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Abstract. A family {Us}s∈S of bounded linear operators in a normed
space X is uni-asymptotic, when all its trajectories {Usx}s∈S with x �= 0
have the same norm-asymptotic behavior (see 1.5); {Us}s∈S is tight,
when the operator norm and the minimal modulus of Us have the same
asymptotic behavior (see 1.6). We prove that uni-asymptoticity is equiv-
alent to tightness if dimX < +∞, and that the finite dimension is essen-
tial. Some other conditions equivalent to uni-asymptoticity are provided,
including asymptotic formulae for the operator norm and for the tra-
jectories, expressed in terms of determinants detUs (see Theorem 1.7).
We find a connection of these abstract results with some results and
notions from spectral theory of Jacobi operators, e.g., with the H-class
property for transfer matrix sequence.
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0. Introduction

Many mathematical models describing “real” processes are built on the basis
of some families of operators. Typically, when we want to define a dynamical
system—a mathematical model for time dynamics of a real process, we try to
find a family {Us}s∈S

1of operators Us : X −→ X, which “codes the process
mathematically”. Then {Us}s∈S has the following “real” interpretation:

If the initial state of the process was x ∈ X, then the state of the
process at the time moment s ∈ S is Usx.

1In this paper we identify indexed family {fs}s∈S with the function on S given by: S �
s �−→ fs.
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Above S represents the set of “admissible moments of time”, and X—the set
of “admissible states” for the process. Hence, in this paper, for fixed x ∈ X,
we use the name trajectory (or orbit), when we consider the family {Usx}s∈S

of elements of X, obtained by a family {Us}s∈S of operators. Let us stress,
however, that the actual role of the mathematical objects X, S, {Us}s∈S and
{Usx}s∈S can be essentially different than their typical role as above—that
is, as in mathematical descriptions of some real processes, e.g, in physics
etc. As we shall see in Sect. 2 (see 2.28), those objects can be also useful
for mathematical description of some “purely mathematical” processes for
purely mathematical goals.

In this paper we consider only the linear case, i.e., X is a Banach space
here and all the operators Us are linear (and we shall mainly assume finite
dimension of X). However, some notions introduced here have also sense in
non-linear case, and they could be worth future research.

Section 1 is devoted to some abstract studies of so-called uni-asymptotic
families of operators, i.e., such families {Us}s∈S that all its non-zero trajec-
tories {Usx}s∈S have “the same norm-asymptotic behavior”. This precisely
means, that for any non-zero initial conditions x, y ∈ X we have

‖Usx‖ �s ‖Usy‖

(see 0.3). Although the word “asymptotic” may not fit well to the above
definition for the general S, it makes sense for some ordered S-s, e.g., for
S = Nn0 (see 0.1). The name “uni-asymptotic” is used also for linear spaces
consisting of some functions f = {f(s)}s∈S from S into X, with a natural
analogic meaning.

This section contains the main results of the paper—Theorems 1.5 and
1.7 on some equivalent conditions for uni-asymptoticity in finite dimension.
One of the most important observations is that the uni-asymptoticity is equiv-
alent to tightness, where {Us}s∈S is tight, when the operator norm and the
minimal modulus of Us have the same asymptotic behavior (see 1.6). Ex-
amples showing the necessity of the dim X < ∞ assumption are also pro-
vided. They show as well, that the apparent similarity of the problem to
the Banach–Steinhaus theorem is misleading. Another equivalent condition
are asymptotic formulae for each non-zero trajectory and for the operator
norm ‖Us‖, expressed in terms of determinants det Us (see (ii), (iii) in Theo-
rem 1.7). This seems to be a simple and, at the same time, unknown result,
with a potentially wide application.

Section 2 is an illustration of the above abstract results. It helps in better
understanding of some spectral results for Jacobi operators (matrices). Here
each Us, for s ∈ S := N2, is an appropriate product (see 2.28) of the so-called
transfer matrices for Jacobi operator J in infinite dimensional Hilbert space
l2(N). We consider also a more general case—so-called block Jacobi operator,
where the Hilbert space is l2(N,Cd) with any d ≥ 1. The dimension of X is
2 for “classical” (scalar) Jacobi case, and X = C

2d in block Jacobi case, so
it has nothing to do with the infinite dimension of the Hilbert space. The
trajectories are nearly related to generalized eigenvectors of Jacobi operator
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J—namely, they are so-called 2d - generalized eigenvectors2. We show here
that the uni-asymptoticity of {Un}n∈N2

is just equivalent to the well-known
H-class property of the transfer matrix family, and we describe the asymp-
totic behaviour of the norms of the vector terms of the above “eigenvectors”,
when the H-class property holds—see Theorem 2.7. It is expressed in a sim-
ple way by the determinants of the weight terms for J (see 2.29). Such a
behaviour of the norms of the vector terms for the scalar d = 1 case was de-
scribed before (without using the name H-classs) by some authors—see e.g.
[12]. Note also, that thanks to subordination theory [5], the uni-asymptoticity
of the set of 2-generalized eigenvectors (for the scalar case d = 1) is closely
related to the absolute continuity of J—see Theorem 2.5.

0.1. Notation

We introduce here some notation used in the paper. The remaining notation
is introduced “locally”. Let us denote:

C∗ :={z ∈ C : z �= 0}, R+ :={t ∈ R : t > 0}, Nn0 :={n ∈ Z : n ≥ n0}. (0.1)

For an arbitrary set S and f, g : S −→ C we define:

f ≺ g ⇐⇒ ∃C∈R+∀s∈S |f(s)| ≤ C|g(s)|; (0.2)

f � g ⇐⇒ ∃c,C∈R+∀s∈S c|g(s)| ≤ |f(s)| ≤ C|g(s)|, (0.3)

i.e., f � g iff (f ≺ g and g ≺ f). We shall use also alternative notations:

f(s)≺ g(s), f(s) ≺s g(s), f(s) ≺
s∈S

g(s)

and analogically for the � symbol.
Let X be a (real or complex) normed space with the norm ‖ ‖, and

suppose that dimX > 0. As usual, the same symbol ‖ ‖ is used here also
for the operator norm in the space of bounded linear operators B(X)—i.e.
‖A‖ := sup

‖x‖=1

‖Ax‖ for A ∈ B(X). We denote:

X∗ := {x ∈ X : x �= 0},

SX := {x ∈ X : ‖x‖ = 1},

B∗(X) := {A ∈ B(X) : Ker(A) = {0}}.

We shall use also the symbol ⇓ ⇓ for the so-called minimum modulus3 of A:

⇓A⇓:= inf
‖x‖=1

‖Ax‖.

Recall that if A ∈ B∗(X) and Ran(A) = X, then

‖A−1‖ = ⇓A⇓ −1, (0.4)

which covers also the case of ‖A−1‖ = +∞ with the convention 0−1 := +∞.

2The name C
2-vector-generalised eigenvector was also used for d = 1—see, e.g., [10]

3Note that it is equall to the minimal s-number of A. And it is not a norm in B(X), if
dimX > 1.
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1. Uni-asymptotic Results for Abstract Linear Systems

1.1. Uni-asymptoticity and Tightness

Consider an “abstract” family {Us}s∈S of bounded linear operators in a
normed space X, where S is a non-empty “index” set. Typically S = N

or Nn0 for some “starting index” n0, however the cardinality as well as any
extra structure of S is not important now. Let us recall again, that any in-
dexed family {objects}s∈S is identified here with the function on S acting by
the formula: “s � S �→ objects”).

We distinguish several specific properties of such operator families. The
main notion for us is here the uni-asymptoticity.

Definition 1.1. Let {Us}s∈S be a family of operators from B(X).
• {Us}s∈S is uni-asymptotic iff

∀x,y∈X∗ ‖Usx‖ �s ‖Usy‖; (1.5)

• {Us}s∈S is tight iff
⇓Us⇓�s ‖Us‖. (1.6)

The name “uni-asymptotic” will be used here also in somewhat different
situation—for some sets F of functions f = {f(s)}s∈S from S into X. Let
O be the constant 0-vector function on S.

Definition 1.2. Let F be a set of some functions from S into X.
F is uni-asymptotic iff

∀f,g∈F\{O} ‖f(s)‖ �s ‖g(s)‖. (1.7)

These two kinds of “uni-asymptoticity” are closely related. For a fam-
ily {Us}s∈S of operators from B(X) consider the set of all its trajectories
(orbits):

Orb
({Us}s∈S

)
:= {{Usx}s∈S : x ∈ X}.

By the linearity of the operators, Orb
({Us}s∈S

)
is also a linear subspace

of the space of all the functions from S into X. By the above definitions we
immediately get:

Fact 1.3. {Us}s∈S is uni-asymptotic iff Orb
({Us}s∈S

)
is uni-asymptotic.

Let us also note the following properties of families of operators.

Fact 1.4. Let {Us}s∈S be a family of operators from B(X).
1. {Us}s∈S is uni-asymptotic iff

∀x,y∈SX
‖Usx‖ ≺s ‖Usy‖; (1.8)

2. If {λs}s∈S is a family of non-zero numbers and {Vs}s∈S := {λsUs}s∈S,
then {Us}s∈S is uni-asymptotic iff {Vs}s∈S is uni-asymptotic; {Us}s∈S

is tight iff {Vs}s∈S is tight;
3. If {Us}s∈S is uni-asymptotic, then

∀s∈S (Us ∈ B∗(X) or Us = 0); (1.9)
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4. If {Us}s∈S is tight, then it is uni-asymptotic.

Proof. The parts 1. and 2. are obvious. To prove the part 3. suppose that
{Us}s∈S is uni-asymptotic and Us �∈ B∗(X) for some s ∈ S. So, let 0 �= x0 ∈
KerUs. Then for any x ∈ X∗ we have ‖Usx‖ ≤ Cx‖Usx0‖ = 0 for some
Cx ∈ R+, i.e., Us = 0. To get the part 4. suppose that {Us}s∈S is tight and
choose C ∈ R+ such that ‖Us‖ ≤ C ⇓Us⇓ for any s ∈ S. For x, y ∈ SX and
for any s ∈ S we have

‖Usx‖ ≤ ‖Us‖ ≤ C ⇓Us⇓≤ C‖Usy‖,

i.e., by the part 1., {Us}s∈S is uni-asymptotic. �
The main result of this part says that in the finite dimensional case the

above point 4. can be essentially strengthened.

Theorem 1.5. Suppose that dim X < +∞ and {Us}s∈S is a family of opera-
tors from B(X). Then {Us}s∈S is uni-asymptotic iff it is tight.

Proof. By Fact 1.4.4. it suffices to prove “=⇒”. We include some remarks in
this proof, showing whether the dimX < +∞ assumption is important or
not for the actual part of the proof. Suppose that {Us}s∈S is uni-asymptotic.
Consider first the special case with extra assumption that Us ∈ B∗(X) for
any s ∈ S. So, choosing an arbitrary x0 ∈ X∗ we can define a “rescaling
number” λs := ‖Usx0‖−1 �= 0 for each s ∈ S. By Fact 1.4.2. it suffices to
prove that {Vs}s∈S := {λsUs}s∈S is tight. However, observe that

∀s∈S ‖Vsx0‖ = ‖λsUsx0‖ = λs‖Usx0‖ = 1, (1.10)

and, also by Fact 1.4.2., {Vs}s∈S is uni-asymptotic. So applying this for any
vector x ∈ X∗ and for y = x0, let us choose cx, Cx ∈ R+ such that

∀s∈S cx = cx‖Vsx0‖ ≤ ‖Vsx‖ ≤ Cx‖Vsx0‖ = Cx. (1.11)

Hence, in particular, the family {Vs}s∈S is bounded in B(X) (as follows e.g.
from Banach–Steinhaus theorem, but here it is an even more elementary fact,
because dim X < +∞)—so, choose C ∈ R+ such that

∀s∈S ‖Vs‖ ≤ C. (1.12)

We shall prove now, that there exists ε ∈ R+ such that ε ≤ ⇓Vs ⇓ for any
s ∈ S. Suppose, that it is not true. Thus, there exists a sequence {sn}n≥1 of
indices from S such that ⇓Vsn

⇓−→ 0. For each n ∈ N choose vn in X with
‖vn‖ = 1, such that

‖Vsn
vn‖ ≤ 3

2
⇓Vsn

⇓ . (1.13)

( 32 can be replaced by 1, by dimX < +∞, but this constant has no impor-
tance). We have

‖Vsn
vn‖ −→ 0. (1.14)

It is only now, that we will essentially use the dimX < +∞ assumption:
we choose a convergent subsequence {vkn

}n≥1 of {vn}n≥1, i.e., kn −→ +∞
and ‖vkn

− v‖ −→ 0 for some v ∈ X with ‖v‖ = 1. But by (1.12) and (1.11)

‖Vskn
vkn

‖ = ‖Vskn
v + Vskn

(vkn
− v)‖ ≥ ‖Vskn

v‖ − ‖Vskn
(vkn

− v)‖
≥ cv − C‖vkn

− v‖ −→ cv,
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but cv > 0, hence we get a contradiction with (1.14). This finishes the proof
of the special case.

Now, we go back to the general case, and we define S1 := {s ∈ S : Us ∈
B∗(X)} and S2 := S \ S1. By Fact 1.4.3. we have ⇓Us⇓= 0 = ‖Us‖ for any
s ∈ S2, i.e., ⇓Us⇓�s∈S2 ‖Us‖. But also ⇓Us⇓�s∈S1 ‖Us‖ by the special case
just proven, so finally ⇓Us⇓�s∈S ‖Us‖. �

The finite dimension assumption was important not only for the above
proof. The assumption that X is a Banach space is not sufficient.

Example 1.6. Consider S = N and for any s ∈ S define Fs : N −→ R by

Fs(k) :=
{

s − (k − 1) for k ≤ s
1 for k > s.

(1.15)

In particular we have

Fs(1) = s, Fs(s) = 1 and 1 ≤ Fs(k) ≤ s for any k ∈ N. (1.16)

Consider now some p ∈ [1;+∞) and the space X := �p = �p(N) of “power
p-summable” sequences. Let us study the family {Us}s∈S , where Us is the
multiplication by Fs operator in X, i.e., Usx := Fs · x for any sequence
x ∈ X and any s ∈ S. By (1.16)

‖Us‖ = sup
k∈N

|Fs(k)| = s, ⇓Us⇓= inf
k∈N

|Fs(k)| = 1. (1.17)

For each x with ‖x‖ = 1 fix some k0 := k0(x) such that |xk0 | > 0. Then again
by (1.16), for such x and for any s < k0 we have

‖Usx‖ ≥ |xk0 | =
|xk0 |

s
· s ≥ |xk0 |

k0
· s.

On the other hand, if s ≥ k0, then by (1.15)

‖Usx‖ ≥ (1 + s − k0)|xk0 | =
1 + s − k0

s
|xk0 | · s ≥ |xk0 |

k0
· s,

because for s ≥ k0 we have 1+s−k0
s = 1 − k0−1

s ≥ 1 − k0−1
k0

= 1
k0

. Finally, if
‖x‖ = 1, then

‖Usx‖ ≥ |xk0 |
k0

· s

holds for any s ∈ N. But by (1.16) we also have ‖Usx‖ ≤ s‖x‖ = s. Hence

‖Usx‖ �s s.

Thus {Us}s∈S is uni-asymptotic, but (1.17) shows that it is not tight. Note
also, that the same arguments work also for the similar example with X =
�∞—the standard space of bounded sequences.
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1.2. Uni-asymptoticity and Determinants

We find here the “actual size” of the norms of the vectors from the trajectories
for the uni-asymptotic finite dimensional case. It is described in a simple way
by the determinants of the operators Us.

Theorem 1.7. If dim X = m ∈ N and det Us �= 0 for any s ∈ S, then
TFCAE4

(i) {Us}s∈S is uni-asymptotic
(ii) ∀x∈X∗ ‖Usx‖ �s |det Us|1/m

(iii) ‖Us‖ �s |det Us|1/m

(iii’) ‖Us‖ ≺s |det Us|1/m

(iv) {Us}s∈S is tight.

We shall use the following simple lemma in the proof of this result.

Lemma 1.8. If dim X = m ∈ N, then:
1. ∀U∈B(X) ⇓U⇓≤ |det U |1/m ≤ ‖U‖,
2. there exists a positive constant Cm such that

∀U∈B∗(X) ‖U−1‖ ≤ Cm
‖U‖m−1

|det U | ,

3. for any fixed linear base e := {ej}j=1,...,m of X consisting of norm-one
vectors, the formula

‖U‖e := max{‖Uej‖ : j = 1, . . . , m}, U ∈ B(X),

defines a norm in B(X), and there exists a positive constant De such
that

∀U∈B(X) ‖U‖e ≤ ‖U‖ ≤ De‖U‖e.

Proof. Let λ1, . . . λm be all the eigenvalues of U (taking into account their
algebraic multiplicities) and for each j = 1, . . . , m let xj be some normalized
eigenvector for U and λj . By the definitions of ‖ ‖ (—the operator norm)
and ⇓ ⇓, we have

⇓U⇓≤ ‖Uxj‖ = |λj | = ‖Uxj‖ ≤ ‖U‖, j = 1, . . . , m.

Now, multiplying all the m inequalities “side-by-side” and using detU =
λ1 · . . . · λm, we get part 1. of the lemma.

To get part 2. consider first m by m scalar matrices. Observe, that
defining ‖A‖max := max{|Aij | : i, j = 1, . . . , m} for any matrix A (here Aij

is the term of A from i-th row and j-th column) we get a certain norm in
the matrix space. By Cramer’s rule, if A is invertible, then (A−1)ij = (AC)ji

detA ,
where AC denotes the matrix of cofactors of A. Applying “the permutation
formula” for the determinant to the terms of AC , we get

|(AC)ji| ≤ (m − 1)!(‖A‖max)
m−1.

Hence ‖A−1‖max ≤ (m−1)! (‖A‖max)
m−1

| detA| for any invertible A. Now, fixing a
linear base in X to establish a linear isomorphism between B(X) and m by m

4The following conditions are (mutually) equivalent.
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scalar matrix space, we use it to transfer ‖ ‖max onto a norm in B(X). Finally,
the equivalence of any two norms for B(X) (it is a m2-dimensional space)
proves the assertion of part 2. Note that we have used here also det U = det A
for A being the matrix of U for the fixed base.

To obtain part 3., we first easily check that ‖ ‖e satisfies all the con-
ditions for norm. Then the estimate ‖U‖e ≤ ‖U‖ follows just from the fact
that the norm on the RHS is the operator norm and that the base vectors
have been normalized. The second estimate with some constant De follows
just again from the equivalence of all the norms for B(X). �

Proof of Theorem 1.7. Observe that “(iii)=⇒ (iii’)” follows directly from
Lemma 1.8.1. Let us prove “(ii)⇐⇒ (iii)”. Suppose (ii). By Lemma 1.8.3.
and by (ii) used to all the m vectors of a fixed normalized base e we get

‖Us‖ ≤ C‖Us‖e ≤ C ′|det Us|1/m

for any s ∈ S with some constants C,C ′. Hence, using also Lemma 1.8.1., we
get (iii). Now, we suppose (iii) and let x ∈ X∗. We thus have

‖Usx‖ ≤ ‖x‖‖Us‖ ≤ ‖x‖C|det Us|1/m

for any s ∈ S with some constant C. To get the “opposite direction” estimate,
we can assume that ‖x‖ = 1. Then by Lemma 1.8.2. for any s ∈ S we have

1 = ‖x‖ = ‖(Us)−1Usx‖ ≤ ‖Usx‖‖(Us)−1‖ ≤ Cm‖Usx‖ ‖Us‖m−1

|det Us| ,

and by (iii), for some constant C ′ > 0 and for any s ∈ S

‖Usx‖ ≥ (Cm)−1 |det Us|
‖Us‖m−1

≥ C ′ |det Us|
(|det Us|1/m

)m−1 = C ′|det Us|1/m,

and (ii) is proved.
By Theorem 1.5 we have also “(i)⇐⇒ (iv)”, so it suffices to prove

“(ii)=⇒ (i)” and “(iv)=⇒ (iii)”. But the former is obvious by the transi-
tivity of �s relation, and the latter follows directly from Lemma 1.8.1. �

As we could see, there is a lot of equivalent ways to express uni-
asymptoticity in the finite dimensional case. On the other hand, Example 1.6
shows that none of these ways work for general Banach space X and general
family {Us}s∈S cases. Thus the natural open problem could be formulated:

To find some equivalent criteria for uni-asymptoticity for some special
kinds od familes {Us}s∈S of operators acting in infinite dimensional Banach
spaces X. E. g., for discrete semigroups (with S = N0), for C0-semigroups
(with S = [0;+∞)) and others.

2. Uni-asymptoticity in Spectral Studies of Jacobi Operators

2.1. Jacobi Operators: Generalized Eigenvectors
and 2d -generalized Eigenvectors

Let us start from recalling the notions of block Jacobi matrix and operator
(see, e.g., [2,6,13] and citations therein) and its particular “scalar” case. Let
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d ≥ 1 and let A1, B1, A2, B2, . . . be d×d self-adjoint real matrices. We consider
the semi-infinite “block-tri-diagonal matrix” of the form:

J =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

B1 A1

A1 B2 A2

A2 B3 A3

A3 B4
. . .

. . . . . .

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

J is called block Jacobi matrix, and in the main case d = 1 it is just Jacobi
matrix (also: scalar J. m.). Sequences {Ak}k≥1, {Bk}k≥1 are called weight
and diagonal sequence, respectively, and here it is assumed that

det Ak �= 0, k = 1, . . . . (2.18)

We identify the matrix J with the formal Jacobi operator J , acting in the
linear space � of all the sequences of Cd-vectors u = {u(k)}k≥1 by the for-
mula:

(J u)(k):=Ak−1u(k − 1) + Bku(k) + Aku(k + 1), k ≥ 1,

where we denote additionally A0 := 0, u(0) := 0 to get also sense of the
formula for k = 1. We distinguish here the block Jacobi matrix (= for-
mal operator) J and the block Jacobi operator J—being our main object
here. Roughly speaking, J is just “the restriction” of J to the Hilbert space

�2 = �2(N,Cd) := {u ∈ � : ‖u‖�2 < +∞} with ‖u‖�2 :=
(∑+∞

k=1 ‖u(k)‖2
Cd

) 1
2

for u = {u(k)}k≥1 ∈ �. Precisely (note the different notation: J and J ):
D(J):={u ∈ �2 : J u ∈ �2} and J :=J | D(J), i.e., J is the so-called maximal
operator for J in �2. It is bounded self-adjoint operator in �2, when {Ak}k≥1,
{Bk}k≥1 are bounded. But if at least one of {Ak}k≥1, {Bk}k≥1 is unbounded,
then J is unbounded and its self-adjointness may require additional assump-
tions. Note, that there are several well-known assumption of this kind, e.g.,
the generalized Carleman condition

∑+∞
n=1

1
‖An‖ = +∞ (see [1,6] for some

more information related to the self-adjointness problem for block Jacobi op-
erators). So, in particular, if the weight sequence is bounded, then J is always
self-adjoint, regardless of whether the diagonal sequence is bounded or not.
In the present paper the self-adjoint case of J is most important for us.

Consider now λ ∈ C and u ∈ �.

Definition 2.1. u is a generalized eigenvector of J for λ

iff (J u)(k) = λu(k), for k ≥ 2. (2.19)

We use abbreviation GEV for “generalized eigenvector”.

Note that k = 1 is omitted above and we do not require that u is in
D(J) (nor in �2). (2.19) is equivalent to

u(k + 1) = −A−1
k [Ak−1u(k − 1) + (Bk − λ)u(k)] , k ≥ 2, (2.20)
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which allows to construct easily the unique GEV u (for λ), starting from any
pair of Cd vectors u(1), u(2). Denote:

GEV (λ):={u : u is a GEV of J for λ}.

We have dim GEV (λ) = 2d. Let us rewrite (2.20) into a C
2d-vector form:

x(k + 1) = Tk(λ)x(k), k ≥ 2, (2.21)

where

x(k):=
(

u(k − 1)
u(k)

)
∈ C

2d (2.22)

for a sequence u of Cd-vectors and Tk(λ) is the k-th transfer matrix (of the
size 2d × 2d)

Tk(λ):=
(

0 I
−A−1

k Ak−1 A−1
k (λ − Bk)

)
. (2.23)

Hence, if x = {x(k)}k≥2 and u = {u(k)}k≥2 are related by (2.22), then (2.20)
is equivalent to (2.21). We define

Definition 2.2. x is a 2d-generalized eigenvector of J for λ iff (2.21) holds.−−−−−→
GEV (λ) denotes the 2d-dimensional space of all 2d-generalized eigenvectors
of J for λ.

Obviously

−−−−−→
GEV (λ) =

{{(
u(k − 1)

u(k)

)}

k≥2

: u ∈ GEV (λ)

}

. (2.24)

Some methods used in spectral studies of scalar Jacobi operators are
based on the general idea of finding relations between asymptotic properties
of sequences from GEV (λ) or

−−−−−→
GEV (λ) and spectral properties of J . Let us

stress that the above word “asymptotic” can have many particular meanings.
Different spectral results could be related to different kinds of asymptotic
properties. And for some asymptotic properties the use of 2d-generalized
eigenvectors can be more suitable than the use of generalized eigenvectors—
see, e.g., [10]. These methods, however, are less developed in the case of block
Jacobi operators (with d > 1).

2.2. H-Class and Spectral Results for Scalar Jacobi Operator

The notion of H-class for sequences of 2 × 2 scalar matrices was introduced
to study the absolutely continuous spectrum of scalar Jacobi operators—see,
e.g., [3,9]. In a natural way, with any m, it can be extended to sequences
{Cn}n≥n0 of m × m complex matrices:

Definition 2.3. {Cn}n≥n0 ∈ H iff

∃M>0∀n≥n0 ‖Cn · . . . · Cn0‖m ≤ M
n∏

k=n0

|det Ck|. (2.25)
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Note that the above requirement is quite strong, since for any {Cn}n≥n0

the opposite direction estimate with respect to (2.25) holds. Namely, by
Lemma 1.8.1.,

n∏

k=n0

|det Ck| = |det(Cn · . . . · Cn0)| ≤ ‖Cn · . . . · Cn0‖m. (2.26)

So, we easily get an equivalent formulation of H-class definition, expressed
in asymptotic terms “� ” used in this paper.

Corollary 2.4. {Cn}n≥n0 ∈ H iff ‖Cn · . . . ·Cn0‖ �n

(∏n
k=n0

|det Ck|)
1
m .

Consider now (block) Jacobi operator J , and define

H(J):={λ ∈ R : {Tk(λ)}k≥2 ∈ H}
we call it the H-set for J . It should be noted, that in the scalar case d = 1
the spectral character of H(J) can be decribed via subordination theory of
Gilbert–Pearson–Khan [5].

Theorem 2.5. (see [9]) If d = 1, and J is self-adjoint, then J is absolutely
continuous5 in Int(H(J)) and Int(H(J)) ⊂ σac(J).

2.3. H-Class and Uni-asymptoticity

The concept of H-class turns out to be closely related to our uni-asymptoticity
notion.

Consider a sequence {Cn}n≥n0 of m × m complex matrices and define:

Un:=Cn · . . . · Cn0 , n ≥ n0. (2.27)

We get now

Corollary 2.6. If det Cn �= 0 for any n ≥ n0, then

{Cn}n≥n0 ∈ H iff {Un}n≥n0 is uni-asymptotic.

Proof. It suffices to use Corollary 2.4 and Theorem 1.7 ((i) ⇐⇒ (iii)). �
Now we shall use this result to the sequence of transfer matrices for

(block) Jacobi operator J . So, for fixed λ ∈ C we consider the dynamical
system {Us(λ)}s∈S with:

X := C
2d, S := N2,

and with
Un(λ) := Tn(λ) · · · · · T2(λ) for n ≥ 2 (2.28)

(see 2.23). We get

5By the definition (see, e.g., [11]), a self-adjoint operator A is is absolutely continuous
when it coincides with its absolutely continuous part. The name “A has purely absolutely
continuous spectrum” is also often used for such cases (note, however, that this name could
be slightly misleading, because this property of A is not a property of its spectrum only).
If EA(·) denotes the projection-valued spectral resolution (measure) of A, and D is a Borel
subset of R, then A is absolutely continuous in D (or A has purely absolutely continu-
ous spectrum in D) iff the scalar spectral measure (EA(·)x, x) is absolutely continuous
with respect to the Lebesgue measure for any x ∈ RanEA(D). Note that, in general, the

last property does not guarantee that the spectrum of A and the set D have non-empty
intersection, even for non-empty open D.
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Theorem 2.7. For any λ ∈ C TFCAE:
1. {Tn(λ)}n≥2 ∈ H;
2. {Un(λ)}n≥2 is uni-asymptotic;

3.
−−−−−→
GEV (λ) is uni-asymptotic;

4. for any non-zero {x(n)}n≥2 ∈ −−−−−→
GEV (λ)

‖x(n)‖ �n

(
1

d
√|det An−1|

) 1
2

. (2.29)

Proof. We start from two simple observations on the “shifted” family of ma-
trices {Ũn(λ)}n≥2, given by

Ũn(λ) :=
{

I for n = 2
Un−1(λ) for n ≥ 3.

First observe, that by Definition 2.2 and by (2.21),
−−−−−→
GEV (λ) =

{{
Ũn(λ)α

}

n≥2
: α ∈ C

2d

}
. (2.30)

By part 1. of Fact 1.4 we get the second observation:

{Un(λ)}n≥2 is uni-asymptotic iff {Ũn(λ)}n≥2 is uni-asymptotic. (2.31)

The equivalence of 1. and 2. follows from Corollary 2.6. By our first obser-
vation, 2. is equivalent to the uni-asymptoticity of {Ũn(λ)}n≥2 . Hence the
second observation and Fact 1.3 give the equivalence of 2. and 3.

Now, let us use Theorem 1.7 ((i) ⇐⇒ (ii)) to the family {Ũn(λ)}n≥2.
We also have

|det Ũn(λ)| = |det Un−1(λ)| =
n−1∏

k=2

|det Tk(λ)| =
n−1∏

k=2

∣
∣
∣
∣
det Ak−1

det Ak

∣
∣
∣
∣

=
∣
∣
∣
∣

detA1

det An−1

∣
∣
∣
∣

for n ≥ 3, by (2.23). This gives us the equivalence of 2. and 4. (—note that
here “m := 2d”). �

Remark 2.8.

1. The uni-asymptoticity results mean also the estimate from below, not
only from above. Therefore condition 4. of Theorem 2.7 gives both:
the above and below norm estimate for each non-zero 2d-generalized
eigenvector by the RHS of (2.29). The idea of such “both sides norm
estimates” has been used by many authors to construct Weyl sequences
(see, e.g., [4,7]). For instance, in [8] such method allows to get results
on the essential spectrum σess(J) for scalar Jacobi operators of the form
J = J0 + P , where Int(H(J0)) is non-empty and P is a perturbation
of some special kind. If P = 0, such results are obvious from the point
of view of subordination theory methods (see e.g., Theorem 2.5)—just
because “σac(J) information is stronger, than the σess(J) one”. And if
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P �= 0, the method starts to be important, because Int(H(J0 + P )) can
be empty, which means that Theorem 2.5 is useless.

2. Nevertheless, subordinacy does not work in d > 1 case. This is why,
in case of block Jacobi operators, essential spectrum results and meth-
ods are in a sense more significant, than in the scalar case. For in-
stance, if d > 1, then it make sense to check, whether σess(J0) contains
Int(H(J0)). The methods used in [8] for P = 0 were based on construc-
tion of Weyl sequences by “deforming” generalized eigenvectors of J0.
And in fact, the methods can be extended from d = 1 to any d. However,
we need some extra assumptions on behaviour of the norms ‖An‖ and
determinants det An of the weight terms of J . Those extra assumptions
can have various forms. As an example, we announce here the following
result:

If J is self-adjoint, W , V are scalar sequences satisfying
1. W (n), V (n) are monotonic in n,
2. W (n) −→ +∞, W (n)

n −→ 0,
3. W (2n) ≺n W (n), V (2n) �n V (n),

and ‖An‖ �n W (n), det An �n V (n), then H(J) ⊂ σess(J).
The detailed proof of the above one, and of some other versions,

will be placed in the paper in preparation. The general idea is based on
mimicking the proof of [8, Th. 2.1]. However, some problems are related
to the fact, that the uni-asymptoticity of

−−−−−→
GEV (λ) does not result in

the uni-asymptoticity of GEV (λ) (even for d = 1!). If d = 1, then this
problem can be omited by the appropriate choice of the initial condition
for this generalized eigenvector, which is used to construct the Weyl
sequences. But for d > 1 it is not possible, and this is why some extra
assumptions (e.g. (1), (2), (3) above) are needed.

3. Let us note some recent papers of Świderski. They contain very inter-
esting approach, leading in particular also to uni-asymptoticity results
for 2-generalized eigenvectors in scalar case (together with some extra
“λ-uniform” properties)—see [12]. The paper [13] provides some spec-
tral results, including also some essential spectrum results for the block
case. Instead of a construction of Weyl sequences, the method is based
on checking that there is no any generalized eigenvector in �2(N,Cd).

4. Due to “the gap” between the scalar and the block case spectral results,
the natural open question arises:

Is there any relation of the set H(J) with σac(J) for d > 1?
Basic analysis of simplest examples with diagonal blocks shows,

that any possible relation should be much more delicate, than for d = 1.
Using very informal language: we could suspect that H(J) could be
related somehow to a special kind of “multiplicity–d absolute continuity”
for J . To explain this more precisely, let us assume that all the blocks
An, Bn are diagonal, J is selfadjoint and that H(J) is non-empty. Then,
by Theorems 2.5 and 1.7, one can easily prove the following assertion:

There exist d scalar self-adjoint Jacobi operators J (1), . . . , J (d) with
the weight sequences

{
a
(1)
n

}

n≥1
, . . . ,

{
a
(d)
n

}

n≥1
, respectively, such that
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(i) J is unitary equivalent to J (1) ⊕ . . . ⊕ J (d),
(ii) J (j) is absolutely continuous in Int(H(J)) and Int(H(J))

⊂ σac(J (j)) for any j = 1, . . . , d,
(iii) a

(i)
n �n a

(j)
n for any i, j = 1, . . . , d.

Note that in the above “trivial” diagonal case the scalar operator
J (j) can be defined simply by the diagonal terms of the blocks of J :
its n-th weight a

(j)
n is just the j-th diagonal term of An and its n-th

diagonal term is just the j-th diagonal term of Bn (also the unitary
opreator which gives (i) is easy to guess). Surely, the assertion will not
change, if we assume that any two blocks of J commute, instead of
assumming the diagonality of all blocks (since there exsists a common
diagonalization for all blocks in this case). And the important problem
starts, when we reject the assumption of commutativity...

Thus, let us end with a more concrete formulation of the above
open question:

Is the above assertion with (i), (ii), (iii) also true in the general
case of self-adjoint J (without the commutativity of blocks
assumption)? And if it is not true, which parts of the assertion
could be preserved?
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