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Negative Discrete Spectrum of Perturbed
Multivortex Aharonov-Bohm Hamiltonians∗

M. Melgaard, E.-M. Ouhabaz and G. Rozenblum

Abstract. The diamagnetic inequality is established for the Schrödinger operator

H
(d)
0 in L2(Rd), d = 2, 3, describing a particle moving in a magnetic field generated

by finitely or infinitely many Aharonov-Bohm solenoids located at the points of
a discrete set in R

2, e.g., a lattice. This fact is used to prove the Lieb-Thirring
inequality as well as CLR-type eigenvalue estimates for the perturbed Schrödinger

operator H
(d)
0 − V , using new Hardy type inequalities. Large coupling constant

eigenvalue asymptotic formulas for the perturbed operators are also proved.

1 Introduction and main results

Consider a non-relativistic, spinless quantum particle in R
d, d = 2, 3, interacting

with a magnetic field B associated with finitely or infinitely many thin solenoids
aligned along the x3-axis which pass through the points λ of some discrete subset
Λ of the x1x2 plane. The magnetic flux through each solenoid is a noninteger αλ.
If, moreover, the radii of the solenoids tend to zero, whilst the flux αλ through
each solenoid remains constant then one obtains a particle moving in R

d subject to
a finite or an infinite sum of δ-type magnetic fields, the so-called Aharonov-Bohm
fields or magnetic vortices, located at the points of Λ which may be interpreted
as infinitely thin impurities within a superconductor. Setting Λd = Λ × R

d−2, the
multiply-connected region R

d \Λd, in which the field B equals zero, represents the
configuration space. In the case of a lattice (defined by λkl = kω1 + lω2, where
ω1,ω2 are vectors in R

2 and (k, l) runs over the whole of Z
2 or a subset of Z

2)
such a situation occurs experimentally in GaAs/AlGaAs heterostructures coated
with a film of type-II superconductors [5, 11].

The vector potential A(x1, x2) = (A1(x1, x2), A2(x1, x2), 0) associated with
B is chosen such that

A1(x1, x2) = Im A(x1, x2), and A2(x1, x2) = Re A(x1, x2), (1.1)

where A(z) = A(x1, x2), z = x1 + ix2, is a meromorphic function having simple
poles at λ ∈ Λ with residues αλ; existence (and examples) of such functions A(z)
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are discussed in Section 2. One easily verifies that

∂x1A2 − ∂x2A1 =
∑

λ∈Λ

αλδ(z − λ) = B

in the sense of distributions; as usual, it suffices to consider αλ ∈ (0, 1) due to
gauge invariance.

The dynamics of a spinless particle moving in any of the above-mentioned
configurations of Aharonov-Bohm (abbrev. A-B) solenoids in R

d is described by
the Schrödinger operator

H
(d)
0 = −(∇ + iA)2 (1.2)

acting in L2(Rd), where ∇ is the gradient on R
d. Since the singularities of the A-B

magnetic potential are very strong, the operator defined initially on functions with
support away from the singularities is not essentially self-adjoint. In Section 2 we
define the Friedrichs extension ofH(d)

0 by means of quadratic forms. In the case of a
single A-B solenoid the corresponding standard A-B Schrödinger operator has been
studied intensively in two dimensions and there is an ongoing discussion on the
mathematical and physical reasonability of different self-adjoint extensions [31, 1,
10, 15, 35]. The Friedrichs extension considered herein corresponds to the model
of solenoids being non-penetrable for electrons, and, moreover, with interaction
preserving circular symmetry [1].

Within the theory of Schrödinger operators with magnetic fields L(A) =
−(∇ + iA)2 associated with a vector potential A = (A1, . . . , Ad) satisfying Aj ∈
L2

loc(R
d), one of the fundamental facts is the diamagnetic inequality [2], viz.,

|e−tL(A)u| ≤ e−tL0 |u| for all t ≥ 0 and all u ∈ L2(Rd); here L0 denotes the
negative Laplacian in L2(Rd).

In Section 4 we show that this inequality is valid also for the Schrödinger
operator H(d)

0 in L2(Rd) for any of the afore-mentioned A-B configurations.

Theorem 1.1 The inequality

|e−tH
(d)
0 u| ≤ e−tL0 |u|

holds for all t ≥ 0 and all u ∈ L2(Rd)

This result does not follow directly from the known diamagnetic inequality
since the components (1.1) of the vector potential do not belong to L2

loc(R
d); this

latter condition is crucial in all existing proofs of the diamagnetic inequality for
Schrödinger operators with magnetic fields.

Our proof of Theorem 1.1 uses a recent criterion (see Section 3) for the domi-
nation of semigroups due to Ouhabaz [25]1. This criterion is a generalization (from
operators to forms) of the Simon-Hess-Schrader-Uhlenbrock test for domination of
semigroups [13].

1It might be possible to prove Theorem 1.1 from general results in [22] which, in their turn,
are based on [25], but we prefer to give a direct proof.
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As the first application of the diamagnetic inequality we establish the Lieb-
Thirring inequality for the perturbed Schrödinger operator H(d)

0 −V in Section 6.
Here the electrostatic potential V is a nonnegative, measurable function on R

d

belonging to an appropriate class, which guarantees that the form sum H
(d)
0 − V

generates a semi-bounded, self-adjoint operator in L2(Rd) with discrete spectrum
below zero.

The classic Lieb-Thirring inequality [20] for a d-dimensional Schrödinger op-
erator L0 − V in L2(Rd), with L0 = −∆ as above and d ≥ 1, says that

∑

j

|νj(L0 − V )|γ ≤ bγ,d

∫

Rd

V (x)γ+ d
2 dx, (1.3)

where νj(L0 − V ) denote the negative eigenvalues of L0 − V , γ > 0 (γ ≥ 1/2 for
d = 1) and V ∈ Lγ+ d

2 . The constant bγ,d is expressible in terms of Γ-functions. The
Lieb-Thirring inequality plays a crucial role in the problem of stability of matter
(see, e.g., [21]), where the exact value of the constant is important (see [18], [14]
for recent developments in obtaining sharp constants). One way of establishing
(1.3) is to use the Cwikel-Lieb-Rozenblum (abbrev. CLR) estimate (see, e.g., [27])
which, in its original form, reads

N−(L0 − V ) ≤ Cd

∫

Rd

V (x)
d
2 dx, d ≥ 3. (1.4)

Here N− denotes the number of negative eigenvalues of a self-adjoint operator,
provided its negative spectrum is discrete. The single assumption, under which
(1.4) is valid, is the finiteness of the integral on its right-hand side. In [33, p. 99-
100] it is shown how one can obtain (1.3) provided (1.4) holds. This, however, does
not produce the optimal constant in the Lieb-Thirring inequality.

The Lieb-Thirring inequality for d-dimensional Schrödinger operators with
magnetic fields L(A)−V , with d ≥ 3 and Aj ∈ L2

loc(R
d), takes the same form and

can be obtained from the CLR-estimate for L(A) − V which is shown by means
of the diamagnetic inequality (see, e.g., [33, p 168]).

In two dimensions there exist certain CLR-type estimates both for L0 −
V [34, 6] and L(A) − V [29], provided Aj ∈ L2

loc(R
2) for the latter operator.

However, unlike in higher dimensions, these estimates, having a different form,
do not produce Lieb-Thirring inequalities. Moreover, in our case, the components
(1.1) of the magnetic potential do not belong to L2

loc(R
2). Therefore the question

on Lieb-Thirring inequalities for the perturbed Schrödinger operator H(d)
0 −V was

up to now open.

In the present paper we establish the following Lieb-Thirring (abbrev. LT)
inequality for the perturbed Schrödinger operator H(d)

0 − V in L2(Rd), d = 2, 3,
for any of the afore-mentioned configurations of A-B solenoids, with constants not
depending on the configuration or the strength of magnetic fields.
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Theorem 1.2 Let νj denote the negative eigenvalues of H(d)
0 − V , d = 2, 3. If,

moreover, γ > 0 and V ∈ Lγ+(d/2)(Rd) then

LTγ,d :=
∑

j

|νj |γ ≤ Cγ,d

∫

Rd

V (x)γ+ d
2 dx,

where the constant Cγ,d fulfills the following upper bounds for the most interesting
values of γ:

Cγ,2 ≤





0.5300 for γ = 1/2,
0.3088 for γ = 1,
0.2275 for γ = 3/2 ;

and

Cγ,3 ≤





0.1542 for γ = 1/2,
0.0483 for γ = 1,
0.0270 for γ = 3/2.

We note that the expression we obtain for the best constant in Theorem 1.2
is implicit; see (6.3).

Using Hardy-type inequalities enables one to further improve the LT esti-
mates; see Section 7.

The diamagnetic inequality is one out of the two crucial ingredients in the
proof of Theorem 1.2. The other is an abstract CLR estimate for generators of
semigroups dominated by positive semigroups. To make the paper self-explanatory
we formulate this rather recent result, obtained by Rozenblum and Solomyak, in
Section 5.

An important application of eigenvalue estimates for Schrödinger operators
is to deduce asymptotic formulas for the eigenvalues when the coupling constant
q is present and it tends to infinity. The technology of getting the asymptotic
formulas from the estimates is well-established nowadays (see, e.g., [27] and [7,
8]), and what is required from the estimates is that they have correct order in
the coupling constant. For weakly singular magnetic fields such estimates were
obtained by Lieb (see [33]) and Melgaard-Rozenblum [23] in dimensions d ≥ 3,
and by Rozenblum-Solomyak [29] in dimension d = 2 (see also [30]). In the case
of a single A-B solenoid, the only existing estimate for the corresponding A-B
Schrödinger operator H(2)

AB − qV , by Balinsky, Evans and Lewis [4], deals with
a rather special case of a radially symmetric potential (or with one majorized
by a radially symmetric potential). There were no preceding results concerning
eigenvalue estimates for many solenoids.

Based upon the diamagnetic inequality we establish CLR-type estimates (i.e.,
estimates having correct order in coupling constant q) for H(d)

0 − qV for any of
the A-B configurations mentioned above. To achieve this, we derive Hardy-type
inequalities for each configuration, which allows us to carry over recent CLR-type
estimates for the negative eigenvalues of two-dimensional Schrödinger operators,
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with a regularizing positive (Hardy) term added, to the operators H(d)
0 − qV . The

Hardy-type inequalities are of interest by themselves and complement the recent
result by Balinsky [3]. For finitely many A-B solenoids we prove the Hardy-type
inequality by using a conformal mapping. This idea belongs to Balinsky but we
use another, more explicit realization, which gives a better control over the weight
function in the Hardy-type inequality. In the field of CLR-type estimates, sharp
constants are unknown, and at present the known values of constants lie far above
the expected ones. In applications to finding eigenvalue asymptotics, the values
of these constants are of no importance, and thus we do not try to obtain the
best values for our case either. Instead we demonstrate that the presence of the
magnetic field and its particular configuration may improve, via Hardy inequalities,
eigenvalue estimates, by compensating possible strong singularities or insufficient
decay of the electric potential. Similar effect takes place for LT estimates as well.

After obtaining CLR-type estimates, to deduce the large coupling constant
asymptotics for the eigenvalues of H(d)

0 −qV is a standard job. Only a few remarks
are needed.

The magnetic flux parameters αλ are nonintegers throughout the paper. If αλ

are integers, the resulting operator is gauge equivalent to the negative Laplacian in
L2(Rd). This, however, does not reflect itself in the LT inequality but the eigenvalue
estimates in Section 8 are no longer valid, as one can see, e.g., from the factor β−2

in formula (8.7).

2 The unperturbed Hamiltonian H
(d)
0

Choice of vector potential

As mentioned in the introduction, the vector potential A(x1, x2) = (A1(x1, x2),
A2(x1, x2), 0) associated with B is chosen such that

A1(x1, x2) = Im A(x1, x2) and A2(x1, x2) = Re A(x1, x2), (2.1)

where A(z) = A(x1, x2), z = x1 + ix2, is a meromorphic function having (only)
simple poles at λ ∈ Λ with residues αλ.

In the case where Λ is a finite set, say, Λ = {λ1, λ2, . . . , λN}, the function

A(z) =
N∑

j=1

αλj

z − λj

has the desired properties. In the general case, where Λ is a discrete set with in-
finitely many points, without finite limit points, Mittag-Leffler’s theorem guaran-
tees the existence of a meromorphic function with the afore-mentioned properties,
unique, up to an entire summand.

For an infinite regular lattice where all fluxes are equal to a noninteger α, we
can construct such a function A(z) explicitly. Indeed let Φ(z) be an entire function
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such that its set of (only simple) zeros coincide with Λ. Then one can take A(z) =
αΦ′(z)Φ(z)−1. In particular, the Weierstrass function σ(z) corresponding to the
lattice can serve as Φ(z), and then Φ′(z)Φ(z)−1 is the Weierstrass function ζ(z).

Magnetic quadratic forms

For A = (A1, A2) in (1.1) we observe that

A1, A2 ∈ L∞
loc(R

d \ Λd).

Let
Ωn =

(
B(0, n) × (−n, n)d−2

) \ (∪λ∈ΛB(λ, 1/n) × R
d−2
)
, n ≥ 2,

where B(λ, r) denotes the disk with center λ and radius r. We define on L2(Ωn)
(for each n ≥ 2) the form

h(d)
n [u, v] =

d∑

j=1

∫

Ωn

(
∂u

∂xj
+ iAju

)(
∂v

∂xj
+ iAjv

)
dx (2.2)

on the domain D(h(d)
n ) = H1

0 (Ωn). The form is closed since A1, A2 ∈ L∞(Ωn).
The associated self-adjoint, nonnegative operators are denoted by H(d)

n . These are
operators in L2(Ωn). It is convenient to extend them to zero in L2(Rd \Ωn), thus
getting operators in L2(Rd); keeping the same notation for extended operators
does not create misunderstanding.

Define, in addition, the (closed) form l
(d)
n with the same form expression and

domain as h
(d)
n but with A1 = A2 = 0. The associated self-adjoint, nonnegative

operators are denoted by L(d)
n .

Define now the form h(d) by

h(d)[u, v] = h(d)
n [u, v] if u, v ∈ D(h(d)

n ),
D(h(d)) = ∪nD(h(d)

n ) = ∪nH
1
0 (Ωn).

Lemma 2.1 The form h(d) is closable.

Proof. According to the definition, the form h(d) is closable if and only if any
sequence {un}, un ∈ D(h(d)), for which

lim
n→∞ ‖un‖L2 = 0 and lim

n,m→∞h(d)[un − um] = 0, (2.3)

satisfies limn→∞ h(d)[un] = 0. First observe that (2.3) implies

C := sup
n

h(d)[un]1/2 <∞. (2.4)

Take ε > 0 and choose n0 such that

h(d)[un − um] ≤ ε when n,m ≥ n0. (2.5)
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Set, moreover, K = Ωn0 ⊂ R
d \ Λd such that suppun0 ⊂ K. In view of (2.3),

∫

K

|(∇ + iA)(un − um)|2 dx ≤ h(d)[un − um] −→ 0 as n,m→ ∞, (2.6)

∫

K

|un|2 dx −→ 0 as n→ ∞, (2.7)

and, since A is bounded on K,
∫

K

|Aun|2 dx −→ 0 as n→ ∞. (2.8)

Now,
∣∣∣∣∣

(∫

K

|A(un − um)|2 dx
)1/2

−
(∫

K

|∇(un − um|2 dx
)1/2

∣∣∣∣∣

≤
(∫

K

|(∇ + iA)(un − um)|2 dx
)1/2

. (2.9)

According to (2.8), the first term on the left-hand side of the latter inequality
tends to zero as n,m → ∞ and, due to (2.6), the same holds for the right-hand
side. Thus,

∫

K

|un − um|2 + |∇(un − um)|2 dx −→ 0 as n,m→ ∞.

Since the form of the classical Dirichlet Laplacian is closable it follows from the
latter relation, in conjunction with (2.7) that

∫

K

|∇un|2 dx→ 0,
∫

K

|un|2 dx→ 0, as n→ ∞. (2.10)

Now,

h(d)[un] = h(d)[un, un − un0 ] + h(d)[un, un0 ]
≤ h(d)[un]1/2h(d)[un − un0 ]

1/2 + |h(d)[un, un0 ]|. (2.11)

It follows from (2.4) and (2.5) that

h(d)[un]1/2h(d)[un − un0 ]
1/2 ≤ Cε1/2 when n ≥ n0. (2.12)

Since A is bounded on K we infer from (2.10) and (2.8) that

h(d)[un, un0 ] =
∫

K

(∇ + iA)un(∇ + iA)un0 dx→ 0 as n→ ∞. (2.13)

Substitution of (2.12)-(2.13) into (2.11) shows that limn→∞ h(d)[un] = 0 as desired.
�
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We denote the closure of h(d) by h
(d)

and the associated semi-bounded (from
below), self-adjoint operator by H(d)

0 . This is, in fact, the Friedrichs extension of
the symmetric operator (1.2) defined initially on C∞

0 (Rd\Λd). The introduction of
‘approximating’ forms, however, is required for proving the diamagnetic inequality
later. We define l(d) in a similar way, viz.

l(d)[u, v] = l(d)
n [u, v] if u, v ∈ D(l(d)

n ),
D(l(d)) = ∪nD(l(d)

n ) = ∪n≥2H
1
0 (Ωn).

Then l(d) is closable. The closure l
(d)

has domain D(l
(d)

) = H1(Rd). The associated
nonnegative, self-adjoint operator is just the negative Laplacian in L2(Rd); we
suppress d and denote it by L0.

3 Semigroup criterion

Throughout this section H denotes our Hilbert space L2(Rd). For a given u ∈ H
we denote by u := Reu− iImu the conjugate function of u. By |u| we denote the

absolute value of u (i.e., the function x �→ |u(x)| :=
√
u(x) · u(x)) and by signu

the function defined by

signu(x) =

{
u(x)
|u(x)| if u(x) �= 0,
0 if u(x) = 0.

Let s be a sesquilinear form which satisfies

D(s) is dense in H, (3.1)

Re s[u, u] ≥ 0, ∀u ∈ D(s), (3.2)

|s[u, v]| ≤ C‖u‖s‖v‖s, ∀u, v ∈ D(s), (3.3)

where C is a constant and ‖u‖s =
√

Re s[u, u] + ‖u‖2, and, moreover,

〈D(s), ‖ · ‖s〉 is a complete space. (3.4)

Definition 3.1 Let K and L be two subspaces of H. We shall say that K is an ideal
of L if the following two assertions are fulfilled:
1) u ∈ K implies |u| ∈ L.
2) If u ∈ K and v ∈ L such that |v| ≤ |u| then v · signu ∈ K.

Let s and t be two sesquilinear forms both of which satisfy (3.1)-(3.4). The
semigroups associated to corresponding self-adjoint operators S, T will be denoted
by e−tS and e−tT , respectively.

The following result was established by Ouhabaz [25, Theorem 3.3 and its
Corollary].
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Theorem 3.2 (Ouhabaz’96) Assume that the semigroup e−tT is positive. The fol-
lowing assertions are equivalent:

1) |e−tSf | ≤ e−tT |f | for all t ≥ 0 and all f ∈ H.
2) D(s) is an ideal of D(t) and

Re s[u, |v|signu] ≥ t[|u|, |v|] (3.5)

for all (u, v) ∈ D(s) ×D(t) such that |v| ≤ |u|.
3) D(s) is an ideal of D(t) and

Re s[u, v] ≥ t[|u|, |v|] (3.6)

for all u, v ∈ D(s) such that u · v ≥ 0.

The following lemma is useful when one wishes to apply the criteria in The-
orem 3.2.

Lemma 3.3 Let Ω ⊂ R
d be an open set and u, v ∈ H1(Ω) be functions satisfying

u(x) · v(x) ≥ 0 for a.e. x in Ω. Then

1. Im
(

∂u
∂xj

· v
)

= |v| Im
(

∂u
∂xj

· signu
)
.

2. |v| Im
(

∂u
∂xj

· signu
)

= |u| Im
(

∂v
∂xj

· signu
)
.

Proof. Let χ{u=0} denote the characteristic function of the set { x |u(x) = 0}.
Since (∂u/∂xj) · χ{u=0} = 0, we have that

∂u

∂xj
· v =

∂u

∂xj
· v · v · u

|u| · |v|χ{u�=0}χ{v �=0} = |v| · ∂u
∂xj

· u|u| · χ{u�=0}.

By taking the imaginary part on both sides of the latter equality, we obtain that

Im
(
∂u

∂xj
· v
)

= |v| Im
(
∂u

∂xj
· signu

)
,

which verifies the first assertion. To prove the second assertion we start from

|v| · u = |v| · u · v · u
|u| · |v|χ{u�=0}χ{v �=0} = |u| · v.

Hence,
∂|v|
∂xj

· u+ |v| · ∂u
∂xj

=
∂|u|
∂xj

· v + |u| · ∂v
∂xj

.

We multiply both sides by signu = (u/|u|)χ{u�=0} and take the imaginary parts
on both sides to obtain

|v| Im
(
∂u

∂xj
· signu

)
= Im

(
∂v

∂xj
· uχ{u�=0}

)
= Im

(
∂v

∂xj
· u
)
.

The latter in combination with the first assertion (with u substituted by v and
vice-versa) shows the second assertion. �



988 M. Melgaard, E.-M. Ouhabaz and G. Rozenblum Ann. Henri Poincaré

4 Diamagnetic inequality for H
(d)
0

The usual diamagnetic inequality is established for vector potentials which belong
to L2

loc (see, e.g., [2]). In this section we establish the diamagnetic inequality for
the Schrödinger operator H(d)

0 , i.e. when Aj �∈ L2
loc, j = 1, 2.

Denote by e−tH(d)
n (resp. e−tL(d)

n ) the semigroup associated with H
(d)
n (resp.

L
(d)
n ) introduced in Section 2. For each n the diamagnetic inequality holds for these

pairs of semigroups.

Proposition 4.1 The inequality

|e−tH(d)
n f | ≤ e−tL(d)

n |f |

holds for all t ≥ 0 and all f ∈ L2(Ωn) (n ≥ 2).

Proof. We give the proof for d = 2 and suppress the upper index in h
(2)
n . With

a few obvious modifications the proof for d = 3 is the same. By the domination
criterion in Theorem 3.2, assertion 3, it suffices to prove that

Re hn[u, v] ≥ ln[|u|, |v|] (4.1)

for all u, v ∈ D(hn) = H1
0 (Ωn) obeying u · v ≥ 0.

Let u, v ∈ H1
0 (Ωn) be such that u · v ≥ 0. We have that

I1 := Re
∫

Ωn

{
∂u

∂x1
· ∂v
∂x1

+
∂u

∂x2
· ∂v
∂x2

}
dx

=
∫

Ωn

{
Re
(
∂u

∂x1
· signu

)
Re
(
∂v

∂x1
· sign v

)

+ Re
(
∂u

∂x2
· signu

)
Re
(
∂v

∂x2
· sign v

)}
dx

+
∫

Ωn

{
Im
(
∂u

∂x1
· signu

)
Im
(
∂v

∂x1
· sign v

)

+ Im
(
∂u

∂x2
· signu

)
Im
(
∂v

∂x2
· sign v

)}
dx

=
∫

Ωn

{
Re
(
∂u

∂x1
· signu

)
Re
(
∂v

∂x1
· sign v

)

+ Re
(
∂u

∂x2
· signu

)
Re
(
∂v

∂x2
· sign v

)

+ Im
(
∂u

∂x1
· signu

)
Im
(
∂u

∂x1
· signu

) |v|
|u|χ{u�=0}

+ Im
(
∂u

∂x2
· signu

)
Im
(
∂u

∂x2
· signu

) |v|
|u|χ{u�=0}

}
dx,
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where we applied Lemma 3.3, part 2, in the last equality. From [24, Lemma 4.1]
we have that

∂|u|
∂x1

= Re
(
∂u

∂x1
signu

)
, ∀u ∈ H1(Ωn) ⊃ H1

0 (Ωn).

Using this, we find that

I1 =
∫

Ωn

{
∂|u|
∂x1

· ∂|v|
∂x1

+
∂|u|
∂x2

· ∂|v|
∂x2

+
[
Im
(
∂u

∂x1
signu

)]2 |v|
|u|χ{u�=0}

+
[
Im
(
∂u

∂x1
signu

)]2 |v|
|u|χ{u�=0}

}
dx. (4.2)

Next, let u, v ∈ H1
0 (Ωn) with u · v ≥ 0. Using Reu ∂v

∂x1
= Reu ∂v

∂x1
we have that

I2 := Re
∫

Ωn

{
−iA1

∂u

∂x1
v − iA2

∂u

∂x2
v + iA1u

∂v

∂x1
+ iA2u

∂v

∂x2

}
dx

=
∫

Ωn

{
− Im (−iA1) Im

(
∂u

∂x1
v

)
− Im (−iA2) Im

(
∂u

∂x2
v

)

− Im (iA1) Im
(
u
∂v

∂x1

)
− Im (iA2) Im

(
u
∂v

∂x2

)}
dx.

Using the first part of Lemma 3.3 we may rewrite I2 as

I2 =
∫

Ωn

{
− Im (−iA1) Im

(
∂u

∂x1
signu

)
|v| − Im (−iA2)

× Im
(
∂u

∂x2
signu

)
|v| − Im (iA1) Im

(
∂v

∂x1
sign v

)
|u|

− Im (iA2) Im
(
∂v

∂x2
sign v|u|

)}
dx.

Next we apply the second part of Lemma 3.3 to the last two terms in I2. It follows
that

I2 =
∫

Ωn

{
(A1 −A1) Im

(
∂u

∂x1
signu

)
|v|

+(A2 −A2) Im
(
∂u

∂x2
signu

)
|v|
}
dx = 0. (4.3)

For the last term in hn, we have that

I3 := Re
∫

Ωn

(A2
1 +A2

2)u · vdx =
∫

Ωn

(A2
1 +A2

2)|u| |v|dx (4.4)

for all u, v ∈ H1
0 (Ωn) such that u · v ≥ 0.
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Since Re hn[u, v] =
∑3

j=1 Ij , we obtain from (4.2), (4.3), and (4.4) that

Re hn[u, v] =
∫

Ωn

{
∂|u|
∂x1

· ∂|v|
∂x1

+
∂|u|
∂x2

· ∂|v|
∂x2

+
[
Im
(
∂u

∂x1
signu

)]2

×|v|
|u|χ{u�=0} +

[
Im
(
∂u

∂x1
signu

)]2 |v|
|u|χ{u�=0} + (A2

1 +A2
2)|u| |v|

}
dx.

In this expression, the sum of the last three terms is nonnegative, so we infer that

Re hn[u, v] ≥
∫

Ωn

{
∂|u|
∂x1

· ∂|v|
∂x1

+
∂|u|
∂x2

· ∂|v|
∂x2

+ (A2
1 +A2

2)|u| |v|
}

≥
∫

Ωn

{
∂|u|
∂x1

· ∂|v|
∂x1

+
∂|u|
∂x2

· ∂|v|
∂x2

}
= ln[|u|, |v|]

for all u, v ∈ H1
0 (Ωn) obeying u · v ≥ 0. This verifies (4.1). �

The semigroups associated with H
(d)
0 and L0, introduced in Section 2, are

denoted by e−tH
(d)
0 and e−tL0 , resp. By means of Proposition 4.1 we are ready to

prove Theorem 1.1, i.e., the diamagnetic inequality for the operator H(d)
0 .

Proof of Theorem 1.1. Bear in mind that when s1 and s2 are closed forms bounded
from below then s1 ≥ s2 means that D(s1) ⊂ D(s2) and s1[u, u] ≥ s2[u, u] for
u ∈ D(s1). A sequence {sn} of closed forms bounded from below is nonincreasing
if sn ≥ sn+1 for all n.

The forms {h(d)
n } defined in (2.2) on the domains D(h(d)

n ) = H1
0 (Ωn) in

L2(Ωn), n ≥ 2, compose a nonincreasing sequence

· · · ≤ h
(d)
n+1 ≤ h(d)

n ≤ h
(d)
n−1 ≤ . . . ,

of closed, non-densely defined forms in L2(Rd). The monotone convergence theorem
for closed forms is also valid for non-densely defined forms [32, Theorem 4.1].
Hence, the latter theorem in conjunction with Lemma 2.1 yields that operators
H

(d)
n corresponding to forms h

(d)
n (extended by zero outside Ωn) converge in strong

resolvent sense to H0
(d) or, equivalently,

e−tH
(d)
0 = s− lim

n→∞ e−tH(d)
n . (4.5)

A similar argument yields

e−tL
(d)
0 = s− lim

n→∞ e−tL(d)
n . (4.6)
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Thus we can pass to the limit n→ ∞ in the diamagnetic inequality for operators
H

(d)
n , L

(d)
n , Proposition 4.1 and therefore

∣∣∣e−tH
(d)
0 f

∣∣∣ = lim
n→∞

∣∣∣e−tH(d)
n f

∣∣∣ ≤ lim
n→∞ e−tL(d)

n |f | = e−tL0|f |

which proves the assertion. �

Remark 4.2 Our proof of the diamagnetic inequality also applies to the case where
we have another metric, that is, the result holds also for operators of the type
(∇ + iA)∗M(x)(∇ + iA) where M(x) = (mjk(x)) is a symmetric matrix with
real-valued and bounded measurable coefficients (satisfying the classical elliptic-
ity condition). The semigroup generated by this operator is dominated by the
semigroup generated by the elliptic operator ∇∗M(x)∇.

5 Abstract CLR eigenvalue estimates and semigroup domination

In this section we recall Rozenblum’s and Solomyak’s abstract CLR estimate for
generators of positively dominated semigroup.

Let Ω be a space with σ-finite measure µ, L2 = L2(Ω, µ). Let T be a non-
negative, self-adjoint operator in L2, generating a positivity preserving semigroup
Q(t) = e−tT . We suppose also that Q(t) is an integral operator with bounded
kernel Q(t;x, y) subject to

MT (t) := ess sup xQ(t;x, x), MT (t) = O(t−β) as t→ 0 for some β > 0. (5.1)

We will write T ∈ P if T satisfies the afore-mentioned assumptions2.
If T ∈ P , the operator Tµ = T + µ also belongs to P . The corresponding

semigroup is QTµ(t) = e−µtQT (t) and thus MTµ(t) = e−µtMT (t).
We say that the semigroup P (t) = e−tS is dominated by Q(t) if the diamag-

netic inequality holds, i.e., if any u ∈ L2 satisfies

|P (t)u| ≤ Q(t)|u| a.e. on Ω. (5.2)

In the latter case we write S ∈ PD(T ).
Let now G be a nonnegative, continuous, convex function on [0,∞). To such

a function we associate

g(λ) = L(G)(λ) :=
∫ ∞

0

z−1G(z)e−z/λ dz, λ > 0, (5.3)

provided the latter integral converges. In other words, g(1/λ) is the Laplace trans-
form of z−1G(z).

2Although the diagonal in Ω × Ω may be a set with measure zero in Ω × Ω, the semigroup
property defines Q(t, ·, ·) as a function in L∞(Ω), see [28].
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For a nonnegative, measurable function V such that the operator of multi-
plication by V is form-bounded with respect to T with a bound less than one, we
associate the operators T − V , S − V by means of quadratic forms. The number
of negative eigenvalues (counting multiplicity) of T −V is denoted by N−(T −V );
if there is some essential spectrum below zero, we set N−(T − V ) = ∞.

Rozenblum and Solomyak [28, Theorem 2.4] have established the following
abstract CLR estimate .

Theorem 5.1 Let G, g and T ∈ P be as above and suppose that
∫∞

a MT (t) dt <∞
for some a > 0. If S ∈ PD(T ) then

N−(S − V ) ≤ 1
g(1)

∫ ∞

0

dt

t

∫

Ω

MT (t)G(tV (x)) dx, (5.4)

as long as the expression on the right-hand side is finite.

The assumption that V is form-bounded with respect to T with a bound
smaller than one in conjunction with S ∈ PD(T ) implies that V is form-bounded
with respect to S with a bound less than one, thus N−(S − V ) is well defined. In
Section 6 we shall apply Theorem 5.1 to prove the LT inequality for H(d)

0 − V .
Rozenblum has also developed an abstract machinery which, in our situation,

allows us to carry over any, sufficiently regular, bound for N−(T − qV ) to N−(S−
qV ), as soon as the diamagnetic inequality (5.2) is valid for S, T [30, Theorem 4].
We customize it to our situation.

Theorem 5.2 Assume that T ∈ P, S ∈ PD(T ) and V ≥ 0 is a measurable function
infinitesimally form-bounded with respect to T . Suppose that, for some p > 0,

N−(T − qV ) ≤ Kqp (5.5)

for all q > 0 and some positive constant K. Then

N−(S − qV ) ≤ eCpKq
p, (5.6)

with a constant Cp which depends only on p.

6 Lieb-Thirring inequality for H
(d)
0 − V

Having the diamagnetic inequality in Theorem 1.1 as well as the abstract CLR
estimate in Theorem 5.1 at our disposal, we are ready to prove Theorem 1.2.

Before proceeding with the proof, observe that the assumption V ∈ Lp(Rd),
p > 1 for d = 2 and p ≥ 3/2 for d = 3, in Theorem 1.2 implies that V is infinitesi-
mally L0- form-bounded; Theorem 1.1 then implies that V is infinitesimally H(d)

0 -
form-bounded. Thus, according to the KLMN Theorem, the form sum H

(d)
0 − V

generates a lower semi-bounded, self-adjoint operator in L2(Rd).
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Proof of Theorem 1.2. As usual, it suffices to prove the estimate for V ∈ L1 ∩L∞

and then approximate V ∈ Lγ+ d
2 by such functions. It is well known that L0 ∈ P

and the kernel of its semigroup e−tL0 on the diagonal is given by Q(t;x, x) =
(4π)−d/2t−d/2. From Theorem 1.1 we have that H(d)

0 ∈ PD(L0) and the kernel P
of its semigroup obeys P (t;x, x) ≤ (4π)−d/2t−d/2.

Let µ > 0 and define the auxiliary operators Sµ = H
(d)
0 +µ and Tµ = L0 +µ.

Now L0 ∈ P and H
(d)
0 ∈ PD(L0) imply that Tµ ∈ P and Sµ ∈ PD(Tµ). For

the kernel Pµ(t;x, x) = e−µtP (t;x, x) of the semigroup generated by Sµ we have
therefore that |Pµ(t;x, x)| ≤ Qµ(t;x, x) = e−µtQ(t;x, x) = (4π)−d/2t−d/2e−µt.
Thus we may apply Theorem 5.1 which yields

N−(Sµ − V ) ≤ 1
(4π)d/2

1
g(1)

∫ ∞

0

dt

t

∫

Rd

t−d/2e−µtG(tV (x)) dx (6.1)

for any nonnegative convex function G(s) of subexponential growth, vanishing near
zero (which ensures that the integral in (6.1) converges). We will not evaluate the
integral in (6.1) as one might be inclined to do. Instead, for γ > 0, we recall that
(see, e.g., [21])

LTγ,d =
∑

j

|νj(H
(d)
0 − V )|γ = −

∫
µγ dNµ

= γ

∫ ∞

0

µγ−1N−(Sµ − V ) dµ. (6.2)

We substitute (6.1) into (6.2) and get that

LTγ,d ≤ 1
(4π)d/2

γ

g(1)

∫

Rd

dx

∫ ∞

0

µγ−1 dµ

∫ ∞

0

t−d/2e−µtG(tV (x))
dt

t
.

Making first the change of variables s = V (x)t and then the change of variables
τ = µ/V (x) we obtain that

LTγ,d ≤ L̃γ,d

∫

Rd

V (x)γ+ d
2 dx,

where
L̃γ,d =

1
(4π)d/2

γ

g(1)

∫ ∞

0

∫ ∞

0

s−
d
2−1e−τsG(s)τγ−1 ds dτ.

Now,
∫∞
0
τγ−1e−τs dτ = s−γΓ(γ), where Γ(γ) is the Gamma-function evaluated

at γ. Choose G(s) = (s− k)+ for some k > 0; this is Lieb’s original choice. Then
∫ ∞

0

s−γs−
d
2−1(s− k)+ ds =

1
(
γ + d−2

2

) (
γ + d

2

)
kγ d

2
.

Moreover,

g(1) =
∫ ∞

1

e−kss−2 ds ≥ e−k

k
− 2
k
g(1),
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i.e., 1/g(1) ≤ ek(k + 2). Thus

L̃γ,d ≤ Cγ,d :=
Γ(γ)ek(k + 2)

(4π)d/2(γ + d−2
2 )(γ + d

2 )kγ+ d−2
2

. (6.3)

The optimization problem for the expression in (6.3) does not admit an exact
solution. For the three most interesting values of γ, namely 1, 1/2 and 3/2, one
easily finds the numerical values of Cγ,d given in the Theorem. �

Remark 6.1 In the case of a single A-B solenoid, A. Laptev pointed out to the au-
thors that the LT inequality can be derived without using the diamagnetic inequal-
ity [19]. His argument goes as follows. When A = α(−x2/|x|2, x1/|x|2) we may use
the decomposition L2(R2) = L2(R+, r dr)⊗L2(S1) = ⊕n∈Z{L2(R+, r dr)[einθ/2π]}
([·] denotes the linear span) to express the A-B Schrödinger operator as

H
(2)
AB = ⊕n∈Z{Hn ⊗ In},

where Hn is the Friedrichs operator in L2(R+, r dr) associated with the quadratic
form

hn[un] =
∫ ∞

0

(
|u′n(r)|2 +

(n+ α)2

r2
|un(r)|2

)
r dr.

Thus, with a slight abuse of notation, the quadratic form associated with HAB is
given by h[u] =

∑
n∈Z

hn[un]. Taking α ∈ (0, 1/2), we note that |n+α|2 ≥ |1−α|2
provided n �= 0. As a consequence, we have that

hn[un] ≥ |1 − α|2
∫ ∞

0

(
|u′n(r)|2 +

n2

r2
|un(r)|2

)
r dr = |1 − α|2ln[un],

where l[u] =
∑

n∈Z
ln[un] is the quadratic form of the negative Laplacian in L2(R2).

In conclusion, h[u] ≥ |1 − α|2l[u]. The latter inequality immediately implies that
the usual LT inequalities for −∆ − V carry over to the A-B Schrödinger operator
H

(2)
AB − V with a constant L2,γ/|1 − α|2, where L2,γ is the usual Lieb-Thirring

constant. A similar reasoning was used in [4]. This argument, however, does not
work for many A-B solenoids.

7 Hardy-type inequalities

In order to establish eigenvalue estimates in the two-dimensional case for various
configurations of A-B solenoids (or magnetic vortices), we require certain Hardy-
type inequalities which we will obtain in this section. Generally, a Hardy-type
inequality is an estimate where the integral involving the gradient of the function
majorizes the weighted integral of the square of the function itself.

The classical Hardy inequality
∫

Rd

|u(x)|2
|x|2 dx ≤ const.

∫

Rd

|∇u(x)|2 dx, u ∈ C∞
0 (Rd \ {0}),
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does not hold for d = 2. It was discovered by Laptev and Weidl [17], however,
that the presence of a magnetic field can improve this situation. In particular, if
the gradient ∇ is replaced by the “magnetic gradient” ∇ + iA, where A is the
standard A-B vector potential (see (7.5) below), and the flux α = 1

2π

∫
S1 A dx is

noninteger then ([17, Theorem 3])
∫

R2

|u(x)|2
|x|2 dx ≤ ρ(α)−2

∫

R2
|(∇ + iA)u(x)|2 dx, u ∈ C∞

0 (R2 \ {0}), (7.1)

where ρ(α) = mink∈Z |k − α|.
We are going to find analogies of this fact for configurations of magnetic

solenoids considered in Section 2. In what follows, we will freely interchange real
and complex pictures in description of our magnetic object. Thus x = (x1, x2), z =
x1 + ix2, A = (A1, A2),A = (A2 + iA1), dx = 1

2dzdz etc.

Finitely many solenoids

Let Λ = {λ1, λ2, . . . , λJ} with λj = (λ1,j , λ2,j). For finitely many A-B solenoids
located at the points of Λ the corresponding A-B vector potential is given by

A(x) =
J∑

j=1

αj

|x− λj |2 (−x2 + λ2,j , x1 − λ1,j) (7.2)

for x = (x1, x2) ∈ R
2 \ Λ and αj being the flux through the jth solenoid.

The aim is to establish the following Hardy-type inequality.

Proposition 7.1 Suppose that αj �∈ Z, j = 1, 2, . . . , J , and that αs :=
∑J

j=1 αj �∈ Z.
Define

W (x) = min{ρ(αj)2, ρ(αs)2}
J∑

j=1

|x− λj |−2. (7.3)

Then there exists a constant C such that
∫

R2
W (x)|u(x)|2 dx ≤ C

∫

R2
|(∇ + iA)u(x)|2 dx (7.4)

is valid for all u ∈ C∞(R2 \ Λ) as long as the integral on the right-hand side is
finite.

Note that the constant C above may depend on the configuration of the
solenoids.

We will mostly use this and other similar inequalities for u ∈ C∞
0 (R2 \ Λ).

Sometimes, however, we need the compact support condition dropped. Moreover,
we want to stress that, unlike the nonmagnetic case, the magnetic Hardy inequal-
ities hold without compactness of support; this simple observation was somehow
overlooked in [17, 3].

We begin by showing a slightly modified version of [17, Theorem 3].
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Lemma 7.2 Assume that α0 �∈ Z and let

A0(x) =
α0

|x|2 (−x2, x1) (7.5)

Then

ρ(α0)2
∫

B(0,R)

|u(x)|2
|x|2 dx ≤

∫

B(0,R)

|(∇ + iA0)u(x)|2 dx (7.6)

holds for any u ∈ C∞(B(0, R) \ {0}) as long as the integral on the right-hand side
is finite.

Proof. In polar co-ordinates (r, θ), we have that

∇ + iA0 = −er(∂/∂r) + (1/r)eθ[(−∂/∂θ) + iα0]. (7.7)

Therefore, for any function f(r)einθ , n ∈ Z, we have that
∫

B(0,R)

|(∇ + iA0)f(r)einθ |2 r drdθ

=
∫

B(0,R)

(
|f ′

r|2 + (1/r2)|f(r)|2(n+ α0)2
)
r drdθ

≥
∫

B(0,R)

1
r2

|f(r)|2(n+ α0)2 r drdθ

≥ ρ(α0)2
∫

B(0,R)

|f(r)einθ |2
r2

r drdθ.

This proves (7.6) for spherical functions and therefore for any u ∈ C∞(B(0, R) \
{0}) since the left-hand side and the right-hand side of (7.6) are both sums of
contributions of spherical functions. �

In a similar way we establish the following result.

Lemma 7.3 Suppose that αs :=
∑
αj �∈ Z. Then, provided R > 0 is sufficiently

large, ΩR = {|x| > R}, the inequality
∫

ΩR

|(∇ + iA)u(x)|2 dx ≥ ρ(αs)2
∫

ΩR

|u(x)|2
|x|2 dx (7.8)

holds for any u ∈ C∞(ΩR) as long as the integral on the left-hand side is finite.

Proof. First we note that there exists a function ϕ such that A(x) − As(x) =
(∇ϕ)(x),

As(x) =
αs

|x|2 (−x2, x1), (7.9)

for any x ∈ ΩR provided R > 0 is large enough. Since the right-hand side of (7.8)
is gauge invariant, it suffices to show (7.8) for the vector potential As. Now we
switch to polar co-ordinates and repeat the reasoning in Lemma 7.2. �
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Lemma 7.4 (Local Hardy inequality) Let D be a bounded, simply-connected domain
in C with smooth boundary and let z0 ∈ D. Let A(z) = A2(z)+iA1(z), z = x1+ix2,
be a (complex) magnetic vector potential such that A(z) is analytic in D \ {z0}
and has a simple pole at z0 with residue equal to µ0, and let A = (A1, A2). Then,
there exists a constant C > 0 such that for any u ∈ C∞(D \ {z0}),

∫

D

|u(z)|2
|z − z0|2 dx ≤ ρ(µ0)−2C

∫

D

|(∇ + iA)u(z)|2 dx, (7.10)

as long as the integral on the right-hand side is finite.

Proof. Let w = y1 + iy2 = F (z), F : D → B(0, 1) be a conformal mapping of D
onto the unit disk B(0, 1) so that z0 is mapped to zero, and let ũ(y) = ũ(w) =
u(F−1(w)). Since D has a smooth boundary, F is smooth up to the boundary [26,
p. 49], together with its inverse. For later purpose we note that there exists c such
that

c

|z − z0| ≤
∣∣∣∣∣
F

′
z(z)
F (z)

∣∣∣∣∣ . (7.11)

Indeed, since F is smoothly invertible, F ′ is bounded away from 0. Therefore F ′/F
has the order of 1/F near z0. Since F has a simple zero at z0, it has the order of
|z − z0|, which verifies (7.11).

Let ω
A

denote the differential 1-form A1(z)dx1 +A2(z)dx2 and let AF (w) =
(AF

1 (w), AF
2 (w)) be the transformed magnetic vector potential in B(0, 1) such that

F ∗(ωAF ) = ωA (F ∗ denotes the pull-back), i.e.,

AF
1 (w)dy1 +AF

2 (w)dy2 = A1(z)dx1 +A2(z)dx2.

In particular, AF has a simple pole at the origin with residue equal to µ0. Since
F is a conformal mapping it follows that

∫

D

|(∇x + iA)u(x)|2 dx =
∫

B(0,1)

|(∇y + iAF )ũ(y)|2 dy (7.12)

for any u ∈ C∞(D).
Next we gauge away the regular part of AF = AF

2 + iAF
1 (as we did in the

proof of Lemma 7.3). From Lemma 7.2 we immediately get that
∫

B(0,1)

|ũ(y)|2
|y|2 dy ≤ ρ(µ0)−2

∫

B(0,1)

|(∇y + iA0)ũ(y)|2 dy, (7.13)

where A0 is the pure A-B vector potential given in (7.5). Finally, we return to the
domain D by making the inverse transform F−1 : B(0, 1) → D. Clearly,

∫

B(0,1)

|ũ(w)|2
|w|2 dy =

∫

D

|u(z)|2
∣∣∣∣∣
F

′
z(z)
F (z)

∣∣∣∣∣

2

dx. (7.14)

Using (7.11) in conjunction with (7.12) and (7.13) we arrive at (7.10). �
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We are ready to give the proof of Proposition 7.1

Proof of Proposition 7.1. Let B(0, R) be a disk centered at the origin with a radius
R > 0 so large that all the points of Λ are in B(0, R). Cover the disk B(0, R) with
simply connected domains Ωj having smooth boundaries in such a way that Ωj

contains λj but no other point from Λ.3 Let κ be the multiplicity of the covering
of B(0, R) and let ΩR be the exterior of B(0, R).

We clearly have that
∫

R2
|(∇ + iA)u(x)|2 dx

≥ (1 + κ)−1




∫

ΩR

|(∇ + iA)u(x)|2 dx+
J∑

j=1

∫

Ωj

|(∇ + iA)u(x)|2 dx


 .

The first term on the right-hand side is estimated by the inequality in Lemma 7.3
and each of the terms in the sum on the right-hand side is estimated by the local
Hardy inequality in Lemma 7.4. In this way, we obtain that

∫

R2
|(∇ + iA)u(x)|2 dx

≥ ρ(αs)2
∫

ΩR

|u(x)|2
|x|2 dx+ (1 + κ)−1

J∑

j=1

cjρ(αj)2
∫

Ωj

|u(x)|2
|x− λj |2 dx.

Since, inside Ωj , j > 0, we have |x − λj |−2 ≥ C
∑J

k=1 |x − λk|−2, and inside ΩR,
we have |x|−2 ≥ C

∑J
k=1 |x− λk|−2, this proves (7.4). �

Remark 7.5 Using a conformal mapping was inspired by A. Balinsky [3]. He has
recently derived a Hardy-type inequality for an A-B Schrödinger operator on gen-
eral punctured domains. His result, however, does not give sufficient control over
the Hardy weight, in particular, it does not guarantee strict positivity of the weight
everywhere. This does not fit our purpose and, consequently, we have derived a
slightly modified Hardy-type inequality.

The inequality (7.4) has a shortcoming: if just one of the fluxes is very close to
an integer, the weight on the left-hand side deteriorates. The following version of
the Hardy inequality takes care of this situation: if the sum of fluxes is non-integer,
we can exclude any solenoids we wish from the expression in (7.3).

3To construct such a covering, take, e.g., a direction not parallel to any of the straight lines
passing through pairs of the points λj . Then one can draw straight lines parallel to this direction,
which cut B(0, R) into pieces, each of which contains only one of the points λj . Extending
these pieces slightly to domains with smooth boundaries we obtain the desired covering, with
multiplicity κ = 2.
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Proposition 7.6 Suppose that αj �∈ Z, j = 1, 2, . . . , J , and that αs :=
∑J

j=1 αj �∈ Z.
Let J0 be a subset in {1, . . . , J}. Set

W (x) = min
{j∈J0}

{ρ(αj)2, ρ(αs)2}
∑

j∈J0

|x− λj |−2, (7.15)

if J0 is nonempty, and

W (x) = ρ(αs)2(1 + |x|2)−1. (7.16)

otherwise. Then there exists a constant C such that (7.4) is satisfied for any u ∈
C∞(R2 \ Λ).

Proof. We consider the case of empty J0 first. Let, as in the proof of Proposi-
tion 7.1, the ball B(0, R) contain all points zj . Let ϕ, ψ ≥ 0 be smooth functions,
ϕ2 + ψ2 = 1, ϕ ∈ C∞

0 (B(0, 3R)), 1 − ϕ = 0 outside B(0, R), |∇ϕ|, |∇ψ| < 2/R.
Then for any u,

JA(u) :=
∫

R2
|(∇ + iA)u(x)|2 dx

= JA(ϕu) + JA(ψu) −
∫

R<|x|<3R

(|∇ϕ|2 + |∇ψ|2)|u|2 dx

≥ JA(ϕu) − 8R−2

∫

R<|x|<3R

|u|2 dx. (7.17)

Now we use the well-known fact (see, e.g., [33, page 2]) that (for any magnetic
potential A),

JA(v) ≥
∫

|∇|v||2dx. (7.18)

Applying (7.18) to the function v = ϕu and substituting the result into (7.17), we
obtain

JA(u) ≥
∫

|∇|ϕu||2dx− 8R−2

∫

R<|x|<2R

|u|2dx. (7.19)

It follows from (7.6) that u ∈ L2
loc as soon as JA(u) is finite. At the same time,

(7.18)–(7.19) imply that ∇|ϕu| ∈ L2. Thus |ϕu| belongs to the Sobolev space
H1

0 (B(0, 3R)) and we can apply the Friedrichs inequality to the first integral in
(7.19). The second term can be estimated from both sides by

∫
R<|x|<3R

|x|−2|u|2dx.
Thus we have

JA(u) ≥ C1

∫
|ϕu|2 dx− C2

∫

R<|x|<3R

|x|−2|u|2 dx

≥ C1

∫

BR

|u|2 dx− C2

∫

ΩR

|x|−2|u|2 dx.
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For some ε > 0, multiply the latter inequality by ε and add to (7.8), multiplied by
1 − ε. We obtain

JA(u) ≥ C1ε

∫

B(0,R)

|u|2 dx+ (ρ(αs)2(1 − ε) − C2ε)
∫

ΩR

|x|−2|u|2 dx. (7.20)

Choosing ε small enough (say, ε = ρ(αs)2/(4C2)), we arrange that the constant be-
fore the last integral in (7.20) is greater than C3ρ(αs)2 and we obtain the required
inequality. In the case of nonempty J0, we split JA(u) = 1

2JA(u) + 1
2JA(u). For

first term here we use the inequality we have just established. To estimate from
below the second term, we act as in the proof of Proposition 7.1, i.e., consider
the covering of the disk B(0, R) by domains Ωj but we write the local Hardy
inequalities only for j ∈ J0, thus getting

1
2
JA(u) ≥ C

∑

j∈J0

ρ(αj)2
∫

Ωj

|x− λj |−2|u|2dx.

Summing this with the estimate for the case of empty J0, we arrive at (7.4). �

Regular lattice of solenoids

For a regular lattice of A-B solenoids we establish the following Hardy-type in-
equality.

Proposition 7.7 Let A(z) = A(x1 + ix2) = A2 + iA1 be a magnetic potential such
that A is analytical in C with exception of the points zkl = kω1 + lω2, k, l ∈ Z,
and in these points A has simple poles with residue equal to some non-integer α.
Then, for any u ∈ C∞(C \ ∪zjk),

JA(u) =
∫

|(∇ + iA)u|2 dx1dx2 ≥ Cρ(α)2
∫

|u|2W (z) dx1dx2,

where C > 0, ρ(α) = mink∈Z |k−α| and W (z)−1/2 is the distance from z = x1+ix2

to the nearest lattice point.

Proof. We consider first the case of a lattice Λ with ω1 = 1,ω2 = i. Write JA(u) =
4× 1

4JA(u). Split the lattice Λ into four sublattices, Λ = Λ1 ∪Λ2 ∪Λ3 ∪Λ4, where
Λ1 consists of the points (2k, 2l) and, Λ2 = {(2k+ 1, 2l)}, Λ3 = {(2k, 2l+ 1)} and
Λ4 = {(2k + 1, 2l+ 1)}.

Around each point zkl ∈ Λj , draw a disk Dkl with radius 0.8. Such a disk does
not contain other points in the lattice. For this disk Dkl and any u ∈ C∞

0 (C\∪zjk),
we can apply the inequality (7.1),

1
4

∫

Dkl

|(∇ + iA)u|2 dx1dx2 ≥ 1
4
ρ(α)2

∫

Dkl

|u|2|z − zkl|−2dx1dx2, (7.21)
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since, in the punctured disk Dkl \{zkl}, the vector potential A is gauge equivalent
to the potential α/|z|.

For j fixed (j = 1, 2, 3, 4) we now sum (7.21) over all zkl ∈ Λj . The size of the
disks is selected in such way that for j fixed, the corresponding disks are disjoint
and therefore one can sum (7.21) termwise and get

1
4
JA(u) ≥ 1

4
ρ(α)2

∑

zkl∈Λj

∫

Dkl

|u|2|z − zkl|−2 dx1dx2.

Next we sum the latter inequality over j = 1, 2, 3, 4, which yields

JA(u) ≥ 1
4
ρ(α)2

∑

zkl∈Λ

∫

Dkl

|u|2|z − zkl|−2 dx1dx2 (7.22)

Now we note that
|z − zkl|−2 ≥ CW (z) for z ∈ Dkl

for some C > 0 and, moreover, the disks Dkl cover the plane. Therefore the
expression in (7.22) majorizes ρ(α)2

∫ |u|2W (z) dx1dx2.
For an arbitrary lattice we perform the same reasoning, just with disks with

radius 0.8 being replaced by equal ellipses of proper size, covering the plane, and
with the local Hardy inequality in the ellipse used instead for the one in the
disk. �

The weight function W (z) in Proposition 7.7 is positive and separated from
zero,W (z) ≥W0 > 0. This implies, in particular, that the spectrum of the operator
H

(2)
0 is separated from zero, i.e., the magnetic field produces a spectral gap. It is

remarkable to compare this with the result of Geyler-Grishanov [12] who have
shown that for another self-adjoint realization of the A-B operator corresponding
to an infinite regular lattice of solenoids, the lowest point of the spectrum is zero
and, moreover, an eigenvalue with infinite multiplicity.4

Hardy inequalities in dimension d = 3

Although in dimension three one does not need Hardy-type inequalities to establish
CLR estimates (the latter is our main reason to study these inequalities), such
three-dimensional versions are of certain interest.

In order to join all cases, we will denote, for a fixed configuration of vortices,
by W (x⊥), x⊥ = (x1, x2), the weight which, according to Propositions 7.1, 7.6 or
7.7, enters into the Hardy inequality in R

2, viz.
∫

R2

|(∇ + iA)u(x⊥)|2 dx1dx2 ≥
∫

R2
W (x⊥)|u(x⊥)| dx1dx2. (7.23)

4It is an interesting question, whether the lowest point of the spectrum of our operator is an
eigenvalue.
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Hence W (x) incorporates the weight W and coefficients depending on the config-
uration of solenoids and on fluxes αs.

Proposition 7.8 Under the assumptions of Propositions 7.1, 7.6 or 7.7, the follow-
ing Hardy-type inequality holds:

∫

R3

|(∇ + iA)u(x⊥, x3)|2 d3x ≥
∫

R3
W (x⊥)|u(x⊥, x3)| d3x. (7.24)

Of course, (7.24) is obtained from (7.23) by integration in x3.

Improvement of LT estimates by means of Hardy inequalities

The LT-type inequality obtained in Section 6, does not show any dependence on
the configuration of the magnetic fields. This is quite natural for the method of
proving, since it was based upon comparing with the nonmagnetic case. By means
of Hardy inequalities established above one can get certain improvements of the
LT estimate. We explain, first of all, that one should not expect an improvement in
the constant Cγ,d in (1.3), at least for a finite system of A-B solenoids. In fact, the
magnetic potential decays at infinity, and if the electric potential V is supported
far away from the sources of the field, then the influence of the magnetic field on
the eigenvalues must be negligible (one can give exact meaning to this statement).
On the other hand, the Hardy term can compensate local singularities of V or
insufficient decay and thus estimate LTγ,d even in the case when the right-hand
side in (1.3) is infinite.

Proposition 7.9 Let A be a magnetic potential in R
d, d = 2 or d = 3, and let

κ ∈ (0, 1) be an arbitrary number. Then, for the sum LTγ,d of powers of the
eigenvalues of the operator Hd

0 − V , the following inequality holds:

LTγ,d ≤ Cγ,d(1 − κ)−
d
2−γ

∫

Rd

(V (x) − κW (x1, x2))
d
2 +γ
+ dx, (7.25)

where γ > 0 and Cγ,d is the constant in (1.3).

The proof follows immediately from the operator inequality

Hd
0 − V = (1 − κ)Hd

0 + κHd
0 − V (x)

≥ (1 − κ)Hd
0 + κW (x1, x2) − V (x)

≥ (1 − κ)(Hd
0 − (1 − κ)−1(V (x) − κW (x1, x2)))

and (1.3) applied to the electric potential (V (x) − κW (x1, x2))+.
The inequality (7.25) includes certain situations which are worth being picked

out, e.g., the case of an electric potential having singularities at the magnetic
vortices, so that singularities are (partially) compensated by the magnetic field.
In the case of the infinite lattice of solenoids, moreover, the Hardy weight W is
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separated from zero, W ≥ c0, and thus an insufficiently slow decay of V , preventing
the right-hand side of (1.3) from being finite, can be compensated; in view of (7.25),

LTγ,d ≤ Cγ,d(1 − κ)−
d
2−γ

∫

Rd

(V (x) − κc0)
d
2 +γ
+ dx. (7.26)

Further versions of the LT-type inequalities, taking into account possible
cancelling of the magnetic and electric field, can be obtained by averaging (7.25)
in κ. Having chosen some nonnegative function ζ(κ) on (0, 1) which vanishes near
one and has integral 1, we can multiply (7.25) by ζ(κ) and integrate. This produces
new estimates, first for ‘nice’ V , but then, as usual, since the constants there do
not depend on the potential, they extend by continuity to all V for which the
quantity on the right-hand side is finite. We give here just one, simple example of
this approach, where we do not care much about getting sharp constants but are
interested in possible cancellation of singularities.

Take ζ(κ) = cσκ
σ for κ < 1/2 and ζ(κ) = 0 otherwise; with cσ = (σ +

1)−12−σ−1, σ > −1. Then integrating of (7.25) with weight ζ(κ) gives

LTγ,d ≤ cσCγ,d

∫ 1/2

0

(1 − κ)−
d
2−γκσ

∫

Rd

(V (x) − κW (x1, x2))
d
2 +γ
+ dxdκ. (7.27)

The integral in (7.27) is estimated as follows. Change the order of integration and
majorate (1 − κ)−

d
2−γ by 2

d
2 +γ . For the remaining integral in κ we have

∫ 1/2

0

κσ(V (x) − κW (x1, x2))
d
2 +γ
+ dκ

≤ W (x1, x2)
d
2 +γ

∫ ∞

0

(
V (x)

W (x1, x2)
− κ

) d
2 +γ

+

κσ dκ.

The latter integral is evaluated by the usual change of variables and equals B(σ+
1, d

2 + γ + 1)V (x)
d
2 +γ+σ+1W (x1, x2)−σ−1; B(·, ·) being the Beta function. Thus

we come to the estimate

LTγ,d ≤ Cγ,dcσB(σ + 1,
d

2
+ γ + 1)

∫

Rd

V (x)
d
2 +γ+σ+1W (x1, x2)−σ−1dx. (7.28)

In the inequality (7.28) one can choose the exponent σ depending on the particular
potential V . The approach above has, in fact, a flavor of interpolation; similar
results, based on Hardy inequalities, were obtained for N−(H0 −V ) in [9] (for the
magnetic potential in L2

loc, d ≥ 3).

8 Eigenvalue estimates and large coupling constant asymptotics

In three dimensions the CLR estimate for H(3)
0 −V, V ≥ 0, takes its standard form

for any of the configurations of A-B solenoids considered in Section 2, viz.

N−(H(3)
0 − V ) ≤ C3

∫

R3
V (x)

3
2 dx. (8.1)
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This follows automatically from the non-magnetic inequality and domination, The-
orem 5.2; the constant C3 > 0 is absolute.

In the two-dimensional case there are a number of inequalities for the non-
magnetic Schrödinger operator, fairly cumbersome, see [34, 6]. Due to domination,
they carry over to the A-B Hamiltonian. However, the presence of the magnetic
field improves the non-magnetic estimates considerably.

The aim of this section is not to obtain the most general nor the best possible
bounds for the number of negative eigenvalues for the two-dimensional perturbed
A-B Schrödinger operator; rather we demonstrate that any CLR-type eigenvalue
estimate (existing or obtained in the future) for the (nonmagnetic) two-dimensional
perturbed Schrödinger operator, with a proper Hardy term added, automatically
produces a similar estimate for the A-B Schrödinger operator and, moreover, to
show that further improvements, using the Hardy inequalities are possible.

A single solenoid

The (closed) quadratic form h(2) of the unperturbed A-B Schrödinger operator
H

(2)
0 can be written as

h(2)[u] =
h(2)[u]

2
+

h(2)[u]
2

. (8.2)

Let β = ρ(α). To one of the two terms in (8.2), we apply the Hardy type inequality
(7.1). This yields

h(2)[u] ≥ h(2)[u]
2

+
β2

2

∫

R2

|u(x)|2
|x|2 dx. (8.3)

Let H(2)
0 (β2r−2), r = |x|−2, denote the operator generated by the form on the

right-hand side of (8.3). Since H(2)
0 obeys the diamagnetic inequality, it follows

from, e.g., the Trotter-Kato formula that H(2)
0 (β2r−2) fulfills the diamagnetic in-

equality as well, in shorthand, H(2)
0 (β2r−2) ∈ PD(L0

2 + β2

2 r
−2). The latter fact in

conjunction with Theorem 5.2 allows us to carry over all power in q bounds for
the two-dimensional Schrödinger operator L0 +Cr−2−qV to the A-B Schrödinger
operator H(2)

0 − qV , with a coupling constant q > 0. In order to keep track of the
influence of the value of β, we can write

L0

2
+
β2

2
r−2 − qV ≥ β2

2
L0 +

β2

2
r−2 − qV =

β2

2
(L0 + r−2 − 2β−2qV ).

Therefore, to estimate the number of eigenvalues for the operator with given β, we
may use the existing estimates for the operator L0 + r−2 with potential 2β−2qV .
Such estimates for the Schrödinger operator L(r−2, qV ) := L0+r−2−qV in L2(R2)
have been studied in [34, 6, 16]. We present here only the results from [16], not
the most general ones, but, probably, the most transparent.
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Proposition 8.1 Let p > 1, V ≥ 0. Denote by Sp(V ) the expression

∫ 1

0

(∫

S1
V (rω)pdω

)1/p

r dr (8.4)

in polar co-ordinates (r, ω). Then for a constant Cp,

N−(L(r−2, qV )) ≤ CpqSp(V ) ; (8.5)

in particular, if V is radial, V = V (r), then

N−(L(r−2, qV )) ≤ Cq

∫

R2
V (x) dx. (8.6)

Due to domination, this estimate is carried over to H(2)
0 − qV , with p chosen

arbitrary:

Theorem 8.2 (A single solenoid) For some C′
p, depending only on p,

N−(H(2)
0 − qV ) ≤ C′

pqβ
−2Sp(V ) (8.7)

and, for a radial potential,

N−(H(2)
0 − qV ) ≤ Cqβ−2

∫

R2
V (x) dx. (8.8)

In a similar way, all estimates obtained in [6, 34] carry over to H(2)
0 − qV . Of

course, the factor β−2 must arise in the estimates, as it was explained above.

Finitely many solenoids

Let h(2) be the (closed) quadratic form generating the unperturbed magnetic
Schrödinger operator H(2)

0 associated with finitely many A-B solenoids. Again,
write (8.2) and apply the Hardy type inequality established in Proposition 7.1 to
one of the two terms in (8.2). We get

h(2)[u] ≥ h(2)[u]
2

+
∫

R2
CW (x)|u(x)|2 dx, u ∈ C∞

0 (R2 \ Λ). (8.9)

where W (x) is given in (7.3). Let H(2)
0 (W (x)) denote the operator generated by

the form on the right-hand side of (8.9). As above, (8.9) together with Theorem 5.2
reduce the problem of estimating N−(H(2)

0 − qV ) to the similar task for N−(L0 +
W (x) − qV ).
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Take some splitting of R
2 into sets Ω̃j , 1 ≤ j ≤ J , such that λj ∈ Ω̃j and

denote by Vj the function coinciding with V in Ω̃j and vanishing outside (of course,
at least one of these sets must be unbounded).

Then L0 + W − qV splits into the sum (in the sense of quadratic forms) of
operators J−1(L0 +W ) − qVj , and from the Weyl inequality we infer that

N−(L0 +W (x) − qV ) ≤
J∑

j

N−(J−1L0 +K|x− λj |−2 − qVj), (8.10)

where the constantK, depends on the positions of the solenoids λj and their fluxes
αj , according to the Hardy type inequality (7.4).

Separate terms in (8.10) have just been discussed above. For each j we define
by Sp(Vj) the expression of the form (8.4), with V replaced by Vj and integration
performed in polar coordinates centered at λj . Proposition 8.1, applied to each Vj ,
leads to the following result.

Theorem 8.3 (Finitely many solenoids) One has

N−(H(2)
0 − qV ) ≤ Cq

∑

1≤j≤J

Sp(Vj), (8.11)

where the constant C depends on the positions of the solenoids and their fluxes.

For fixed positions of solenoids, the constant C in (8.7) is determined by the
flux which is the one closest to integers and it deteriorates if this flux approaches
an integer. Using Proposition 7.6 one may exclude arbitrary solenoids from (8.7),
and leaving only fluxes which are sufficiently far away from integers, one can get an
improved estimate of the form (8.7), with summation performed only over j ∈ J0.
Here the constant will depend only on the remaining fluxes αj , j ∈ J0 and the
sum of all fluxes.

Regular lattice of solenoids

We consider the case with infinitely many solenoids located at the points of the
lattice Λ = {λkl = (k, l) ∈ R

2 : k, l ∈ Z }. As it is typical for the two-dimensional
case, one can here, as for the previous configurations, give different types of CLR
estimates. We restrict ourselves to the two, most simple versions.

Theorem 8.4 Let V ∈ Lp(R2) locally, p ≥ 1. Consider a partition of R
2 into unit

cubes Qj. Then, for some constant C,

N−(H(2)
0 − qV ) ≤ Cq

∑

j

‖V ‖Lp(Qj), (8.12)

where the norms involved are the Lp norms over the cubes.
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Proof. We use the inequality, already mentioned, W (x) ≥ W0 > 0, where W (x)
is the weight function in Proposition 7.7. Thus, for the (nonmagnetic) two-dim-
ensional Schrödinger operator L0 + W0 − qV , the estimate of the type (8.12) is
contained, for example, in [6]. Then the Hardy inequality in Proposition 7.7 and
the diamagnetic inequality, together with Theorem 5.2, imply that the same kind
of estimate, with some other constant, holds for H(2)

0 − qV . �

Another estimate we give here is in flavor of Theorem 8.3.

Theorem 8.5 Let V (x) be split into the sum of nonnegative functions Vkl, viz.

V (x) =
∑

kl

Vkl.

Then, for some constant Cp,

N−(H(2)
0 − qV ) ≤ Cp q

(
∑

kl

Sp(Vkl)
1
2

)2

, (8.13)

as long as the quantity on the right-hand side is finite.

Proof. Similar to the reasoning in the previous proof, the diamagnetic inequality,
the Hardy inequality, and Theorem 5.2 reduce our task to establishing (8.13) for
the two-dimensional Schrödinger operator L0 +W − qV .

Denote Sp(Vkl) by Rkl and suppose that the series
∑
R

1/2
kl converges to some

number M . Set τkl = R
1/2
kl M

−1,
∑

kl τkl = 1. Then the series

W̃ (z) =
∑

kl

τkl|x− λkl|−2

converges for any x �∈ Λ. Moreover, for some constant C, not depending on V ,
W̃ (x) ≤ CW (x). Thus, due to the max-min principle, it suffices to prove the
estimate (8.13) for the operator L0 + CW̃ (z) − qV . From Weyl’s inequality it
follows that

N−(L0 + CW̃ (z) − qV ) = N−

(
∑

kl

(τklL0 + Cτkl|x− λkl|−2 − qVkl)

)

≤
∑

kl

N−(τklL0 + Cτkl|x− λkl|−2 − qVkl(|x− λkl|))

=
∑

kl

N−(L0 + C|x − λkl|−2 − qτ−1
kl Vkl(|x − λkl|)).

To each term in the latter sum we apply the estimate in (8.5), getting

N−(L0 + CW̃ (z) − qV ) ≤ qC
∑

kl

τ−1
kl Sp(Vkl) = qC

∑

kl

τ−1
kl Rkl = qCM

∑

kl

R
1/2
kl ,

which coincides with the expression in (8.13). �
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Improving the estimates

Exactly as in the case of LT-type estimates, considered in Section 7, one can further
improve CLR-type estimates by means of additional use of Hardy inequalities,
which enables one to trace possible cancellations of singularities of the potential
V and the Hardy weight. We present only one, simplest result in this direction, a
substructure over Theorem 8.2; all other formulations can be obtained following
this pattern, and the proofs just repeat the tricks used in Section 7.

Proposition 8.6 Consider the case of a single solenoid, with radial potential V (r).
Then for any κ ∈ (0, 1)

N−(H(2)
0 − qV ) ≤ Cq(1 − κ)−1Sp

((
V − κβ2

2|x|2
)

+

)
. (8.14)

Large coupling constant asymptotics for H
(d)
0 − qV

The task of establishing large coupling constant asymptotics for Schrödinger-type
operators is nowadays a routine matter as soon as correct estimates are obtained,
see, e.g., [7, 27, 29], where this routine is described in details. Therefore, in the
case of a singular magnetic field we just indicate those (minor) modifications one
has to make.

Having the Schrödinger operator H(d)
0 and a potential 0 ≤ V ∈ L1

loc, we
denote by Σ(V ) the quantity entering in the eigenvalue estimate for the particular
configuration of A-B solenoids above. Thus, in dimension three, we set Σ(V ) =∫
V (x)

3
2 dx. In dimension two, Σ(V ) is the right-hand side of (8.7) or (8.8) under

the conditions of Theorem 8.2, and it equals the right-hand side of (8.11) under the
conditions of Theorem 8.3. Finally, for the case of a lattice, Σ(V ) is the right-hand
side of (8.12), respectively (8.13), under the conditions of Theorem 8.4, respectively
Theorem 8.5.

Theorem 8.7 For d = 2, 3, let H
(d)
0 be the (multivortex) Aharonov-Bohm

Schrödinger operator for any of the solenoid configurations in Section 2 and sup-
pose Σ(V ) is finite. Then, for the negative eigenvalues of HqV = H

(d)
0 − qV , the

following asymptotic formula holds:

N−(HqV ) ∼ cdq
d
2

∫

Rd

V (x)
d
2 as q → ∞, (8.15)

where cd is the standard coefficient, cd = (2π)−dωd and ωd is the volume, resp.
area, of the unit ball, resp. disk, in R

d.

Note that, similar to the nonmagnetic case, the asymptotic formula in di-
mension d = 2 requires some additional restrictions compared with just finiteness
of the asymptotic coefficient in (8.15).
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To prove the asymptotic formula, one has just to split, for given ε, the po-
tential V into Vε, supported away from the solenoids, and V ′

ε , Σ(V ′
ε ) < ε. For the

operator with potential Vε one finds the asymptotics, for example, by means of
Dirichlet-Neumann bracketing, and for the operator with potential V ′

ε the results
of this section give estimate with a small coefficient. The matter is completed by
applying the asymptotic perturbation lemma from [7], see also the expositions in
[27, 29].
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