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Abstract. In the present paper we consider mild bounded ancient (backward) solutions to the Navier–Stokes equations in
the half plane. We give two different definitions, prove their equivalence and prove smoothness up to the boundary. Such
solutions appear as a result of rescaling around a singular point of the initial boundary value problem for the Navier–Stokes
equations in the half-plane.

1. Introduction

The goal of the paper is to understand properties of the so-called ancient (backward) solutions to the
Navier–Stokes equations. The importance of them in the regularity theory for the Navier–Stokes equa-
tions, see, for example, papers [1,5,12,15], and [16], and more generally in the theory of PDEs is well
understood. They appear as a limit, resulting from rescaling solutions to initial boundary value problems
around possible singularities. For the Navier–Stokes equations, this procedure has been described in the
above papers.

The weakest version of ancient solutions to the Navier–Stokes equations is as follows. A vector-valued
function u ∈ L2,loc(Q−), where Q− = R

3×]−∞, 0[, is an ancient solution of the Navier–Stokes equations
in Q− if it satisfies these equations in the sense of distributions with divergence free test functions, i.e.,∫

Q−

(
u · (∂tϕ + Δϕ) + u ⊗ u : ∇ϕ

)
dz = 0 (1.1)

for any ϕ ∈ C∞
0,0(Q−) := {ϕ ∈ C∞

0 (Q−) : divϕ = 0} and∫

Q−

u · ∇qdz = 0 (1.2)

for any q ∈ C∞
0 (Q−).

This class of ancient solutions seems to be too wide. Having in mind the problem of regularity for
solutions to the Navier–Stokes equations mentioned above, we can put some additional restrictions in
the definition of ancient solutions. If an ancient solution u is bounded, we call it a bounded ancient one.
We can go further, see [5], and consider an even more narrow class of ancient solutions. We say that a
bounded function u is a mild bounded ancient solution if u has the following property: for any A < 0 and
for (x, t) ∈ QA := R

3×]A, 0[,

ui(x, t) =
∫

R3

Γ(x − y, t − A)ui(y,A)dy

+

t∫

A

∫

R3

Kijm(x − y, t − τ)uj(y, τ)um(y, τ)dydτ, (1.3)

http://crossmark.crossref.org/dialog/?doi=10.1007/s00021-015-0211-z&domain=pdf


552 T. Barker and G. Seregin JMFM

where Γ is the known heat kernel and K is obtained from the Oseen tensor in the following way. Consider
the following boundary value problems

ΔΦ(x, t) = Γ(x, t). (1.4)

Using Φ, we define

Kmjs(x, y, t) = δmj
∂3Φ

∂yi∂yi∂ys
(x, y, t) − ∂3Φ

∂ym∂yj∂ys
(x, y, t),

where δmn is Kronecker’s symbol.
It has been shown in [5], that any mild bounded ancient solution is infinitely smooth in space-time.
One can give an equivalent definition of mild bounded ancient solutions.

Proposition 1.1. A bounded function u in Q− is a mild bounded ancient solution to the Navier–Stokes
equation if and only if there is a pressure p ∈ L∞(−∞, 0;BMO) such that the pair u and p satisfy the
Navier–Stokes equations in the sense of distributions.

This statement seems to be known and we give its prove for completeness.
One of the interesting consequences of the above proposition is an alternative proof of smoothness of

mild bounded ancient solutions, see [13].
The conjecture that has been made in [5] reads: any mild bounded ancient solution is a constant in

Q−. The validity of this conjecture is known in several cases, see details in [5] and [15]. The connection
with a possible blowup of a solution to the initial value problem

∂tv + v · ∇v − Δv = −∇q, div v = 0

in Q∞ = R
3×]0,∞[,

v(·, 0) = u0(·) ∈ C∞
0,0(R

3
+) = {v ∈ C∞

0 (R3) : div v = 0},

is as follows. Assume that there is a blowup at t = T , i.e.,

‖v(·, t)‖∞,R3 → ∞
as t → T−. Then there exists a mild bounded ancient solution u with |u(0)| = 1. If the aforesaid conjecture
is true then u(x, t) = c, where c is a constant vector such that |c| = 1. This would rule out blowups of
Type I for which a certain scale-invariant quantity is bounded.

Now, let us formulate the main results of the paper about mild bounded ancient solutions to the
Navier–Stokes equations in half space, starting with a definition of distributional ancient solutions. From
now on we denote Q+

− := R
3
+×] − ∞, 0[. We say that u ∈ L2(B+(R)) for any R > 0 is an ancient solution

if u satisfies ∫

Q+
−

(
u · (∂tϕ + Δϕ) + u ⊗ u : ∇ϕ

)
dxdt = 0 (1.5)

for any ϕ ∈ C∞
0,0(Q−) with ϕ(x′, 0, t) = 0 for any x′ ∈ R

2 and for any t < 0. Moreover u satisfies∫

Q+
−

u · ∇qdz = 0 (1.6)

for any q ∈ C∞
0 (Q−).

We can notice that (1.5) and (1.6) is a weak form for the following

∂tu + u · ∇u − Δu = −∇p, div u = 0

in Q+
− for some distribution p,

u(x′, 0, t) = 0

for any x′ ∈ R
2 and any −∞ < t < 0.

We shall say that u is a bounded ancient solution in half space if it is ancient and bounded.
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From now on define Q+
A := R

3
+×]A, 0[. In order to proceed further, we need to recall how one can

construct a solution to the following boundary value for the Stokes equations in half space:

∂tv − Δv + ∇q = f, div v = 0

in Q+
A,

v(x′, 0, t) = 0

for all x′ ∈ R
2 and t ∈]A, 0[,

v(·, A) = u0(·)
in R

3
+. It is assumed that f and u0 are divergence free and f3(x′, 0, t) = 0. Then a formal solution to the

above initial boundary value problem is:

vi(x, t) =
∫

R
3
+

Gij(x, y, t − A)u0j(y)dy +

t∫

A

∫

R
3
+

Gij(x, y, t − s)fj(y, s)dyds.

The Green’s function G has been derived by Solonnikov in [18] and is as follows

G = G1 + G2, (1.7)

where

G1
ij(x, y, t) = δij

(
Γ(x − y, t) − Γ(x − y∗, t)

)
,

G2
iβ(x, y, t) = 4

∂

∂xβ

x3∫

0

∫

R2

∂E

∂xi
(x − z)Γ(z − y∗, t)dz, G2

i3(x, y, t) = 0,

y∗ = (y′,−y3), and E(x) is fundamental solution to the Laplace equation in R
3.

Let us introduce another potential K = (Kmjs),

Kmjs(x, y, t) =
∂3Φmj

∂yi∂yi∂ys
(x, y, t) − ∂3Φmn

∂yn∂yj∂ys
(x, y, t),

where the tensor Φ = (Φij) are defined as solutions to the following boundary value problems

ΔyΦmn(x, y, t) = Gmn(x, y, t) (1.8)

with ∂Φmn/∂y3(x, y, t) = 0 if n < 3 and with Φmn(x, y, t) = 0 if n = 3 at y3 = 0.
Now, we are in position to define mild bounded ancient solutions in a half space.

Definition 1.2. A bounded divergence free function u in Q+
− is called a mild bounded ancient solution if,

for any A < 0 and any (x, t) ∈ Q+
A,

ui(x, t) =
∫

R
3
+

Gij(x, y, t − A)ui(y,A)dy

+

t∫

A

∫

R
3
+

Kijm(x, y, t − τ)uj(y, τ)um(y, τ)dydτ. (1.9)

To state our main result, we need to introduce the following operator. Given H = (Hij) ∈ L∞(R3
+),

there exists a unique function p1 ∈ L2(B+(R)) for any R > 0 with [p1]B+ = 0 with the following
properties: the even extension of it to R

3 belongs to the space BMO,∫

R
3
+

p1Δϕdx = −
∫

R
3
+

H : ∇2ϕdx
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for any ϕ ∈ C∞
0 (R3

+) with ϕ,3(x′, 0) = 0 and

‖p1‖BMO ≤ A‖H‖∞,R3
+
,

where A is an absolute constant. We shall use notation p1 := p1
H .

We notice that if H = (Hij) is sufficiently smooth and vanishes on the boundary x3 = 0, the function
p1

H is a solution to the Neumann boundary value problem:

Δp1
H = −divdivH

in R
3
+ and

p1
H,3(x

′, 0) = 0.

Theorem 1.3. Suppose u ∈ L∞(Q+
−) is an arbitrary mild bounded ancient solution in Q+

−. Then u is of
class C∞ and moreover

sup
(x,t)∈Q+

−

(|∂k
t ∇lu(x, t)| + |∂k

t ∇l+1p(x, t)|)

+ ‖∂k
t p1‖L∞(−∞,o;BMO(R3) � C(k, l, ‖u‖L∞(Q+

−)) < ∞
for any k, l= 0, 1. . . . Here, p1 = p1

u⊗u.

Theorem 1.4. A bounded function u is a mild bounded ancient solution if and only if there exists a
pressure p such that p = p1

u⊗u + p2, where p2(·, t) is a harmonic function in R
3
+ whose gradient satisfies

the estimate
|∇p2(x, t)| ≤ c ln(2 + 1/x3) (1.10)

for all (x, t) ∈ Q+
−. Morevoer, p2 has the property

sup
x′∈R2

|∇p2(x, t)| → 0 (1.11)

as x3 → ∞ and for any t < 0; u and p satisfy (1.6) and∫

Q+
−

(
u · (∂tϕ + Δϕ) + u ⊗ u : ∇ϕ + pdiv ϕ

)
dxdt = 0 (1.12)

for any ϕ ∈ C∞
0 (Q−) with ϕ(x′, 0, t) = 0 for any x′ ∈ R

2 and for any t < 0.

In [16], there has been conjectured that any mild bounded ancient solution is identically equal to zero
in Q+

−. At the moment of writing the paper, there are two cases in which the above conjecture is true,
see [2] and [14]. Both cases are two-dimensional and additional scale-invariant assumptions have been
imposed. In the first paper vorticity preserves its sign, while in the second one kinetic energy is bounded.

Now, let us consider the following initial boundary value problem

∂tv + v · ∇v − Δv = −∇q, div v = 0

in Q+
∞ = R

3
+×]0,∞[,

v(x′, 0, t) = 0

for any x′ ∈ R
2 and t ∈ [0,∞[, and

v(·, 0) = u0(·) ∈ C∞
0,0(R

3
+) = {v ∈ C∞

0 (R3
+) : div v = 0}

Suppose that there is a blowup at t = T , i.e.,

‖v(·, t)‖∞,R3
+

→ ∞
as t → T−. Then there exists a sequence zn = (x(n), tn) such that tn > 0, tn → T−, and

Mn = |u(z(n))| = sup
0<t≤tn

sup
x∈R

3
+

|u(x, t)| → ∞.
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If x
(n)
3 Mn → ∞, there exists a mild bounded ancient solution u in the whole space such that |u(0)| = 1.

If x
(n)
3 Mn → a < ∞, there exists a mild bounded ancient solution in a half space such that |u(a)| = 1.
In conclusion, we notice that the validity of both conjectures allow us to rule out at least Type I

blowups of solution to initial boundary value problem for the Navier–Stokes equations in half space.

2. Proof of Theorem 1.3

Before starting the proof, we remind known facts (due to Solonnikov, see [18,19]), about the Green
function and the kernel K.

It is not so difficult to see that the kernel K has the structure

Kism(x, z, t) = Kism(x, z, t) + K̂ism(x, z, t), (2.1)

where Kism(x, z, t) is a linear combination of the terms

∂Gij

∂zk
(x, z, t)

and K̂ism(x, z, t) is a linear combination of the terms

∂2

∂xα∂xβ

∫

R
3
+

Gij(x, y, t)
∂N (±)

∂ys
(y, z)dy.

Here, N (±)(x, y) = E(x − y) ± E(x − y∗).
The following estimates for Gi and K̂ have been obtained in different papers of Solonnikov, see [18,19]:

∣∣∣∂|α|+|γ|G2

∂xα∂yγ
(x, y, t − A)

∣∣∣ ≤ c(α, γ)(t − A)− γ3
2 (t − A + x2

3)
− α3

2

×(|x − y∗|2 + t − A)− 3+|α′|+|γ′|
2 exp

(
− cy2

3

t − A

)
, (2.2)

where α′ = (α1, α2), γ′ = (γ1, γ2), and |γ| = 0 or 1,
∣∣∣∂G1

ij

∂yi
(x, y, t)

∣∣∣ + |K̂ism(x, y, t)| ≤ c

(|x − y|2 + t)2
. (2.3)

∣∣∣∂l
tG

2(x, y, t)
∣∣∣ ≤ c

tl(|x′ − y′|2 + x2
3 + y2

3 + t)
3
2

exp
(

−cy2
3

t

)
. (2.4)

for l = 0 or 1.
Let K1 and K2 be generated by G1 and G2, respectively. In particular, we have the estimate

|K̂2(x, y, t)| ≤ c

(|x − y∗|2 + t)2
. (2.5)

In what follows, we are going to use special approximations:

u(k)(x, t) :=

0∫

A−1

η 1
k
(t − τ)

∫

R
3
+

ω 1
k
(x − y)φk(y)u( 2

k )(y, τ)dydτ (2.6)

and

u(k)A(x) :=
∫

R
3
+

ω 1
k
(x − y)u( 2

k )(y,A)dy. (2.7)
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Here, u
(h)
i (y, s) = ui(y′, y3 − h, s) if y3 > h and u

(h)
i (y, s) = 0 if 0 < y3 ≤ h. The function φk ∈

C∞
0 (B(k + 1)), φk ≡ 1 on B(k), has the additional property that the bounds of Dαφk only depend on

|α|. The standard mollifiers are denoted by η and ω, respectively. The properties of the approximation
scheme are that u(k) ∈ C∞

0 (]A − 2, 1[×R
3
+) and that (up to subsequence)

u(k) ⊗ u(k)
∗
⇀ u ⊗ u

in L∞(Q+
A;M3×3). It is noticed that u(k)A is a smooth solenodial vector field, with bounded derivatives

that all vanish near x3 = 0. Furthermore,

u(k)A
∗
⇀ u(y,A)

in L∞(R3
+;R3).

We let F k := u(k) ⊗ u(k) and then

U(k)(x, t) :=
∫

R
3
+

G(x, y, t − A)u(k)A(y)dy +

t∫

A

∫

R
3
+

K(x, y, t − τ)F k(y, τ)dydτ.

It is not so difficult to infer that (up to subsequence):

U(k)
∗
⇀ u (2.8)

in L∞(Q+
A;R3).

To treat the second term on the right hand side of representation formula, we are going to use the
following statement.

Lemma 2.1. Let F ∈ W 1
∞(R3

+)∩C1(B+(R)) for any R > 0 with F = 0 and F3j,j = 0 on the plane x3 = 0.
In addition, assume that divdivF ∈ L∞(R3

+) ∩ C(B+(R)) for any R > 0. Then the identity∫

R
3
+

ΔyΦij(x, y, t)fj(y)dy =
∫

R
3
+

Gij(x, y, t)fj(y)dy

=
∫

R
3
+

Kijm(x, y, t)Fjm(y)dy.

is valid. Here, f = −divF − ∇p1
F .

Remark 2.2. Under assumptions imposed on tensor-valued function F ,

∇p1
F ∈ L∞(R3

+) ∩ C(B+(R))

for any R > 0.

Proof of Lemma 2.1. Obviously, we can find a sequence Fm ∈ C∞
0 (R3

+) such that

Fm, ∇Fm, divdivFm ∗
⇀ F, ∇F, divdivF

in L∞(Q+
−), respectively. In order to construct such a sequence, we proceed as follows. Let F (h)(x) =

F (x′, x3 − h) if x3 > h and F (h)(x) = 0 if 0 < x3 ≤ h. Then we let F (h,R)(x) = ϕR(x)F (h)(x) with a
standard cut-off function ϕR(x) = ϕ(x/R), where ϕ ∈ C∞

0 (B(2)) and ϕ ≡ 1 in B. And finally we can
produce Fm using (F (h,R))� with 0 < � < h, where (g)� is a mollification of the function g.

We also can state that p1
F m has decay 1

|x|2 as |x| → ∞. So, we do not need to take care of integrability
of functions involved because of Solonnikov estimates and the decay of the pressure. Similarly the decay
of the pressure allows one to rigorously justify the integration by parts shown below. This is done by
proving slow decay of the kernels, using arguments in [19,20].
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Now, letting fm = −divFm − ∇p1
F m , we have

Ai : =
∫

R
3
+

ΔyΦij(x, y, t)fm
j (y)dy =

∫

R
3
+

Gij(x, y, t)fm
j (y)dy

=
∫

R
3
+

Φij,kk(x, y, t)(−Fm
js,s(y) − p1

F m,j(y))dy

=
∫

R
3
+

Φij,kks(x, y, t)Fm
js (y)dy +

∫

R2

Φij,3(y′, 0)p1
F m,j(y

′, 0)dy′

+
∫

R
3
+

Φij,k(x, y, t)p1
F m,jk(y))dy.

By our assumptions on boundary values of functions Φ and p1
F m and their derivatives, the integral over

the plane x3 = 0 vanishes. So, we have

Ai =
∫

R
3
+

Φij,kks(x, y, t)Fm
js (y)dy −

∫

R2

Φij(y′, 0)p1
F m,3j(y

′, 0)dy′

−
∫

R
3
+

Φij(x, y, t)Δp1
F m,j(y))dy.

For the same reason, the surface integral is equal to zero and using the pressure equation, we find

Ai =
∫

R
3
+

Φij,kks(x, y, t)Fm
js (y)dy +

∫

R
3
+

Φij(x, y, t)Fm
sk,jsk(y)dy

=
∫

R
3
+

Φij,kks(x, y, t)Fm
js (y)dy −

∫

R
3
+

Φij,jsk(x, y, t)Fm
sk(y)dy.

So, the formula of the lemma proved for Fm, i.e., we have∫

R
3
+

Gij(x, y, t)fm
j (y)dy =

∫

R
3
+

Kijk(x, y, t)Fm
jk(y)dy.

Now, the identity of the lemma can be obtained by passage to the limits in the latter identity as m →
∞. �

So, if we let p1(k) := p1
u(k)⊗u(k)

, when we have

Ui(k)(x, t) =
∫

R
3
+

Gij(x, y, t − A)uj(k)A(y)dyS

−
t∫

A

∫

R
3
+

Gij(x, y, t − τ)
[

∂

∂yl
F k

jl(y, τ) +
∂

∂yj
p1(k)(y, τ)

]
dydτ. (2.9)

We then put U(k) = U1
(k) + U2

(k) according to splitting of the kernel described in (1.7). Furthermore,

decompose U1
(k) = U1,1

(k) + U1,2
(k) and U2

(k) = U2,1
(k) + U2,2

(k) . Where for m = 1, 2:

Um,1
i(k) (x, t) :=

∫

R
3
+

Gm
ij (x, y, t − A)uj(k)A(y)dy (2.10)
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and

Um,2
i(k) (x, t) := −

t∫

A

∫

R
3
+

Gm
ij (x, y, t − τ)

[ ∂

∂yl
F k

jl(y, τ) +
∂

∂yj
p1(k)(y, τ)

]
dydτ. (2.11)

Notice, that we may integrate by parts in (2.11) to get:

Um,2
i(k) (x, t) :=

t∫

A

∫

R
3
+

∂

∂yl
Gm

ij (x, y, t − τ)
[
F k

jl(y, τ) + δjlp
1(k)(y, τ)

]
dydτ.

This is permissible by the facts that G2
i3(x, y, t) = 0, G1

ij(x, y, t) = 0 (on y3 = 0), the spatial decay of G1

and G2 and that the approximation scheme implies that p1(k)(y, τ) has spatial decay of order |y|−2.
Now we proceed in proving the main body of Theorem 1.3. Most of the proof is split into four main

Propositions. The first two Propositions are derived from arguments from [16]. However, we provide some
adjustments, simplifications and demonstrate how those arguments interact with the aforementioned
approximation scheme.

In what follows, we are going to use additional notation. For p and q between 1 and infinity we say
that f ∈ Lp,q,unif (Q+

A), if

‖f‖q

Lp,q,unif (Q+
A)

:= sup
x∈R

3
+

0∫

A

⎛
⎜⎝

∫

B+(x,1)

|f(y, τ)|pdy

⎞
⎟⎠

q
p

dτ < ∞,

where B+(x, 1) := {y ∈ B(x, 1) : y3 > x3}. In addition, for −∞ < C < D < ∞, we will denote:
Q+

C,D := R
3
+×]C,D[. From now on we use the terms even and odd extensions to mean the following. For

f : R3
+ → R, define feven : R3 → R by feven(y) := f(y) for y3 � 0 and feven(y) := f(y∗) for y3 < 0. This

is referred to as the even extension of f . The odd extension of f is similarly defined.

Proposition 2.3. Suppose u ∈ L∞(Q+
−) satisfies all the hypothesis of Theorem 1.3. Then the following is

satisfied:

sup
(x,t)∈Q+

−

(|∇u(x, t)| + |∇p1(x, t)|) + ‖p1‖L∞(BMO)) � C(‖u‖L∞(Q+
−)) < ∞

Proof of Proposition 2.3. For brevity let d := ‖u‖L∞(Q+
A). Notice that by classical singular integral theory,

we get for the even extension of the pressure:

sup
k

‖p1(k)‖L∞(]A,0[;BMO(R3) � C(d). (2.12)

By the proerties of the heat kernel and estimates (2.2) it is obtained that

sup
k, (x,t)∈Q+

A
2

|∇|α|U1,1
(k) (x, t)| + |∇|α|U2,1

(k) (x, t)| � C(d,A, |α|). (2.13)

From (2.12), along with arguments in [16] (see Lemma 6.1 there), obtain also that (for (x, t) ∈ Q+
A):

|∇|α|U2,2
(k) (x, t)| � C(|α|, d)

√−A∫

0

dq

(x2
3 + q2)

|α|
2

. (2.14)

Hence, ‖∇U2
(k)‖Ls,unif (Q+

A
2

) + ‖∇U1,1
(k)‖Ls,unif (Q+

A
2

) � C(d, s,A). By the definition of G1, the following is

satisfied in D′
(QA):

∂tU
1,2
(k)odd

− ΔU1,2
(k)odd

= −divH̃k, (2.15)
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where H̃k
iα = (Hk

iα)odd, α = 1, 2, and H̃k
i3 = (Hk

i3)
even, i = 1, 2, 3,

Hk
ij(x, t) := F k

ij(x, t) + δij(p1(k) − [p1(k)]B(z,2)(t)).

Here, z ∈ R
3
+ is arbitrary and [p1(k)]B(z,2)(t) signifies the average over B(z, 2) for the even extension.

Using (2.12) and local regularity theory for heat equation (e.g Appendix of [9]), obtain:

‖∇U1,2
(k)odd

‖Ls(B(z,1)×] A
2 ,0[) � C(d, s,A).

Thus: ‖∇U(k)‖Ls,unif (Q+
A
2

) � C(d, s,A). Notice that for x′ ∈ R
2, y ∈ R

3
+ and t > 0, we have

lim
ε→0+

G2
ij(x

′, ε, y, t) = 0.

Thus, using additional properties of the heat kernel and the properties of the approximations u(k) and
p1(k), it can be obtained that ∇Ui(k)(x, t) is bounded in Q+

A. Furthermore, for (x′, t) ∈ R
2×]A, 0[ one

obtains

lim
ε→0

Ui(k)(x′, ε, t) = 0.

Hence, we obtain a weak derivative formula for classes of test functions not necessarily zero on x3 = 0.
That is, for ϕ ∈ C∞

0 (QA):
0∫

A

∫

R
3
+

Ui(k)(y, τ)∂jϕ(y, τ)dydτ = −
0∫

A

∫

R
3
+

∂jUi(k)(y, τ)ϕ(y, τ)dydτ. (2.16)

So using (2.8) one has that ‖∇u‖Ls,unif (Q+
A−1)

� C(d, s,A) and that (2.16) holds also for u (note one can

replace Q+
A with Q+

− and A with −∞ here). Next, fix δ < 0, with |δ| small and let k be sufficiently large
such that δ + 1

k < 0. Observing the structure of the approximations u(k), the analogue of (2.16) (with u)
gives for (x, t) ∈ Q+

A,δ:

∂jui(k)(x, t) =

0∫

A−1

η 1
k
(t − τ)

∫

R
3
+

ω 1
k
(x − y)

∂

∂yj
φk(y)u( 2

k )
i (y, τ)dydτ

+

0∫

A−1

η 1
k
(t − τ)

∫

R
3
+

ω 1
k
(x − y)φk(y)(∂jui)(

2
k )(y, τ)dydτ. (2.17)

Thus the improvement of u gives (for sufficiently large k � K(δ)):

‖∇u(k)‖Ls,unif (Q+
A,δ) � C(d, s,A). (2.18)

Now p1(k) satisfies (for appropriate even and odd extensions of p1(k) and ui(k)uj(k))

Δp1(k)(x, t) = −divdiv(u(k)(x, t) ⊗ u(k)(x, t))

in QA. Local regularity theory for Laplace equation gives:

‖∇p1(k)‖Ls,unif (Q+
A,δ) � C(d, s,A). (2.19)

Using local regularity theory for heat equation, we find from (2.15):

‖∂tU
1,2
i(k)odd

‖Ls(B(z,1)×] 3A
8 ,δ[) + ‖∇2U1,2

i(k)odd
‖Ls(B(z,1)×] 3A

8 ,δ[) � C(d, s,A). (2.20)

For s sufficiently large it is seen that ∇U1,2
i(k) is bounded (in fact Hölder continuous) in Q+

3A
8 ,δ

with

sup
Q+

3A
8 ,δ

|∇U1,2
i(k)(x, t)| � C(d, s,A). (2.21)
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To estimate ∇U2,2
(k) we need the following statement, whose proof is contained in the Appendix.

Lemma 2.4. Suppose f is in Ls,l,unif (Q+
A). Furthermore assume that 1 < s � l � ∞ along with:

3
s

+
2
l

< 1. (2.22)

Then it follows that for (x, t) in Q+
A

t∫

A

∫

R
3
+

|∇yG2(x, y, t − τ)f(y, τ)|dydτ < ∞.

Furthermore,

sup
(x,t)∈Q+

A

t∫

A

∫

R
3
+

|∇yG2(x, y, t − τ)f(y, τ)|dydτ � C(A, s, l)‖f‖Ls,l,unif (Q+
A).

Remark 2.5. Observing (2.2), we see that Lemma 2.4 holds if we replace ∇y with ∇x.

Now, using Lemma 2.4 (in particular Remark 2.5), (2.18) and (2.19), we find:

sup
Q+

A,δ

|∇U2,2
(k) (x, t)| � C(d, s,A). (2.23)

Hence, supQ+
A
2 ,δ

|∇U(k)(x, t)| � C(d, s,A). The conclusion regarding boundedness of the gradient of u in

Q+
− is inferred from taking limits and time-shift arguments.
The statement regarding ‖p1‖L∞(BMO) is deduced from (2.12). It remains to prove

sup(x,t)∈Q+
−

|∇p1(x, t)| � C(‖u‖L∞(Q+
−)). Notice from (1.6) that for (x, t) ∈ Q+

A,δ:

divu(k)(x, t) =

0∫

A−1

η 1
k
(t − τ)

∫

R
3
+

ω 1
k
(x − y)∇φk(y).u( 2

k )(y, τ)dydτ. (2.24)

From the latter, it follows that div u(k) and ∇div u(k) are bounded function in space–time and in k. Local
regularity for Laplace equation gives (for the even extension of the pressure):

sup
t∈]A,δ[

‖∇2p1(k)(·, t)‖Ls(B(z,1)) + ‖∇p1(k)(·, t)‖Ls(B(z,1)) � C(s, d,A). (2.25)

The conclusion is then reached by arguments similar to those previously mentioned. Proposition 2.3 is
proven. �

Before proceeding the proof of Theorem 1.3, let us adopt the notation:

R
3
γ : = {(x′, x3) ∈ R

3 : |x3| � γ},

R
3
γ+ : = R

3
+ ∩ R

3
γ .

Proposition 2.6. Suppose all the assumptions of Proposition 2.3 hold. Then u also satisfies:

‖∂tu‖Ls,unif (Q+
A) � C(d, s,A) (2.26)

(for any A ∈] − ∞, 0[).
sup

x∈R
3
γ+, t∈]−∞,0[

|∂tu(x, t)| � C(d, γ). (2.27)
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Proof of Proposition 2.6. First notice that, due to estimates (2.2), there exists a positive constant C
(independent of x ∈ R

3
+ and ε > 0) such that:

∫

R
3
+

|G2(x, y, ε)|dy � C

√
ε

x3
. (2.28)

Note that properties of the approximation scheme imply F k
jl and p1(k) are smooth on R

3
+×]A, 0[ with

bounded derivatives (the bounds may be dependent on k). Change variables to get:

U2,2
i(k)(x, t) =

t−A∫

0

∫

R
3
+

G2
ij(x, y, λ)

[ ∂

∂yl
F k

jl(y, t − λ) +
∂

∂yj
p1(k)(y, t − λ)

]
dydτ.

It follows that differentiation in time is permissible and gives:

∂

∂t
U2,2

i(k)(x, t) = −
t−A∫

0

∫

R
3
+

G2
ij(x, y, λ)

∂

∂λ

[
∂

∂yl
F k

jl(y, t − λ) +
∂

∂yj
p1(k)(y, t − λ)

]
dydτ

+
∫

R
3
+

G2
ij(x, y, t − A)

[
∂

∂yl
F k

jl(y,A) +
∂

∂yj
p1(k)(y,A)

]
dy.

Notice we have (for ε > 0):

−
t−A∫

ε

∫

R
3
+

G2
ij(x, y, λ)

∂

∂λ

[
∂

∂yl
F k

jl(y, t − λ) +
∂

∂yj
p1(k)(y, t − λ)

]
dydλ

= −
∫

R
3
+

G2
ij(x, y, t − A)

[
∂

∂yl
F k

jl(y,A) +
∂

∂yj
p1(k)(y,A)

]
dy

+
∫

R
3
+

G2
ij(x, y, ε)

[
∂

∂yl
F k

jl(y, t − ε) +
∂

∂yj
p1(k)(y, t − ε)

]
dy

+

t−A∫

ε

∫

R
3
+

∂

∂λ
G2

ij(x, y, λ)
[

∂

∂yl
F k

jl(y, t − λ) +
∂

∂yj
p1(k)(y, t − λ)

]
dydλ.

Thus using (2.28) and estimates (2.2)–(2.3) obtain:

∂

∂t
U2,2

i(k)(x, t) = −
t∫

A

∫

R
3
+

∂

∂t
G2

ij(x, y, t − τ)
[

∂

∂yl
F k

jl(y, τ) +
∂

∂yj
p1(k)(y, τ)

]
dydτ. (2.29)

We know that ‖∇F k‖L∞(Q+
A,δ) + ‖∇p1(k)‖L∞(Q+

A,δ) � C(d). So, using the estimate (2.4), it is deduced

that for (x, t) ∈ Q+
A,δ:

|∂tU
2,2
(k) (x

′, x3, t)| � log
(

2 − A +
(−A)2 − A

x2
3

)
(2.30)

and

sup
(x,t)∈Q+

A
2

(|∂tU
2,1
i(k)(x, t)| + |∂tU

1,1
i(k)(x, t)|) � C(d,A).
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Thanks to (2.20), we get
‖∂tU(k)‖Ls,unif (Q+

3A
8 ,δ

) � C(d, s,A). (2.31)

In this way (2.26) can be inferred.
To prove (2.27) it is sufficient to show:

sup
x∈R

3
γ+, t∈] A

4 ,δ[

|∇2U1,2
(k) (x

′, x3, t)| � c(d, γ,A). (2.32)

Observing (2.13), (2.14) and (2.20) it is clear that:

sup
z∈R

3
γ+

‖∇2U(k)‖Ls(B(z, γ
2 )×] 3A

8 ,δ[) � c(d, s,A, γ). (2.33)

By previously mentioned arguments we infer:

sup
z∈R

3
γ+

‖∇2u‖Ls(B(z, γ
2 )×]A,0[) � c(d, s,A, γ)

and

sup
z∈R

3
γ+

‖∇2u(k)‖Ls(B(z, γ
2 )×]A,δ[) � c(d, s,A, γ).

Using also (2.25), one obtains higher regularity for (2.15) through local regularity results for the heat
equation. A parabolic imbedding theorem then gives (2.32). Proposition 2.6 is proven. �

The next Proposition will improve the previously obtained regularity results. But, first let us state a
lemma, which is a simplified version of a more general statement proven in the Appendix, see Lemma 5.1.

Lemma 2.7. Suppose the measurable kernel K : Rn\{0} → R satisfies the conditions (see [21]):

|K(x)| � B|x|−n, for 0 < |x| (2.34)∫

|x|�2|y|

|K(x − y) − K(x)|dx � B, for 0 < |y| (2.35)

and ∫

R1<|x|<R2

K(x)dx = 0, for 0 < R1 < R2 < ∞. (2.36)

For suitable f define the singular integral operator:

Tf(x) := lim
ε→0

∫

|x−y|�ε

K(x − y)f(y)dy. (2.37)

Take a compactly supported function g in Lp(Rn), where 1 < p < ∞. Furthermore assume g is in
L∞(Rn

�1). Then it follows that (almost everywhere)

Tg(x) = h1(x) + h2(x). (2.38)

Here,
‖h1‖BMO(Rn) � C(n,B)‖g‖L∞(Rn

�1)
(2.39)

and
‖h2‖Lp,unif (Rn) � C(n, p,B)‖g‖Lp,unif (Rn). (2.40)

Proposition 2.8. Assume u satisfies the all the assumptions of Proposition 2.3. Then:

sup
(x,t)∈Q+

−

(|∂tu(x, t)|) + ‖∂tp
1‖L∞(BMO) � C(‖u‖L∞(Q+

−)). (2.41)
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Proof. Fix δ < 0, with |δ| small. From Proposition 2.6, we have (for k � K(δ) sufficiently large):

‖∂tu(k)‖Ls,unif (Q+
A,δ) � C(d, s,A) (2.42)

and
sup

x∈R
3
γ+, t∈]A,δ[

|∂tu(k)(x, t)| � C(d, γ). (2.43)

It is clear that ∂tp
1(k) = p1

∂t(u(k)⊗u(k))
and furthermore Lemma 2.7 is applicable to a suitable extension

of ∂t(u(k) ⊗ u(k)) for n = 3. Hence, it can be written that ∂tp
1(k) = (∂tp

1(k))1 + (∂tp
1(k))2. Here,

‖(∂tp
1(k))1‖L∞(]A,δ[;BMO(R3) � C(d) (2.44)

and
‖(∂tp

1(k))2‖Ls,unif (Q+
A,δ) � C(d, s,A). (2.45)

Next, it is easy to see that the following is satisfied in D′
(Q+

A,δ):

∂2
t U1,2

(k)odd
− Δ∂tU

1,2
(k)odd

= −divH̃k, (2.46)

where H̃iαk = (Hk
iα)odd, α = 1, 2, and H̃k

i3 = (Hk
i3)

even, i = 1, 2, 3,

Hk
ij(x, t) : = ∂tF

(k)
ij (x, t) + δij(∂tp

1(k))1(x, t) − [(∂tp
1(k))1]B(z,2)(t))

+ δij(∂tp
1(k))2(x, t).

Here, z ∈ R
3
+ is arbitrary. Hence, (2.31), (2.42), (2.44), (2.45 ), and local regularity of heat equation (for

sufficiently large s > n + 2) gives:

sup
(x,t)∈Q+

A
4 ,δ

|∂tU
1,2
(k)odd

(x, t)| � C(d, p,A). (2.47)

Now, let us examine ∂tU
2,2
i(k). One can write:

∂tU
2,2
(k) (x, t) = −

∫

R
3
+

G2
ij(x, y, t − A)

[
∂

∂yl
F

(k)
jl (y,A) +

∂

∂yj
p1(k)(y,A)

]
dy

+

t∫

A

∫

R
3
+

∂

∂yl
G2

ij(x, y, t − τ)
[

∂

∂t
F

(k)
jl (y, τ) + δjl

∂

∂t
p1(k)(y, τ)

]
dydτ.

Proposition 2.3 implies that the first term is bounded on Q+
A
2

by a constant depending only on ‖u‖L∞(Q+
−)

and A. For the second term, decompose as follows:
t∫

A

∫

R
3
+

∂

∂yl
G2

ij(x, y, t − τ)
[

∂

∂t
F

(k)
jl (y, τ) + δjl

∂

∂t
p1(k)(y, τ)

]
dydτ

=

t∫

A

∫

R
3
+

∂

∂yl
G2

ij(x, y, t − τ)
[

∂

∂t
F

(k)
jl (y, τ) + δjl

( ∂

∂t
p1(k)

)
2
(y, τ)

]
dydτ

+

t∫

A

∫

R
3
+

∂

∂yl
G2

ij(x, y, t − τ)δjl

(( ∂

∂t
p1(k)

)
1
(y, τ) −

[( ∂

∂t
p1(k)

)
1

]
B((x′ ,0),a)

(τ)
)
dydτ. (2.48)

Here, a = (x2
3 + t− τ)

1
2 . For the first part of (2.48) use Lemma 2.4 along with estimates (2.42) and (2.45)

to infer that it is bounded on Q+
A,δ by a constant depending only on A and d = ‖u‖L∞(Q+

−). For the
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second part, use (2.44) and arguments from [16] to infer that it is bounded on Q+
A,δ by a constant only

depending on d = ‖u‖L∞(Q+
−). Thus, putting everything together one has:

sup
(x,t)∈Q+

A,δ

|∂tU(k)(x, t)| � C(d,A). (2.49)

Arguing as before and using time shift argument, one can get all of the stated conclusions. Proposition 2.8
is proven. �

The next Proposition briefly describes how the aforementioned arguments can be bootstrapped to
obtain analogous statements involving higher time derivatives of u.

Proposition 2.9. Suppose u ∈ L∞(Q+
−) satisfies all the assumptions of Theorem 1.3. Then conclude that:

sup
(x,t)∈Q+

−

(|∂k
t u(x, t)| + |∇∂k

t u(x, t)| + |∇∂k
t p1(x, t)|)

+ ‖∂k
t p1‖L∞(BMO) � C(k, l, ‖u‖L∞(Q+

−)) < ∞ (2.50)

for any k= 0, 1. . .

Proof of Proposition 2.9. We give a brief account of the bootstrap arguments. Clearly ∂tu also satisfies
(1.6). By properties of the kernel, if ϕ ∈ C∞

0 (QA) then the following holds:
0∫

A

∫

R
3
+

∂l
τϕ(y, τ)Ui(k)(y, τ)dydτ = (−1)l

0∫

A

∫

R
3
+

ϕ(y, τ)∂l
τUi(k)(y, τ)dydτ (2.51)

and
0∫

A

∫

R
3
+

∂yq
∂l

τϕ(y, τ)Ui(k)(y, τ)dydτ = (−1)l+1

0∫

A

∫

R
3
+

ϕ(y, τ)∂yq
∂l

τUi(k)(y, τ)dydτ. (2.52)

From Proposition 2.8, we can write:
∂

∂t
Ui(k)(x, t) =

∂

∂t
Si(u(k)A)(x, t) + U ′

i(k)(x, t, A)

−
t∫

A

∫

R
3
+

Gij(x, y, t − τ)
[

∂2

∂yl∂τ
F

(k)
jl (y, τ) +

∂

∂yj
p1

∂
∂t (u(k)⊗u(k))

(y, τ)
]
dydτ. (2.53)

Here,

U ′
i(k)(x, t, A) = −

∫

R
3
+

Gij(x, y, t − A)
[

∂

∂yl
F

(k)
jl (y,A) +

∂

∂yj
p1(k)(y,A)

]
dy

and

Si(u(k)A)(x, t) :=
∫

R
3
+

Gij(x, y, t − A)uj(k)A(y)dy.

So using Proposition 2.3 along with Green function estimates (2.2) and (2.4) get that:

sup
(x,t)∈Q+

A
2

(|∂k
t ∇lS(uAk

)(x, t)| + |∂k
t ∇lU ′

i(k)(x, t)|) � C(A, k, l, ‖u‖L∞(Q+
−)) (2.54)

any k, l = 0, 1. . .
The third term of (2.53) is dealt with by splitting the integral according to the kernel decomposition

(1.7). The arguments are now repeated from Propositions 2.3–2.8. It is possible to repeat this argument
indefinitely with higher time derivatives. Proposition 2.9 is proven. �
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Now, one can recover a pressure p such that in Q+
−:

u · ∇u − Δu + ∇p = −∂tu, div u = 0

in Q+
− ,

u(x′, 0, t) = 0

for any x′ ∈ R
2 and any −∞ < t < 0. By considering higher derivatives in time of these equations and

Proposition 2.9, one can obtain Theorem 1.3 using the regularity theory of the stationary Stokes system
together with bootstrap arguments. �

3. Proof of Theorem 1.4

Lemma 3.1. Assume that a bounded function u satisfies conditions (1.10), (1.11), (1.6), and (1.12) of
Theorem 1.4. Then ∇u ∈ L∞(Q+

−). The function u is infinitely smooth in spatial variables in upper half
space x3 > 0.

Proof. Let z0 = (x′
0, 0, t0), Q+(z0, R) = B+(x0, R)×]t0−R2, t0[, and Rk = R−R

k∑
i=1

2−i−1 for k = 1, 2, . . .,

and R0 = R. Let ϕ ∈ C∞
0 (B(x0, R)×]t0 − R2, t0 + R2[) and let v := uϕ and R = 1. Then

∂tv − Δv = f1 + f2,

where

f1 := −ϕ∇p2 + u(∂tϕ + Δϕ) + u · ∇ϕu + (p1 − [p1]B(x0,1))∇ϕ

and

f2 := −div(2u ⊗ ∇ϕ + ϕ(u ⊗ u + (p1 − [p1]B(x0,1))I)).

Moreover, v = 0 satisfies ∂′Q+(z0, 1). We can split v into two parts v = v1 + v2 so that

∂tv
1 − Δv1 = f1

and v1 = 0 on ∂′Q+(z0, 1). By our assumptions,

‖f1‖s,∞,Q+(x0,1) ≤ c(s)

for any 1 < s < ∞. Therefore we can claim that

|∇v1| ≤ c

on Q+(z0, 3/4) with a constant independent of z0.
Notice that by our assumptions we may write f2 = div(F2), where

‖F2‖s,∞,Q+(x0,1) � c(s).

So using boundary regularity theory for the heat equation, we can say that

‖∇v2‖s,Q(z0,3/4) ≤ c.

Then we can see that, since

Δp1 = −div(u · ∇u)

with Neumann boundary condition on the flat part of the boundary, we infer that

‖∇p1‖s,Q+(z0,(3/4+5/8)/2) ≤ c.

This means that

‖∂tu‖s,Q+(5/8) + ‖∇2u‖s,Q+(5/8) ≤ c

and thus by the parabolic imbedding theorem (for large enough s)

|∇u| ≤ c
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on Q+(z0, 1/2) with a constant independent of z0. So, we have boundedness near the boundary. To get
the interior estimate, we can use the same arguments that used for mild bounded ancient solutions in the
whole space.

In fact, we have even more ∇u is continuous up the boundary and

‖∂tu‖s,Q(z0,1)∩Q+
−

+ ‖∇2u‖s,Q(z0,1)∩Q+
−

≤ c(s)

for any s > 1. Lemma 3.1 is proven. �

We wish to show that u has the following properties. For any A < 0,

u = u1 + u2,

where

u1(x, t) =
∫

R
3
+

G(x, y, t − A)u(y,A)dy

and

u2
i (x, t) =

t∫

A

∫

R
3
+

Kijm(x, y, t − τ)uj(y, τ)um(y, τ)dydτ

in QA.
Let us go back to Lemma 2.1 and its proof. Take F and its approximations Fm are from that lemma

and its proof. Solonnikov showed in [19] that vm given by the formula

vm(x, t) =
∫

R
3
+

G(x, y, t − A)u(y,A)dy +

t∫

A

∫

R
3
+

K(x, y, t − s)Fm(y, s)dyds

=
∫

R
3
+

G(x, y, t)u(y,A)dy +
∫ t

A

∫

R
3
+

Gij(x, y, t − s)fm
j (y, s)dy

satisfies the identity: ∫

Q+
A

vm · ∇qdz = 0

for any q ∈ C∞
0 (QA), where Q+

A := R
3
+×]A, 0[ and QA := R

3×]A, 0[,∫

Q+
A

vm · (∂tϕ + Δϕ)dxdt +
∫

R
3
+

u(x,A) · ϕ(x,A)dx = −
∫

Q+
A

fm · ϕdxdt

for any divergence free functions ϕ ∈ C∞
0 (Q−) with ϕ(x′, 0, t) = 0 for any x′ ∈ R

2 and for any t < 0.
Since ∫

R
3
+

|G(x, y, t)|dy ≤ c,

we can use boundedness and pass to the limit as m → ∞.
As a result, we have ∫

Q+
A

v · ∇qdz = 0
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for any q ∈ C∞
0 (QA), where QA := R

3×]A, 0[. Here, v is defined as u1 + u2. Furthermore, for any
divergence free functions ϕ ∈ C∞

0 (Q−) with ϕ(x′, 0, t) = 0 for any x′ ∈ R
2 and for any t < 0:∫

Q+
A

v · (∂tϕ + Δϕ)dxdt +
∫

R
3
+

u(x,A) · ϕ(x,A)dx = −
∫

Q+
A

f · ϕdxdt.

Now assume that F = u ⊗ u. From the the previous pages, it is clear that u is continuous in the
completion of Q+(R) := B+(R)×] − R2, 0[. Then using cut-off functions in time, we can show that u
satisfies the same identity as v. And thus letting w = u − v, we get∫

Q+
A

w · ∇qdz = 0

for any q ∈ C∞
0 (QA), ∫

Q+
A

w · (∂tϕ + Δϕ)dxdt = 0

for any divergence free functions ϕ ∈ C∞
0 (Q−) with ϕ(x′, 0, t) = 0 for any x′ ∈ R

2 and for any t < 0. If
we extend w by zero for t ≤ A, we find ∫

Q+
−

w · ∇qdz = 0

for any q ∈ C∞
0 (Q−), ∫

Q+
−

w · (∂tϕ + Δϕ)dxdt = 0

for any divergence free functions ϕ ∈ C∞
0 (Q−) with ϕ(x′, 0, t) = 0 for any x′ ∈ R

2 and for any t < 0.
By the Liouville theorem (see [3,4]), w = w(x3, t). We need to show that w ≡ 0 in Q+

A. To this end,
it is sufficient to show that for x

′ ∈ R
2 and t ∈]A, 0[, one has ∇q2(x′, x3, t) → 0 as x3 → ∞. Here, q2 is

the pressure for v so that

∂tv − Δv + ∇q2 = f

in Q+
A. If split v = v1 + v2 so that vi corresponds to the Green function Gi. Then, clearly,

∂tv
1 − Δv1 = f

in Q+
A,

v1(x′, 0, t) = 0

for x′ ∈ R
2 and A < t < 0, and

v1(·, 0) = u0(·).
Thus,

∇q2 = Δv2 − ∂tv
2.

On the other hand, we have v2 = v2,1 + v2,2, where

v2,1(x, t) =
∫

R3

G2(x, y, t − A)u0(y)dy
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and

v2,2(x, t) =

t∫

A

∫

R3

G2(x, y, t − s)f(y, s)dyds.

Using reasoning from Proposition 2.6, obtain

|∂tv
2,1(x, t)| ≤ c

t − A

∫

R
3
+

1
(|x′ − y′|2 + x2

3 + y2
3 + t − A)

3
2
e− cy2

3
t−A dy′dy3

≤ c

t − A

∞∫

0

1
(x2

3 + y2
3 + t − A)

1
2
e− cy2

3
t−A dy3

≤ c(t − A)− 1
2 ((x2

3 + t − A)− 1
2 → 0

as x3 → ∞. Next, since G2(x, y, 0) = 0, then

|∂tv
2,2(x, t)| ≤ c

t∫

A

(t − s)− 1
2 ((x2

3 + t − s)− 1
2 ds → 0

as x3 → ∞.
Regarding v2,2, we have

|∇2v2,1(x, t)| ≤ c

t − A + x2
3

∫

R
3
+

1
(|x′ − y′|2 + x2

3 + y2
3 + t − A)

3
2
e− cy2

3
t−A dy′dy3

≤ c(t − A + x2
3)

− 1
2 ((x2

3 + t − A)− 1
2 = c(t − A + x2

3)
−1 → 0

as x3 → ∞. Next,

|∇2v2,2(x, t)| ≤ c

t∫

A

(t − s + x2
3)

−1ds → 0

as x3 → ∞. So, we have the required decay for ∇q2 and thus we have for all A < 0 the following integral
representation:

u(x, t) : =
∫

R3

G(x, y, t − A)u(y,A)dy

+

t∫

A

∫

R3

G(x, y, t − s)div(u ⊗ u − p1
I)(y, s)dyds

=
∫

R3

G(x, y, t − A)u(y,A)dy +

t∫

A

∫

R
3
+

K(x, y, t − τ)u(y, τ) ⊗ u(y, τ)dydτ

for all t > A.
Now, our aim is to prove the inverse statement, i.e., we assume that bounded divergence free function

satisfied the latter identity for any A < 0. Introducing F = u ⊗ u and tensor H = F + p1
I and using

approximations of u, we can show that u is a distributional solution to the Navier–Stokes equations in
Q+

− and belongs to the space W 1
∞(Q+

−). This can be done in the same way as in [16] (the most difficult
part of that paper). We then can introduce the pressure p2 so that

∂tu − Δu + ∇p2 = −divH.
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Splitting u = u1 + u2 and repeating the aforesaid arguments, we can show that ∇p2 satisfies all require-
ments in the definition of bounded mild ancient solutions.

4. Proof of Proposition 1.1

Assume first that u satisfies the conditions of Proposition 1.1, i.e., there exists a pressure field p ∈
L∞(−∞, 0;BMO(R3)) such that∫

Q−

(
u · (∂tϕ + Δϕ) + u ⊗ u : ∇ϕ

)
dz = −

∫

Q−

p div ϕdz. (4.1)

Our aim is to show that, for any A < 0, the function satisfies the integral identity (1.3). First, let us
notice that the pressure p (up to a bounded function of time t) is formally represented as follows:

p(x, t) = −1
3
|u(x, t)|2 +

1
4π

∫

R3

∇2
y

(
1

|x − y|
)

: u(y, t) ⊗ u(y, t)dy.

We know that mild bounded ancient solutions are infinitely smooth and all partial derivatives, apart
from derivatives in time of the pressure, are bounded. The derivatives ∂k

t p, k = 0, 1, . . ., belong to
L∞(−∞, 0;BMO(R3), see [13]. So, we re-write the Navier–Stokes equations in the following way:

∂tu − Δu = f, divu = 0

in Q−, where f := −div u⊗u−∇p. We know that f is infinitely smooth and all its derivative are bounded.
Then, by Tychonoff’s uniqueness theorem,

u(x, t) :=
∫

R3

Γ(x − y, t)u(y,A)dy +

t∫

A

∫

R3

Γ(x − y, t − s)f(y, s)dyds

for t > A and for all A < 0. It remains to show that
t∫

A

∫

R3

ΔyΦ(x − y, t − s)fi(y, s)dyds =

t∫

A

∫

R3

Γ(x − y, t − s)fi(y, s)dyds

=

t∫

A

∫

R3

Kijm(x − y, t − τ)uj(y, τ)um(y, τ)dydτ

for any A < 0. To this end, we introduce as notation pF which is the BMO-solution to to equation
Δp = −divdivF in R

3 with [pF ]B = 0. We deduce the required identity from the following lemma.

Lemma 4.1. Let F be a bounded smooth function in R
3 having all derivatives bounded there. Then, for

any positive s, ∫

R3

ΔyΦ(x − y, s)fi(y)dy =
∫

R3

Γ(x − y, s)fi(y)dy

=
∫

R3

Kijm(x − y, s)Fjm(y)dy,

where f = −divF − ∇pF .

The proof can be done with the help of suitable approximation of F and the following estimates:

|∇k
xΦ(x, t)| ≤ c(k)

(t + |x|2) 1+k
2
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and

|∇kΓ(y, 1)| ≤ c(k)

(1 + |y|2) 3+k
2

e− |y|2
8 .

The first one is due to Solonnikov, see [17]), and the second one is well known.
Inverse statement of Proposition 1.1 can be easily deduced from the above lemma and suitable ap-

proximations of u. This completes the proof of Proposition 1.1.

Open Access. This article is distributed under the terms of the Creative Commons Attribution 4.0 International Li-
cense (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in
any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made.

5. Appendix

Proof of Lemma 2.4. For x′ in R
2, denote by QR2(x

′
, R) a cube in R

2 centred at x′ with sides of length
2R that are parallel to the coordinate axes. Define the space cylinders and the space–time cylinders:

C(x′, R,m) := QR2(x
′
, R)×]m,m + 1[,

C(x′, R,m,A, t) := C(x′, R,m)×]A, t[.

After a decomposition of the domain, consider the following integrals separately (R = 1, 2, 3 . . . and
m = 0, 1, 2 . . .):

I(m, 1, x, t) : =
∫

C(x′,1,m,A,t)

|∇yG2(x, y, t − τ)f(y, τ)|dydτ (5.1)

I(m,R, x, t) : =
∫

C(x′,R+1,m,t,A)\C(x′,R,m,t,A)

|∇yG2(x, y, t − τ)f(y, τ)|dydτ. (5.2)

First consider I(0, 1, x, t). Let

J(x, y, t − τ) = (|x − y∗|2 + t − τ)− 3
2 exp

(
− cy2

3

t − τ

)
.

From the Solonnikov estimates (2.2):

I(0, 1, x, t) � c

∫

C(x′,1,0,A,t)

(t − τ)− 1
2 J(x, y, t − τ)|f(y, τ)|dydτ.

Then by the Hölder inequality we have

|I(0, 1, x, t)|l′ � c‖f‖l′

Ls,l,unif (Q+
A)

t∫

A

⎛
⎜⎝

∫

C(x′,1,0)

(t − τ)− s′
2 |J(x, y, t − τ)|s′

dy

⎞
⎟⎠

l′
s′

dτ.

We get after a change of variables

t∫

A

⎛
⎜⎝

∫

C(x′,1,0)

(t − τ)− s′
2 |J(x, y, t − τ)|s′

dy

⎞
⎟⎠

l′
s′

dτ

http://creativecommons.org/licenses/by/4.0/
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�
t∫

A

(t − τ)−2l′+ 3l′
2s′

⎛
⎜⎝

∫

R
3
+

(|z|2 + 1)
3s′
2 exp (−cs′z2

3)dz

⎞
⎟⎠

l′
s′

dτ

� c(s, l)

−A∫

0

λ−2l′+ 3l′
2s′ dλ.

This quantity is finite if and only if (2.22) holds.
For I(m, 1, x, t), with m � 1, the Hölder inequality gives

|I(m, 1, x, t)|l′ � c‖f‖l′

Ls,l,unif (Q+
A)

t∫

A

⎛
⎜⎝

∫

C(x′ ,1,m)

(t − τ)− s′
2 |J(x, y, t − τ)|s′

dy

⎞
⎟⎠

l′
s′

dτ.

For the second factor we have

t∫

A

⎛
⎜⎝

∫

C(x′,1,m)

(t − τ)− s′
2 |J(x, y, t − τ)|s′

dy

⎞
⎟⎠

l′
s′

dτ

�
t∫

A

⎛
⎜⎝

∫

Q
R2 (0,1)

exp
(

− cm2s′
t−τ

)

(t − τ)
s′
2

(|y′|2 + t − τ)
−3s′

2 dy′

⎞
⎟⎠

l′
s′

dτ � C(s,A)
m2

.

Here for the final line the following fact is used (for α > 0):

sup
x>0

xα exp(−x) � C(α).

Now, consider I(0, R, x, t). Initially using same arguments as for I(0, 1, x, t), we have

|I(0, R, x, t)|l′ � ‖f‖l′

s,l,C(x′ ,R+1,0,A,t)\C(x′,R,0,A,t)

×
t∫

A

⎛
⎜⎝

∫

C(x′ ,R+1,0)\C(x′ ,R,0)

(t − τ)− s′
2 J(x, y, t − τ)s′

dy

⎞
⎟⎠

l′
s′

dτ

� c(s, l)R
l′
s ‖f‖l′

Ls,l,unif (Q+
A)

×
t∫

A

⎛
⎜⎝

∫

C(x′,R+1,0)\C(x′,R,0)

(t − τ)− s′
2 J(x, y, t − τ)s′

dy

⎞
⎟⎠

l′
s′

dτ

� c(s, l)R
l′
s ‖f‖l′

Ls,l,unif (Q+
A)

×
t∫

A

(t − τ)
−l′
2

⎛
⎜⎝

∫

Q
R2 (x′,R+1)\Q

R2 (x′,R)

|x′ − y′|−3s′
dy′

⎞
⎟⎠

l′
s′

dτ

� c(s, l)R−3l′+ 2l′
s′ + l′

s ‖f‖l′

Ls,l,unif (Q+
A)

−A∫

0

λ
−l′
2 dλ.
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By (2.22), l > 2 and thus l′ < 2. So, the last factor is finite. Hence,

|I(0, R, x, t)| � c(A, s, l)R−1− 1
s ‖f‖Ls,l,unif (Q+

A).

Similar arguments to before give, for m � 1,

|I(m,R, x, t)| � c(A, s, l)
m2

R−1− 1
s ‖f‖Ls,l,unif (Q+

A).

Summing over m and R we then conclude. �

Lemma 5.1. Let n � 3. Denote Δ := {(x, y) ∈ R
n × R

n : x �= y}. Suppose the measurable kernel
K : Rn × R

n\Δ → R is such that there exists M > 0 with:

|K(x, y)| � M

|x − y|n . (5.3)

Define the truncation (on Lp(Rn), 1 < p < ∞):

Tε(f)(x) :=
∫

|x−y|≥ε

K(x, y)f(y)dy. (5.4)

Suppose, for this kernel, there exists bounded linear operator T : Lp(Rn) → Lp(Rn) (1 < p < ∞) such
that: that for f ∈ Lp(Rn) (1 < p < ∞):

‖Tε(f) − T (f)‖Lp(Rn) → 0, (5.5)

‖T (f)‖Lp(Rn) � c(K,n)‖f‖Lp(Rn). (5.6)

Furthermore for f ∈ L∞(Rn) compactly supported:

‖T (f)‖BMO(Rn) � c(K,n)‖f‖L∞(Rn). (5.7)

Here, C(K,n) means that the constant depends on the properties of the Kernel (e.g some smoothness of
the kernel) and the dimension of the space.
Consider an unbounded domain Ω ⊂ R

n that is contained between two n − 1 dimensional parallel hyper-
planes (denoted Π1 and Π2 respectively) a finite distance 2L apart. Take g to be a compactly supported
function in Lp(Rn) (for 1 < p < ∞) such that g is non-zero and bounded outside of Ω.
Then it follows that:

Tg(x) = h1(x) + h2(x). (5.8)

Here,
‖h1‖BMO(Rn) � c(K,n)‖g‖L∞(Rn\Ω) (5.9)

and
‖h2‖Lp,unif (Rn) � c(K,M,n, p, L)‖g‖Lp,unif (Rn). (5.10)

Proof of Lemma 5.1. For x′ in R
n−1, denote by QRn−1(x

′
, R) a cube in R

n−1 with side lengths 2R centred
at x′.
First one shows that, without loss of generality, it is sufficient to reduce to the case where:

Π1 = {(x′, L) : x′ ∈ R
n−1}, (5.11)

Π2 = {(x′,−L) : x′ ∈ R
n−1}. (5.12)

Let A : Rn → R
n be a rotation of Rn. It can be inferred that:

Tε(g)(A(x)) =
∫

|x−y|≥ε

K(A(x), A(y))g(A(y))dy. (5.13)

If one lets
K̄(x, y) := K(A(x), A(y)), (5.14)



Vol. 17 (2015) Ancient Solutions to Navier–Stokes Equations in Half Space 573

clearly K̄ satisfies (5.3). Define the truncation operator (for f ∈ Lp(Rn), 1 < p < ∞):

Sε(f)(x) :=
∫

|x−y|�ε

K̄(x, y)f(y)dy. (5.15)

By rotation invariance of Lp(Rn) and BMO(Rn), it is inherited from Tε and T that there exists a bounded
linear operator S : Lp(Rn) → Lp(Rn) (where 1 < p < ∞) such that (5.5)–(5.7) hold. Since the space
Lp,unif (Rn) is rotation invariant, rotations of Ω can be considered without loss of generality.
Fix z1 ∈ R

n. It can be inferred that:

Tε(g)(x − z1) =
∫

|x−y|≥ε

K(x − z1, y − z1)g(y − z1)dy. (5.16)

Let
K̄(x, y) := K(x − z1, y − z1). (5.17)

Using the spaces BMO(Rn), Lp(Rn) and Lp,unif (Rn) are translation invariant, one can use the afore-
mentioned arguments to show that translations of Ω can be considered without loss of generality.
From now on take Π1 as in (5.11) and Π2 as in (5.12).
Now decompose g:

g1(x′, xn) = (1 − χ]−L,L[(xn))g(x′, xn),

g2(x′, xn) = χ]−L,L[(xn)g(x′, xn).

By (5.7), get that h1(x) := T (g1)(x) satisfies (5.9). It remains to show h2(x) := T (g2(x)) satisfies (5.10).
By an identical argument to that showing translations of Ω are permissible, it is sufficient to prove:

sup
xn∈R

‖h2‖Lp(B((0,xn),1)) � c(K,M,n, p, L)‖g‖Lp,unif (Rn). (5.18)

Let us write g2 := g+
2 + g−

2 , where

g−
2 (x′, x3) = χQ

Rn−1 (0,2)(x′)g2(x′, xn). (5.19)

Further to this write h2 := h+
2 + h−

2 , where

h−
2 = T (g−

2 ). (5.20)

By (5.6), h−
2 satisfies the estimate (5.18) in place of h2. It remains to show the same for h+

2 . It can be
shown (for z in B((0, xn), 1)),

|h+
2 (z)| �

L∫

−L

∫

y′∈Rn−1\Q
Rn−1 (0,2)

M

|z′ − y′|n |g(y
′
, yn)|dy′dyn

� c(n,M)

L∫

−L

∫

y′∈Rn−1\Q
Rn−1 (0,2)

1
|y′|n |g(y′, yn)|dy′dyn

� c(n,M)
∞∑

N=2

L∫

−L

∫

Q
Rn−1 (0,N+1)\Q

Rn−1 (0,N)

1
|y′|n |g(y′, yn)|dy′dyn.

The domain QRn−1(0, N + 1)\QRn−1(0, N)×] − L,L[, can be seen to be covered by c(n)Nn−2 × �L� unit
cylinders. Here �L� is the smallest integer greater than L. Hence, by Hölder’s inequality:

L∫

−L

∫

Q
Rn−1 (0,N+1)\Q

Rn−1 (0,N)

1
|y′|n |g(y′, yn)|dy′dyn
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� c(n,L, p)N
n−2

p ‖g‖Lp,unif (Rn)

⎛
⎜⎝

∫

Q
Rn−1 (0,N+1)\Q

Rn−1 (0,N)

1
|y′|np′ dy′dyn

⎞
⎟⎠

1
p′

.

One can estimate for the second factor and get the bound:

c(n, p)

Nn− n
p′ + 1

p′
.

Thus,
L∫

−L

∫

Q
Rn−1 (0,N+1)\Q

Rn−1 (0,N)

1
|y′|n |g(y′, yn)|dy′dyn

� c(n,L, p)‖g‖Lp,unif (Rn)N
−(1+ 1

p ).

So it is obtained that:

|h+
2 (z)| � c(n,M,L, p)‖g‖Lp,unif (Rn)

∞∑
N=2

N−(1+ 1
p ).

From here all conclusions follow immediately. �
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