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Triviality of Bloch and Bloch–Dirac Bundles

Gianluca Panati

Abstract. In the framework of the theory of an electron in a periodic poten-
tial, we reconsider the longstanding problem of the existence of smooth and
periodic quasi-Bloch functions, which is shown to be equivalent to the trivi-
ality of the Bloch bundle. By exploiting the time-reversal symmetry of the
Hamiltonian and some bundle-theoretic methods, we show that the problem
has a positive answer in any dimension d ≤ 3, thus generalizing a previous
result by G. Nenciu. We provide a general formulation of the result, aiming
at the application to the Dirac equation with a periodic potential and to
piezoelectricity.

1. Introduction

Many relevant properties of crystalline solids can be understood by the analysis
of Schrödinger operators in the form

H = −Δ + VΓ , (1)

where the potential VΓ : R
d → R is periodic with respect to a lattice Γ ⊂ R

d.
Here by lattice we mean a maximal discrete subgroup of the group (Rd,+), thus
Γ ∼= Z

d. As realized at the dawn of quantum mechanics, the analysis of operators
in the form (1) is greatly simplified by the use of the Bloch–Floquet transform,
here denoted as UB. The advantage of this construction is that the transformed
Hamiltonian UBH U−1

B is a fibered operator with respect to a parameter k ∈
T
d (called crystal momentum or Bloch momentum) and that, under very general

assumptions on VΓ, each fiber operator H(k) has compact resolvent and thus pure
point spectrum accumulating at infinity. We label the eigenvalues in increasing
order, i.e., E0(k) ≤ E1(k) ≤ . . . The function En is called the n-th Bloch band.

In many applications one is interested in a family of orthogonal projectors
{P (k)}k∈Td , where P (k) is the spectral projector of H(k) corresponding to a Bloch
band, or to a family of Bloch bands, which is separated (pointwise in k) by a
gap from the rest of the spectrum. As a particular but important case, one may
consider the spectral projector up to the Fermi energy EF, assuming that the latter
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lies in an energy gap for all k, a situation which is relevant when considering the
polarization properties of insulators and semiconductors. Since the map k �→ H(k)
is periodic and smooth (in the norm-resolvent sense), the same is true for the map
k �→ P (k). Moreover, in many cases, P (k) is indeed analytic over a complex strip
Ta = {k ∈ C

d : | Im ki | < a}. Thus one may raise the following question:

Question (A): is it possible to choose a system {ϕa(k)}a=1,...,m of eigenfunctions
of P (k), spanning RanP (k), such that the maps k �→ ϕa(k) are smooth (resp.
analytic) and periodic?

The special case m = 1 (i.e., when P (k) is the spectral projector correspond-
ing to a non-degenerate band En) corresponds to an old problem in solid state
physics, namely the existence of smooth and periodic Bloch functions. Indeed, the
solution of the eigenvalue problem

H(k)ψn(k) = En(k)ψn(k) , (2)

yields a Bloch function ψn(k) which is defined only up to a k dependent phase.
Clearly one can always choose the phase in such a way that ψn(k) is locally smooth
in k, but it is not clear a priori if such local solutions can be glued together to
obtain a smooth and periodic function. A geometrical obstruction might appear.
For example, if one includes a magnetic field in the Hamiltonian (thus breaking
time-reversal symmetry) it turns out that Question (A) has in general a negative
answer, even in the smooth case [6, 12, 18].

As for the time-symmetric Hamiltonian (1), G. Nenciu proved that the ques-
tion has a positive answer, in the analytic sense, if m = 1 or, alternatively, d = 1
([17], see also [15] Theorem 3.5 and references therein). An alternative proof has
been later provided by Helffer and Sjöstrand [9].

On the other side, in dimension d = 3 the case of a non-degenerate Bloch
band globally isolated from the rest of the spectrum is not generic. It is more
natural to consider rather a family of Bloch bands which may cross each other,
which means to deal with the case m > 1.

In this paper we show that Question (A) has a positive answer in the analytic
sense for any m ∈ N, provided that d ≤ 3 and that the Hamiltonian satisfies
time-reversal symmetry. Borrowing the terminology introduced in [5], this can be
rephrased by saying that we prove the existence of analytic and periodic quasi-
Bloch functions.

The result is extremely important for condensed matter physics. Indeed, as
pointed out in [3], the existence of analytic and periodic quasi-Bloch functions is
the crucial step to prove the existence of exponentially localized Wannier func-
tions in insulators, one of the oldest and longstanding problems in the theory of
solids [13, 15, 25]. Notice that the description of an insulator by an orthonormal
and localized basis is a crucial issue, since it allows for the development of com-
putational methods scaling linearly with the system size [8] and it yields a more
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familiar understanding of the physics in term of tight-binding hamiltonians with
short range parameters.

Moreover, a positive answer in the case m > 1 is relevant for a rigorous
derivation of the semiclassical model of solid state physics [20], for the analysis
of piezoelectricity in crystalline solids [19], and for the derivation of an effective
Hamiltonian for particles with spin degrees of freedom in a periodic environment,
e.g., the Pauli equation or the Dirac equation with periodic potential [14].

While previous proofs (for the casem = 1 or d = 1) exploit operator-theoretic
techniques, our strategy is to reformulate the problem in a geometric language,
as suggested, but non substantiated, in [15]. After reformulating the problem in
the context of bundle theory, we use Steenrod’s classification theory [23] and some
ideas in [1] in order to solve it. It is our belief that mathematical physics greatly
benefits from the interplay between analytic and geometric techniques, and we
hope that this result illustrates this viewpoint.

A relevant advantage of the geometric method is that one does not loose
information about the size of the analyticity strip. On the other side, the proof is
not explicitly constructive.

Finally, we mention in parenthesis that even for non-periodic systems one
may introduce generalized Wannier functions, defined as eigenfunctions of the
“band position operator”. This viewpoint, which traces back to [11], has been
mathematically substantiated in [16].

In Section 2 we state and prove our main results, which are then applied to
the specific case of Schrödinger operators in Section 3 and to Dirac operators in
Section 4.

2. The main result

2.1. Assumptions and statements

It is convenient to abstract from the specific context of Schrödinger–Bloch opera-
tors, and to state the result in a general framework. Hereafter, we denote as B(H)
the algebra of bounded operators over a separable Hilbert space H, and with U(H)
the group of unitary operators over H. In the application to Schrödinger operators,
the lattice Λ which appears below will be identified with Γ∗.

Assumption (P). Let Λ be a maximal lattice in R
d. We assume that {P (k)}k∈Rd is

a family of orthogonal projectors acting on a separable Hilbert space H, such that
(P1) the map k �→ P (k) is smooth from R

d to B(H)
(P2) the map k �→ P (k) is covariant with respect to a unitary representation of

the group Λ, in the sense that

P (k + λ) = τ(λ)−1 P (k) τ(λ) ∀k ∈ R
d, ∀λ ∈ Λ ,

where τ : Λ → U(H) is a group homomorphism.

We are now in position to state our main result.
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Theorem 1. Let Λ be a maximal lattice in R
d. Let {P (k)}k∈Rd be a family of orthog-

onal projectors acting on a separable Hilbert space H, satisfying Assumption (P)
and moreover:

(P3) there exists an antiunitary operator1 C acting on H such that

P (−k) = C P (k)C and C2 = 1 .

Let m := dimP (k) and assume d ≤ 3,m ∈ N or, alternatively, d ≥ 4,m = 1. Then
each of the following equivalent properties holds true:
(A) existence of global (quasi-)Bloch functions: there exists a collection of smooth

maps k �→ ϕa(k) (indexed by a = 1, . . . ,m) from R
d to H such that:

(A1) the family {ϕa(k)}ma=1 is an orthonormal basis spanning RanP (k);
(A2) each map is τ-equivariant in the sense that

ϕa(k + λ) = τ(λ)−1ϕa(k) ∀k ∈ R
d, ∀λ ∈ Λ .

(B) existence of an intertwining unitary: there exists a smooth map k �→ U(k)
from R

d to U(H) such that:
(B1) each U(k) intertwines RanP (0) and RanP (k),

U(k)∗ P (k)U(k) = P (0) ∀k ∈ R
d ;

(B2) the correspondence is τ-equivariant in the sense that:

U(k + λ) = τ(λ)−1 U(k) ∀k ∈ R
d, ∀λ ∈ Λ .

It is convenient to reformulate properties (A) and (B) in a bundle-theoretic
language, by introducing the complex vector bundle canonically associated to the
family {P (k)}k∈Rd . More formally, for any family of projectors satisfying Assump-
tion (P), we define a hermitian complex vector bundle ϑ in the following way. First
one introduces on the set R

d ×H the equivalence relation ∼τ , where

(k, ϕ) ∼τ (k′, ϕ′) ⇔ (k′, ϕ′) =
(
k + λ , τ(λ)ϕ

)
for some λ ∈ Λ .

The equivalence class with representative (k, ϕ) is denoted as [k, ϕ]. Then the total
space E of the bundle ϑ is defined as

E :=
{
[k, ϕ] ∈ (Rd ×H)/∼τ : ϕ ∈ RanP (k)

}
.

This definition does not depend on the representative in view of the covariance
property (P2). The base space is the flat torus B := R

d/Λ and the projection to
the base space π : E → B is π[k, ϕ] = μ(k), where μ is the projection modulo Λ,
μ : R

d → B. One checks that ϑ = (E π→ B) is a smooth complex vector bundle with
typical fiber C

m. In particular, the local triviality follows, for example, from (P1)
and the use of the Nagy formula2.

1By antiunitary operator we mean an antilinear operator C : H → H, such that 〈Cϕ,Cψ〉H =

〈ψ, ϕ〉H for any ϕ, ψ ∈ H.
2Indeed, for any k0 ∈ R

d there exist a neighbourhood W ⊂ R
d of k0 such that ‖P (k)−P (k0)‖ < 1

for any k ∈ W . Then by posing (Nagy’s formula)

W (k) :=
((

1 − (P (k) − P (k0)
)2

)−1/2(
P (k)P (k0) +

(
1 − P (k)

)(
1 − P (k0)

))
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Moreover the vector bundle ϑ carries a natural hermitian structure. Indeed,
if v1, v2 ∈ E are elements of the fiber over x ∈ B, then up to a choice of the
representatives

v1 = [x, ϕ1] and v2 = [x, ϕ2] ,
and one poses

〈v1, v2〉Ex
:= 〈ϕ1, ϕ2〉H .

Endowed with this hermitian structure ϑ is turned into a G-bundle with structural
group G = U(m).

Proposition 2. Under the same assumptions as in Theorem 1, the properties (A)
and (B) are equivalent to:

(C) triviality of the corresponding vector bundle: the vector bundle associated
to the family {P (k)}k∈Rd according to the previous construction is trivial in
the category of smooth U(m)-bundles over B.

Proof. (A) ⇔ (C). Property (A) claims that the bundle ϑ admits a global smooth
orthonormal frame, i.e., that the principal bundle associated to ϑ (i.e., the bundle
of frames in the physics language) admits a global smooth section. The latter
claim is equivalent to the triviality of ϑ in the category of smooth U(m)-bundles
over B, namely property (C).

(A) ⇔ (B). Assume property (B). If {χa}a=1,...,m is any orthonormal basis
of RanP (0), then ϕa(k) := U(k)χa, for a = 1, . . . ,m, satisfies condition (A).
Viceversa, assume {ϕa}a satisfies property (A). Then by posing

W (k)ψ =
∑

a

〈ϕa(0), ψ〉H ϕa(k)

one defines a partial isometry from RanP (0) to RanP (k). The orthogonal pro-
jection Q(k) := 1 − P (k) satisfies assumptions (P1)-(P3) too, since C 2 = 1.
Thus, by the same argument as before one gets a partial isometry Y (k) inter-
twining RanQ(0) and RanQ(k). By di rect sum one gets a unitary operator
U(k) = W (k) ⊕ Y (k) which satisfies property (B). �

The proof of Theorem 1 is based on the following scheme. In the first part, by
using standard ideas, one shows that hypothesis (P3) (which corresponds to time-
reversal symmetry in the applications) implies that the trace of the curvature of
the Berry connection of ϑ has a special property, namely Ω(−k) = −Ω(k). Thus
the first Chern class of ϑ vanishes. The difficult step is to show that this condition
is sufficient for the triviality of the bundle ϑ. The latter claim, whose proof is based
on Proposition 4, relies on the special structure and the low-dimensionality of the
base space B ≈ T

d, d ≤ 3. (In this paper the symbol ≈ denotes homeomorphism
of topological spaces)

one gets a smooth mapW : W → U(H) such that W (k)P (k)W (k)−1 = P (k0). If {χa}a=1,...,m is

any orthonormal basis spanning RanP (k0), then ϕa(k) = W (k)χa is a smooth local orthonormal
frame for ϑ.
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By the Oka’s principle, the result can be pushed forward to the analytic
category, yielding the following “corollary”.

Theorem 3. Let Ta = {z ∈ C
d : | Imzi | < a, ∀i = 1, . . . , d} for a fixed a > 0 and

Λ a maximal lattice in R
d, regarded as a subset of C

d. Let {P (z)}z∈Ta be a family
of orthogonal projectors in H, satisfying

(P̃1) the map z �→ P (z) is analytic from Ta to B(H);
(P̃2) the map z �→ P (z) is τ-covariant, in the sense that

P (z + λ) = τ(λ)−1 P (z) τ(λ) ∀z ∈ Ta, ∀λ ∈ Λ ,

where τ : Λ → U(H) is a group homomorphism;
(P̃3) there exists an antiunitary operator C acting on H such that C2 = 1 and
P (−z) = C P (z)C for all z ∈ Ta .

Let m := dimP (z) and assume d ≤ 3,m ∈ N or, alternatively, d ≥ 4,m = 1. Then
each of the following equivalent properties holds true:
(A) there exists a collection of analytic functions z �→ ϕa(z) (indexed by a =

1, . . . ,m) from Ta to H satisfying (A1) and (A2) over Ta;
(B) there exists an analytic function z �→ U(z) from Ta to U(H) satisfying (B1)

and (B2) over Ta.

Notice that Theorem 3 provides a complete answer, for d ≤ 3, to the question
raised in [17]. A similar statement holds true if the map z �→ P (z) satisfy the
symmetry

P (−z̄) = CP (z)C ∀z ∈ Ta , (3)
where z̄ denotes the complex conjugate of z.

2.2. Proof of main results

Proof of Theorem 1. Let Ω be the differential 2-form over R
d with components

Ωi,j(k) = Tr
(
P (k)

[
∂iP (k), ∂jP (k)

])

i.e.,
Ω(k) =

∑

i,j

Ωi,j(k) dki ∧ dkj . (4)

In view of property (P2), Ω is Λ-periodic, and thus defines a 2-form over B. We
are going to show how Ω is related to the curvature of a connection over the vector
bundle ϑ.

By using a local frame Ψ = (ψ1, . . . , ψm) over W ⊂ R
d, one defines locally

a 1-form A(k) =
∑

iAi(k)dki with coefficients Ai(k) in u(m), the Lie algebra of
antihermitian matrixes, given by3

Ai(k)ab =
〈
ψa(k), ∂iψb(k)

〉
, k ∈ W . (5)

3Here and in the following i, j, . . . ∈ {1, . . . , d} are the base-space indexes, while a, b, c ∈
{1, . . . ,m} are the matrix (Lie algebra) indexes.
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It is easy to check how A transforms under a change of local trivialization: if
Ψ̃ = (ψ̃1, . . . , ψ̃m) is a local trivialization over W̃ , such that Ψ(k) = G(k)Ψ̃(k) for
a smooth G : W ∪ W̃ → U(m), then the 1-form A transforms as

Ãi(k) = G(k)−1 Ai(k)G(k) +G(k)−1 dG(k) k ∈ W ∩ W̃ . (6)

The transformation property (6) implies (see [2], Theorem 1.2.5) that A is the
local expression of a U(m)-connection over the complex vector bundle ϑ. (Such a
connection is called Berry connection in the physics literature. Mathematically, it
is the connection induced by the embedding of ϑ in the trivial hermitian bundle
B ×Hf → B).

A lengthy but straightforward computation yields

Ωi, j = tr (∂iAj − ∂jAi + AiAj −Aj Ai)

where tr denotes the trace over the matrix (Lie algebra) indexes. Thus one con-
cludes that Ω = trωA, where

ωA := dA + A ∧A
represents locally the curvature of the connection A. Therefore the first real Chern
class of the bundle ϑ is

Ch1(ϑ) =
i

2π
[trωA] =

i

2π
[Ω] ,

where [. . .] denotes the de Rahm cohomology class.
By property (P3) one has that ∂iP (−k) = −C ∂iP (k)C, thus

Ωi,j(−k) = Tr
(
C P (k)C C

[
∂iP (k), ∂jP (k)

]
C

)

= −Tr
(
P (k)

[
∂iP (k), ∂jP (k)

])

= −Ωi,j(k) ,

where we used the fact that Tr(C AC) = Tr(A∗) for any A ∈ B(H). Thus one
concludes that

Ω(−k) = −Ω(k) . (7)

It follows from (7) that the first real Chern class of ϑ vanish. Indeed, in
B ≈ T

d equipped with periodic coordinates k = (k1, . . . , kd), ki ∈ [−π, π), one
considers the 2-cycles defined by the sets

Θj,l :=
{
k ∈ T

d : ki = 0 for any i /∈ {j, l}
}
, for j, l = 1, . . . , d, j �= l , (8)

with any consistent choice of the orientation. From (7) it follows that

i

2π

∫

Θj,l

Ω = 0 . (9)

It remains to show that the independent cycles {Θj,l}j �=l are a basis for H2(Td,R).
Indeed, from Künneth formula one proves by induction that H2(Td,Z) ∼= Z

k(d)

with k(d) = 1
2d(d−1). Therefore, the independent 2-cycles Θj,l generate, by linear
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combinations with coefficients in Z (resp. R), allH2(Td,Z) (resp.H2(Td,R)). Thus,
by de Rham’s isomorphism theorem, from (9) it follows that Ch1(ϑ) = 0.

We conclude that the first real Chern class of the bundle ϑ vanishes. Since
the natural homomorphism H2(Td,Z) → H2(Td,R) is injective, this implies the
vanishing of the first integer Chern class.

As for m = 1, it is a classical result by Weil and Constant ([26], see also [4]
Theorem 2.1.3) that the vanishing of the first integer Chern class of a complex line
bundle over a (paracompact) manifold implies the triviality of the bundle itself.
For m ≥ 2, it follows from Proposition 4 that for a base space B ≈ T

d with d ≤ 3
the vanishing of the first real Chern class implies the triviality of the bundle ϑ,
i.e., property (C). This concludes the proof of the theorem. �
Proof of Theorem 2. In strict analogy with the smooth case, the problem is equiv-
alent to the triviality (in the analytic category) of an analytic U(m)-bundle ϑ̃
over the open poly-cylinder Ta/Λ. Since there exists a deformation retract ρ :
Ta/Λ → T

d the triviality of the bundle ϑ̃ (in the smooth sense) is equivalent to
the triviality of its retraction over T

d. Then the proof of Theorem 1 implies that
ϑ̃ is trivial in the category of smooth U(m)-bundles over Ta/Λ.

By the Oka principle (see [7], Chapter V) if an analytic bundle over a Stein
manifold is topologically trivial, then it is analytically trivial. This result applies
to our case, since Ta/Λ is the cartesian product of non-compact Riemann surfaces,
and as such a Stein manifold. �
2.3. A technical lemma

We prove in this section a technical result used in the proof of Theorem 1, which
shows that when the base space is a low dimensional torus (or, more generally,
any low dimensional connected compact manifold whose second cohomology is
torsionless) the vanishing of the first real Chern class of a U(m)-bundle implies
the triviality of the bundle itself. The proof is based on Steenrod’s classification
theory [23] and on some ideas in the literature [1].

We first recall ([22] Section 5.9) that there is a natural transformation i :
H2( · ,Z) → H2( · ,R), so that for any f : X −→ Y the following diagram is
commutative:

H2(Y,Z)H2(X,Z)
f∗

��

H2(Y,R)H2(X,R)
f∗

��

H2(X,Z)

H2(X,R)

iX

��

H2(Y,Z)

H2(Y,R)

iY

��

When one specialize to X ∼= T
d, the natural homomorphism i : H2(Td,Z) →

H2(Td,R) is injective.
We denote as kG(X) the set of vertical isomorphism classes of principal

smooth G-bundles over X (see [10], Section 4.10). By vertical isomorphism we
mean an isomorphism which projects over the identity map on X , i.e., reshuffling
of the fibers is not allowed.
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Proposition 4. If X is a compact, connected manifold of dimension d ≤ 3 and
G = U(m) for m ≥ 2, then kG(X) ∼= H2(X,Z), where the isomorphism (of
pointed sets) is realized by first integer Chern class. In particular, if X is such
that the natural homomorphism H2(X,Z) → H2(X,R) is injective, then for any
U(m)-bundle ϑ over X the vanishing of the first real Chern class Ch1(ϑ) implies
the triviality of ϑ.

For sake of a more readable proof, we first recall some results about the
classification theory of G-bundles [23]. A principal G-bundle ΥG = (EG

pG→ BG;G)
is said to be universal if the map [X,BG] → kG(X), which associate to a (free)
homotopy class of maps [f ] the isomorphism class of the pull-back bundle f∗Υ, is
a bijection for all X . A principal G-bundle with total space P is universal if and
only if P is contractible, and for any finite-dimensional Lie group G there exists a
universal G-bundle. The base spaces of different universal G-bundles for the same
group G are homotopically equivalent.

We also make use in the proof of the Eilenberg–Mac Lane spaces (see [22],
Sect. 8.1). We recall that for any n ∈ N and any group π (abelian if n ≥ 2) there
exists a path connected space Y such that πk(Y ) = π for k = n and zero otherwise.
This space is unique in the category of CW-complexes and denoted by K(π, n).

Proof. From abstract classification theory we know that kG(X) ∼= [X,BG], but
unfortunately a simple representation of [X,BG] is generally not available. The
crucial observation [1] is that if we are interested only in manifolds with dimX ≤ n
the homotopy groups of BG beyond the nth do not play any role, therefore one
can “approximate” BG with a space B3 which captures the relevant topological
features of BG.

More precisely, one constructs a space B3 which is 4-equivalent to BG, in the
sense that there exist a continuous map

ρ : BG −→ B3

such that

πk(ρ) : πk(BG) −→ πk(B3)

is an isomorphism for k ≤ 3 and a epimorphism for k = 4. Therefore, for any
complex X of dimension d ≤ 3, one has [X,BG] = [X,B3].

From the exact homotopy sequence of the universal bundle Υ one has πk(BG)
= πk−1(G), so that for G = U(m) one has

(i) π1(BG) = π0(G) = 0,
(ii) π2(BG) = π1(G) = Z,
(iii) π3(BG) = π2(G) = 0.

Since BG is simply connected, there is already a 2-equivalence

ρ : BG −→ B3 := K(Z, 2) ≈ CP∞
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see [22]. Since π3(BG) = 0, π3(ρ) is an isomorphism, and π4(ρ) is surjective since
π4(K(Z, 2)) = 0. Therefore ρ is a 4-equivalence, so that

kG(X) ∼= [X,K(2,Z)] ∼= H2(X,Z) .

The first identification is an isomorphism of pointed sets, i.e., the trivial ele-
ment [f ] ∈ [X,K(2,Z)] corresponds to the (equivalence class of) the trivial U(m)-
bundle over X . As for the second, let be η any non zero element of H2(CP∞,Z).
Then, according to [22] Theorem 8.1.8, the map

ψX : [X,K(2,Z)] → H2(X,Z)
[f ] �→ f∗η

is an isomorphism of pointed sets. Consider now the following diagram

[X,K(2,Z)] H2(X,Z)
ψX ��

kG(X) H2(X,R)
Ch1 ��

[X,K(2,Z)]

kG(X)
��

H2(X,Z)

H2(X,R)

iX

��
kG(X)

H2(X,Z)

ch1

����������������

where the diagonal arrow represents the first integer Chern class. The lower tringle
is commutative since Ch1 = i ◦ ch1. As for the upper triangle, one choose η :=
ch1(ΥG) which is certainly not zero. Then, since

ch1(f∗ΥG) = f∗ch1(ΥG) = f∗η ,

the upper triangle is commutative. Thus ch1 is an isomorphism of pointed sets.
Finally, if Ch1(ϑ) = 0 then the injectivity of iTd implies that ch1(ϑ) = 0.

Since ch1 is an isomorphism of pointed sets, ϑ must be the distinguished point in
kG(X), namely the isomorphism class of the trivial U(m)-bundle over X . �

3. Application to Schrödinger operators

In this section, we comment on the application of the general results to Schrödinger
operators in the form (1). The lattice Γ is represented as

Γ =

{

x ∈ R
d : x =

d∑

j=1

αj γj for some α ∈ Z
d

}

,

where {γ1, . . . , γd} are independent vectors in R
d. We denote by Γ∗ the dual latice

of Γ with respect to the standard inner product in R
d, i.e., the lattice generated

by the dual basis {γ∗1 , . . . , γ∗d} determined through the conditions γ∗j · γi = 2πδij ,
i, j ∈ {1, . . . , d}. The centered fundamental domain Y of Γ is defined by

Y =

{

x ∈ R
d : x =

d∑

j=1

βj γj for βj ∈
[
−1

2
,
1
2

] }

,
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and analogously the centered fundamental domain Y ∗ of Γ∗. The set Y ∗ is usually
called the first Brillouin zone in the physics literature.

3.1. The Bloch–Floquet–Zak representation

As usual in the recent mathematical literature, we use a variant of the Bloch–
Floquet transform, which is called the Bloch–Floquet–Zak transform, or just the
Zak transform for sake of brevity. The advantage of such a variant is that the
fiber at k of the transformed Hamiltonian operator has a domain which does not
depend on k.

The Bloch–Floquet–Zak transform is defined as

(UZψ)(k, x) :=
∑

γ∈Γ

e−ik·(x+γ) ψ(x+ γ) , (k, x) ∈ R
2d , (10)

initially for a fast-decreasing function ψ ∈ S(Rd). One directly reads off from (10)
the following periodicity properties

(
UZψ

)
(k, y + γ) =

(
UZψ

)
(k, y) for all γ ∈ Γ , (11)

(
UZψ

)
(k + λ, y) = e−iy·λ (

UZψ
)
(k, y) for all λ ∈ Γ∗ . (12)

From (11) it follows that, for any fixed k ∈ R
d,

(
UZψ

)
(k, ·) is a Γ-periodic

function and can thus be regarded as an element of Hf := L2(TY ), TY being the
flat torus R

d/Γ ≈ T
d.

On the other side, (12) involves a unitary representation of the group of
lattice translations on Γ∗ (isomorphic to Γ∗ and denoted as Λ), given by

τ : Λ → U(Hf) , λ �→ τ(λ) ,
(
τ(λ)ϕ

)
(y) = ei y·λϕ(y) . (13)

It is then convenient to introduce the Hilbert space

Hτ :=
{
ψ ∈ L2

loc(R
d,Hf) : ψ(k − λ) = τ(λ)ψ(k) ∀λ ∈ Λ

}
, (14)

equipped with the inner product

〈ψ, ϕ〉Hτ =
∫

Y ∗
dk

〈
ψ(k), ϕ(k)

〉
Hf
.

Obviously, there is a natural isomorphism between Hτ and L2(Y ∗,Hf) given by
restriction from R

d to Y ∗, and with inverse given by τ -equivariant continuation,
as suggested by (12). Equipped with these definitions, one checks that the map
defined by (10) extends to a unitary operator

UZ : L2(Rd) → Hτ
∼= L2

(
Y ∗, L2(TY )

)

with inverse given by
(
U−1

Z ϕ
)
(x) =

∫

Y ∗
dk eik·xϕ

(
k, [x]

)
,

where [ · ] refers to the a.e. unique decomposition x = γx + [x], with γx ∈ Γ and
[x] ∈ Y .
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As mentioned in the introduction, the advantage of this construction is that
the transformed Hamiltonian is a fibered operator over Y ∗. Indeed, for the Zak
transform of the Hamiltonian operator (1) one finds

UZH U−1
Z =

∫ ⊕

Y ∗
dkHper(k)

with fiber operator

Hper(k) =
1
2
(
− i∇y + k

)2 + VΓ(y) , k ∈ Y ∗ . (15)

For fixed k ∈ Y ∗ the operator Hper(k) acts on L2(TY ) with domain4 W 2,2(TY )
independent of k ∈ Y ∗, whenever the potential VΓ is infinitesimally bounded with
respect to −Δ. Under the same assumption on VΓ, each fiber operator H(k) has
pure point spectrum accumulating at infinity: E0(k) ≤ E1(k) ≤ E2(k) ≤ . . .

We denote as σ0(k) the set {Ei(k) : n ≤ i ≤ n + m − 1}, corresponding
to a physically relevant family of Bloch bands, and we assume the following gap
condition:

dist
(
σ0(k), σ

(
H(k)

)
\ σ0(k)

)
≥ g > 0 , ∀k ∈ Y ∗. (16)

Let P (k) ∈ B(Hf) be the spectral projector of H(k) corresponding to the
set σ0(k) ⊂ R. The family {P (k)}k∈Rd satisfies assumption (P1)–(P3) stated in
Section 2. Indeed, the map k �→ P (k) is smooth from R

d to B(Hf), since H(k)
depends smoothly (in the norm-resolvent sense) upon k, and the gap condition (16)
holds true. Moreover, from (15) one checks that

H(k + λ) = τ(λ)−1 H(k) τ(λ) , ∀λ ∈ Λ ,

and since σ0 is periodic one concludes that

P (k + λ) = τ(λ)−1 P (k) τ(λ) , ∀λ ∈ Λ . (17)

Property (P3) corresponds to time-reversal symmetry. This symmetry is re-
alized in L2(Rd) by the complex conjugation operator, i.e., by the operator

(Tψ)(x) = ψ̄(x) , ψ ∈ L2(Rd) .

By the Zak transform we get that T̃ = UZTU−1
Z acts as

(T̃ϕ)(k) = C ϕ(−k) , ϕ ∈ L2(Y ∗,Hf) ,

where C is the complex conjugation operator in Hf . Operators in the form (1)
commute with the time-reversal operator T . The following statement is analogous
to a result proved in [19]. We repeat the proof for the sake of completeness.

Proposition 5 (Time-reversal symmetry). Assume that the self-adjoint operator H
commutes with T in L2(Rd), and that UZHU−1

Z is a continuously fibered operator.

4We denote as W k,p(X) the Sobolev space consisting of distributions whose k-th derivative is
(identifiable with) an element of Lp(X).
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Let P (k) be the eigenprojector of H(k) corresponding to a set σ0(k), satisfying (16).
Then

P (k) = C P (−k)C . (18)

Proof. The transformed Hamiltonian UZHU−1
Z commutes with T̃ , yielding a sym-

metry of the fibers, i.e.,
H(k) = CH(−k)C . (19)

By definition, for any Bloch band Ei one has

H(k)ϕ(k) = Ei(k)ϕ(k)

for a suitable ϕ(k) ∈ Hf , ϕ(k) �= 0. By complex conjugation one gets

Ei(k)Cϕ(k) = CH(k)ϕ(k) = CH(k)C Cϕ(k) = H(−k)Cϕ(k) ,

which shows that Ei(k) is an eigenvalue ofH(−k). By the continuity of k �→ E(k, t)
and the gap condition, by starting from k = 0 one concludes that Ei(−k) = Ei(k)
for any k. Thus σ0(−k) = σ0(k).

Since P (k) = χσ0(k)(H(k)), where χσ0(k) is a smoothed characteristic func-
tion whose support contains σ0(k) and no other point of the spectrum of H(k),
from (19) one gets (18) by applying the functional calculus and noticing that
f(C AC) = C f(A)C whenever A is self-adjoint and f is an admissible
function. �

We conclude that, in the Zak representation, the family of projectors
{P (k)}k∈Rd corresponding to a relevant family of Bloch bands, satisfy assump-
tions (P1)–(P3) of Section 2.

3.2. Comparison with the usual Bloch–Floquet formalism

While from a mathematical viewpoint it is convenient to use the Bloch–Floquet–
Zak transform, as defined in (10), in the solid state physics literature one mostly
encounters the classical Bloch–Floquet transform, defined by

(UBψ)(k, y) :=
∑

γ∈Γ

e−ik·γψ(y + γ) , (k, y) ∈ R
2d (20)

initially for ψ ∈ S(Rd). We devote this short subsection to a comparison of the
two choices.

Functions in the range of UB are periodic in k and quasi-periodic in y,
(
UBψ

)
(k, y + γ) = eik·γ (

UBψ
)
(k, y) for all γ ∈ Γ , (21)

(
UBψ

)
(k + λ, y) =

(
UBψ

)
(k, y) for all λ ∈ Γ∗ . (22)

Definition (20) extends to a unitary operator

UB : L2(Rd) → HB :=
∫ ⊕

Y ∗
Hk dk (23)

where
Hk :=

{
ϕ ∈ L2

loc(R
d) : ϕ(y + γ) = eik·γϕ(y) ∀γ ∈ Γ

}
. (24)
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Although we use the standard (but somehow misleading) “direct integral”
notation, it is convenient to keep in mind that the space appearing on the right-
hand side is the Hilbert space consisting of the locally-L2 sections of an Hilbert
space bundle with base space Y ∗ (identified with a d-dimensional torus) and whose
fiber at point k is Hk.

The relation between the Bloch–Floquet and the Zak representation is easily
obtained by computing the unitary operator J = UBU−1

Z , which is explicitely
given by

(Jϕ) (k, y) = eik·yϕ(k, y) .
Clearly J is a fibered operator, whose fiber is denoted as J(k). Notice that

J(k)−1 maps unitarily the space Hk into the typical fiber space H0 = Hf = L2(TY ).
If HB(k) is the fiber of the Hamiltonian H in Bloch–Floquet representation, one
has

J(k)HB(k)J(k)−1 = Hper(k) ,

see (15), and thus σ
(
Hper(k)

)
= σ

(
HB(k)

)
.

As for the relevant family of projectors, we notice that an operator-valued
function k �→ PB(k), with PB(k) ∈ B(Hk), is periodic if and only if PZ(k) :=
J(k)PB(k)J(k)−1 is τ -equivariant with respect to the representation in (13).
Moreover, conjugation with J (resp. with J −1) preserves smoothness and analyt-
icity, since J acts as a multiplication times a unitary operator J(k) which depends
analytically on k. Thus a family of orthogonal projectors PB(k) is smooth (resp.
analytic) and periodic if and only if the corresponding family PZ(k) is smooth
(resp. analytic) and τ -covariant. The results in Section 2 thus directly apply to
this situation, yielding the existence of a smooth and periodic orthonormal basis
for RanPB(k).

4. Application to Dirac operators

There are experiments in atomic and solid state physics where the relativistic
corrections to the dynamics of the electrons are relevant, while the energy scale
at which the experiment is performed is not so high to require the use of a fully
relativistic theory, namely Quantum Electrodynamics. Such physical situations are
conveniently described by using a hybrid model, which embodies some relativistic
effects (as, for example, the spin-orbit coupling) without involving the difficulties
of a fully relativistic theory.

In order to introduce the model, one first fixes an inertial frame, e.g., the
laboratory frame. In such a frame, the potential to which the electron is subject
is described by the function V : R

d → R. Then it is postulated that the dynamics
of the electron in the chosen frame is described by the Dirac equation

iψt = HD ψt , ψt ∈ L2(R3,C4) ,

with
HD = −ic∇ · α+mec

2 β + V , (25)
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where me denotes the mass of the electron and c the speed of light, and where
α = (α1, α2, α3) and β are given by

αi =
(

0 σi
σi 0

)
, β =

(
1C2 0
0 −1C2

)
,

with (σ1, σ2, σ3) the vector of Pauli spin matrixes.
Such a model is clearly not Lorentz covariant, but it is expected to include

the relativistic corrections of lowest order (in the parameter c−1, as c → ∞) to
the dynamics described by the Schrödinger equation [24].

We now specialize to the case V = VΓ, with VΓ periodic with respect to
a lattice Γ ⊂ R

3. We set me = 1 and c = 1 for simplicity. As in the case of
Schrödinger operators, one introduces the Bloch–Floquet–Zak transform, defined
as in (10), which yields a unitary operator

UZ : L2(R3,C4) → L2(Y ∗,Hf) ,

where Hf = L2(TY ) ⊗ C
4 with TY := R

3/Γ.
The transformed Hamiltonian operator UZHDU−1

Z is fibered, with fiber

HD(k) = (−i∇ + k) · α+ β + VΓ ,

acting in Hf , with domain H1(TY ,C4). Under general assumptions on the peri-
odic potential (e.g., if VΓ is infinitesimally bounded with respect to i∇), each fiber
HD(k) has compact resolvent and thus pure point spectrum accumulating to infin-
ity. Since HD(k) is not bounded from below, the labelling of eigenvalues requires
some additional care: one can prove that there is a consistent global labelling
{En(k)}n∈Z such that each k �→ En(k) is continuous and periodic, and the relation
En(k) ≤ En+1(k) holds true. We say that the function En is the n-th Bloch–Dirac
band.

Whenever the potential is reflection-symmetric, i.e., VΓ(−x) = VΓ(x), each of
the eigenvalues En(k), n ∈ Z, is at least twofold degenerate, as shown in [14]. Thus,
even when considering the projector P (k) corresponding to a single Bloch–Dirac
band, one has to deal with the case m = 2. This example illustrates the need of
the general results stated in Theorem 1 and Theorem 3.

As for time-reversal symmetry, one checks directly that

HD(k)T = T HD(−k) (26)

where we introduced the antiunitary operator

T = −i (1 ⊗ α1α3)C ,

with C denoting complex conjugation in Hf . It is easy to check that T 2 = 1 by
using the fact that α1α3 = −α3α1.

Let P (k) be the spectral projector of HD(k) corresponding to a set σ0(k)
satisfying (16), and such that σ0(k+λ) = σ0(k) for all λ ∈ Γ∗ and σ0(−k) = σ0(k).
As in Section 3, one shows that the map k �→ P (k) is smooth and τ -equivariant.
Moreover, from (26) and functional calculus it follows that

P (−k) = T P (k)T .
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Thus the family {P (k)}k∈R3 satisfies Assumptions (P1), (P2) and (P3), and there-
fore Theorem 1 ensures the triviality of the corresponding complex vector bundle,
namely the Bloch–Dirac bundle.
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