂ [0, πp/2].
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Finally, let h : [0, πp/2] → R be continuously differentiable with

h′(x) = (πp/2 − x)σ−1h1(x) , (C.1)

where σ > 1 is a constant and h1 ∈ C1[0, πp/2] is a strictly positive function.
Then there exists a constant K ≡ K(σ, h1(πp/2)) > 0, independent from τ ,

such that∫ πp/2

0

g(x, τ) · eiτh(x)dx = −Kĝ(πp/2) · ei[− π
2σ +τh(πp/2)] · τ−1/σ + o

(
τ−1/σ

)
as τ → +∞.

Proof. We proceed as in [17, proof of the theorem on p. 52]. We take λ = μ = 1,
α = 0, β = πp/2, � = 1, and σ > 1. In [17] a stronger smoothness hypothesis
is imposed on g( · , τ), namely, that g( · , τ) ∈ C1[0, πp] and

∣∣ ∂g
∂x (x, τ)

∣∣ ≤ C ≡
const. < +∞ for all (x, τ) ∈ [0, πp/2]×R+. However, this hypothesis is essentially
used only in an estimate contained in the second displayed formula from the bottom
of page 55. Nevertheless, it is easy to see that this estimate holds also under the
weaker hypothesis (AEC). Recall that we deal only with the special case λ = μ = 1
in that estimate; hence, (AEC) is sufficient. The remaining parts of the proof are
identical with [17]. �
Corollary C.2. Let u = t−1(ϕ1+v�) be a solution of (6.1) with t > 0 small enough.
Then the asymptotic formula∫ πp

0

|ϕ1 + v�|α sin
(
t−1(ϕ1 + v�)

)
ϕ1dx = −K

∣∣ϕ1(πp/2)
∣∣αϕ1(πp/2)

· sin
(
− π

2p′
+ t−1ϕ1(πp/2)

)
· t−1/p′

+ o
(
t−1/p′)

holds as t→ 0+.

Proof. This claim is derived from Proposition C.1 as follows. One splits the integral
as
∫ πp

0 . . . dx =
∫ πp/2

0 . . .dx +
∫ πp

πp/2 . . .dx and applies Proposition C.1 to both
integrals on the right. We treat only the first integral in detail; the second one can
be treated analogously. Observe that∫ πp/2

0

sin
(
t−1
(
ϕ1(x) + v�(x)

))∣∣ϕ1(x) + v�(x)
∣∣αϕ1(x)dx

= �m

[∫ πp/2

0

eit
−1ϕ1(x)eit

−1v�(x)
∣∣ϕ1(x) + v�(x)

∣∣αϕ1(x)dx

]
.

We set τ = t−1, g(x, τ) = |ϕ1(x) + v�(x)|α · eiτv�(x) · ϕ1(x), and h(x) =
ϕ1(x) for x ∈ [0, πp/2] and τ > 0. Recall that ϕ1(x) > 0 for every x ∈ (0, πp/2),
by Remark 2.1. It is obvious that

g(x, τ) → ĝ(x) =
∣∣ϕ1(x)

∣∣αϕ1(x) = ϕ1(x)α+1
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uniformly for x ∈ [0, πp/2] as τ → +∞. This follows from τp−1−α · v� → V � in
Dϕ1 as τ → +∞ combined with p−1−α > 1 and the embedding Dϕ1 ↪→ Cβ [0, πp]
where β = 1

p−1 ∈ (0, 1) (see [34, Lemma 4.5] or [35, Lemma 4.4]). The first
eigenfunction ϕ1 of the p-Laplacian on the interval (0, πp) can be expressed by
means of a special function sinp and a constant πp defined, e.g., in [27,28]; we set
ϕ1(x) = κ sinp(x) where κ = 1/

∫ πp

0 (sinp(x))p dx.

We set cosp(x)
def= sin′

p(x). As a consequence of formulas (30)–(32) on page 332
in [27], we obtain∣∣ cosp(x)

∣∣p−2 cosp(x) =
(πp

2
− x
)

(p− 1)
[
1 − J(x)

]
for 0 ≤ x ≤ πp/2, cf. estimate (33) on page 332 in [27], where we have introduced

J(x) def=

{∫ πp/2

x | sinp(t)|p−2 cosp(t) t−x
πp/2−x dt

0

if 0 ≤ x < πp/2 ;

if x = πp/2 .

Taking into account cosp(x) > 0 on [0, πp/2), we find 1−J(x) > 0 for 0 ≤ x ≤ πp/2
and thus

cosp(x) =
(πp

2
− x
)p′−1

(p− 1)p′−1
[
1 − J(x)

]p′−1
.

This implies also J(x) → J(πp/2) = 0 as x → (πp/2)−. Hence, the function
h(x) = sinp x satisfies assumption (C.1), where σ = p′ and h1(x) = (p − 1)p′−1

[1 − J(x)]p
′−1 is continuously differentiable for 0 ≤ x ≤ πp/2. Indeed, substituting

φ(t) def= 1
p−1 | sinp(t)|p−2 sinp(t) for 0 ≤ t ≤ πp, we observe that both

J(x) =
∫ πp/2

x

φ′(t)
t− x

πp/2 − x
dt = φ(πp/2) − 1

πp/2 − x

∫ πp/2

x

φ(t) dt (C.2)

and

J ′(x) =
1

(πp/2 − x)2

∫ πp/2

x

φ′(t)(t − x) dt− 1
πp/2 − x

∫ πp/2

x

φ′(t) dt

=
1

πp/2 − x
J(x) − φ(πp/2) − φ(x)

πp/2 − x
(C.3)

are continuous functions of x ∈ [0, πp/2). Moreover, we compute

lim
x→(πp/2)−

J(x) = φ(πp/2)− φ(πp/2) = 0 = J(πp/2)

and

lim
x→(πp/2)−

J ′(x) = − lim
x→(πp/2)−

J(πp/2)− J(x)
πp/2 − x

− lim
x→(πp/2)−

φ(πp/2)− φ(x)
πp/2 − x

= −J ′(πp/2) − φ′(πp/2) = −J ′(πp/2) ,
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where J ′(πp/2) = −φ′(πp/2)/2 = 0, by the following calculation:

J ′(πp/2) = lim
x→(πp/2)−

J(πp/2)− J(x)
πp/2 − x

= − lim
x→(πp/2)−

φ(πp/2) − 1
πp/2−x

∫ πp/2

x
φ(t)dt

πp/2 − x

= − lim
x→(πp/2)−

1
(πp/2 − x)2

(
(πp/2 − x)φ(πp/2)−

∫ πp/2

x

φ(t)dt

)

= − lim
x→(πp/2)−

1
(πp/2 − x)2

∫ πp/2

x

(
φ(πp/2)− φ(t)

)
dt

= − lim
x→(πp/2)−

1
(πp/2 − x)2

∫ πp/2

x

∫ πp/2

t

φ′(σ)dσdt

= − lim
x→(πp/2)−

1
(πp/2 − x)2

∫∫
x≤t≤σ≤πp/2

φ′(σ)dσdt = −φ′(πp/2)/2

as φ is continuous on [0, πp]. This completes the proof. �
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