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1. Introduction

Let w be a weight (i.e., a nonnegative, locally integrable function) on R
d and

let M be the Hardy–Littlewood maximal operator. In 1971, Fefferman and
Stein [9] proved the existence of a finite constant c depending only on the
dimension such that

w
({

x ∈ R
d : Mf(x) ≥ 1

}) ≤ c‖f‖L1(Mw)

(throughout the paper, we use the standard notation w(E) =
∫

E
w(x)dx

and ‖f‖Lp(w) =
(∫

Rd |f(x)|pw(x)dx
)1/p, 1 ≤ p < ∞). This gave rise to the

following natural question, formulated by Muckenhoupt and Wheeden in the
seventies. Suppose that T is a Calderón–Zygmund singular integral operator.
Is there a constant c, depending only on T and d, such that

w
({

x ∈ R
d : |Tf(x)| ≥ 1

}) ≤ c‖f‖L1(Mw)? (1.1)

This problem, called the Muckenhoupt–Wheeden conjecture, remained open
for a long time and in 2010 it was proved to be false: see the counterexamples
for the Hilbert transform provided by Reguera, Thiele, Nazarov, Reznikov,
Vasyunin and Volberg in [14,18,19].

In the mean-time, many partial or related results in this direction were
obtained. In particular, Buckley [2] showed that the conjecture is true for
the weights wδ(x) = |x|−d(1−δ), 0 < δ < 1. See also Pérez’ paper [17] as
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well as a series of works [10–12] by Lerner, Ombrosi and Pérez devoted to a
little weaker statements related to (1.1). Chang et al. [5], and Chanillo and
Wheeden [6] studied the above problem in the context of square functions.
For a given ϕ ∈ C∞

0 (Rd) such that
∫
Rd ϕ = 0, put ϕt(x) = t−dϕ(x/t), t > 0,

and define the associated area function by the formula

Sϕ(f)(x) =

(∫

|x−y|<t

|f � ϕt(y)|2 dtdy

td+1

)1/2

.

Then, as proved in [5], there is a constant C(d, ϕ) depending only on the
parameters indicated, such that

‖Sϕ(f)‖L2(w) ≤ C(d, ϕ)‖f‖L2(Mw). (1.2)

In [6], Chanillo and Wheeden generalized this result in several directions.
First, they showed the corresponding weak-type (1, 1) estimate: there is a
finite constant c(d, ϕ) such that

w({x ∈ R
d : Sϕ(f)(x) ≥ 1}) ≤ c(d, ϕ)‖f‖L1(Mw). (1.3)

Furthermore, the inequality (1.2) extends naturally to Lp, 1 < p < 2: we
have

‖Sϕ(f)‖Lp(w) ≤ C(p, d, ϕ)‖f‖Lp(Mw) (1.4)

for some C(p, d, ϕ) independent of f and w. A very interesting fact is that
(1.4) does not hold for p > 2. Chanillo and Wheeden offered the following
substitution:

‖Sϕ(f)‖Lp(w) ≤ C(p, d, ϕ)‖f‖Lp((Mw)p/2w1−p/2), 2 < p < ∞, (1.5)

for some C(p, d, ϕ) depending only on the parameters in the brackets.
Our contribution is to study related two-weight inequalities for the

dyadic square function associated with an integrable, Hilbert-space-valued
function on [0, 1). Let us introduce the necessary background and notation.
In what follows, H stands for the separable Hilbert space, with norm | · |
and scalar product 〈·, ·〉 (with no loss of generality, we may and do assume
that H = �2), and D is the collection of all dyadic subintervals of [0, 1). Let
(hn)n≥0 be the standard Haar system, given by

h0 = χ[0,1), h1 = χ[0,1/2) − χ[1/2,1),

h2 = χ[0,1/4) − χ[1/4,1/2), h3 = χ[1/2,3/4) − χ[3/4,1),

h4 = χ[0,1/8) − χ[1/8,1/4), h5 = χ[1/4,3/8) − χ[3/8,1/2),

and so on. For any I ∈ D and an integrable function f : [0, 1) → H, we will
write 〈f〉I for the average of f over I: that is, 〈f〉I = 1

|I|
∫

I
f (throughout,

unless stated otherwise, the integration is with respect to the Lebesgue’s
measure). Furthermore, for any such f and any nonnegative integer n, we
use the notation

fn =
n∑

k=0

1
|Ik|

∫

[0,1)

f(s)hk(s)ds hk
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for the projection of f on the subspace generated by the first n + 1 Haar
functions (Ik is the support of hk). Then the dyadic square function of f is
given by

S(f)(x) =

⎛

⎝
∑

∣
∣
∣
∣
∣

1
|In|

∫

[0,1)

f(s)hn(s)ds

∣
∣
∣
∣
∣

2
⎞

⎠

1/2

,

where the summation runs over all nonnegative integers n such that x ∈ In.
Furthermore, the dyadic maximal operator Md acts on f by the formula

Mdf(x) = sup
{

1
|I|
∫

I

|f(s)|ds : x ∈ I ∈ D
}

= sup
n≥0

|f |n(x).

We will also need the truncated versions of the above operators; for any
nonnegative integer m, set

Sm(f)(x) =

⎛

⎝
∑

∣
∣
∣
∣
∣

1
|In|

∫

[0,1)

f(s)hn(s)ds

∣
∣
∣
∣
∣

2
⎞

⎠

1/2

,

where the summation runs over all n ≤ m such that x ∈ In, and

Md,mf(x) = sup
0≤n≤m

|f |n(x).

In all the considerations below, the symbol w will denote a weight on [0, 1),
i.e., an integrable function w : [0, 1) → [0,∞).

We are ready to formulate our main results.

Theorem 1.1. Let w be a weight on [0, 1). Then for any integrable function
f : [0, 1) → H we have

w({x ∈ [0, 1) : S(f)(x) ≥ 1}) ≤ 2‖f‖L1(Mdw), (1.6)

‖S(f)‖Lp(w) ≤ 6p

p − 1
‖f‖Lp(Mdw), 1 < p < 2, (1.7)

and

‖S(f)‖Lp(w) ≤
√

p

2
‖f‖Lp((Mdw)p/2w1−p/2), p ≥ 2. (1.8)

As in the context of area functions, we will show that the inequality of
the form (1.7) does not hold with any finite constant when 2 < p < ∞. We
will also establish the following “mixed-weight” version of (1.8) in the case
1 < p < 2.

Theorem 1.2. Let w be a weight on [0, 1). Then for any 1 < p < 2 and any
integrable function f on [0, 1) we have

‖S(f)‖Lp(w) ≤ (p − 1)−1‖f‖Lp((Mdw)pw1−p). (1.9)

Clearly, this result is qualitatively weaker than (1.7), however, we have
decided to include it here since its proof exploits a novel interpolation-type
argument which is of independent interest.

We would like to point out that even in the unweighted setting (i.e.,
for w ≡ 1), the above estimates are quite tight. The best constant in the
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unweighted version of (1.6) is equal to C = 1.4623 . . . , as shown by Bollobás
[1] and the author [16]. The constant in (1.7) is of order (p − 1)−1: see Burk-
holder [3] and Davis [7]. Finally, as p → ∞, the order

√
p in (1.8) is optimal:

see e.g. Davis [7] for the description of the best constants.
Typically, proofs of weighted inequalities in the analytic context depend

heavily on extrapolation and interpolation arguments. Our approach will rest
entirely on the so-called Bellman function method. More precisely, we will
deduce the validity of the above Lp estimates from the existence of cer-
tain special functions, enjoying appropriate majorizations and concavity. The
technique is described in detail in the next section. Section 3 is devoted to
the weak-type inequality (1.6), while Sects. 4 and 5 contain the proof of the
Lp inequalities in the case 1 < p < 2 and p ≥ 2. The final part of the paper
discusses the probabilistic versions of the above results.

2. On the Method of Proof

Let us describe the technique which will be used to obtain the results
announced in the preceding section. Throughout the paper, we will use the
notation

D = {(x, y, u, v) ∈ H × [0,∞) × [0,∞) × (0,∞) : u ≤ v}.

Suppose that V : D → R is a given function and assume that we want to
establish the inequality

∫ 1

0

V (fn, Sn(f), wn,Md,nw)ds ≤ 0, n = 0, 1, 2, . . . , (2.1)

for any integrable function f : [0, 1) → H and any nonzero weight w (i.e., sat-
isfying 〈w〉[0,1) > 0). For instance, the choice V (x, y, u, v) = uχ{y≥1} − 2|x|v
leads to the weak type inequality (1.6), after a simple limiting argument (see
Sect. 3 below); similarly, the function V (x, y, u, v) = ypu − Cp

p |x|pv corre-
sponds to the strong-type estimates. A key idea in the study of (2.1) is to
consider a function U : D → (−∞,∞], which satisfies the following proper-
ties:

1◦ For any x ∈ R and any u > 0 we have

U(x, |x|, u, u) ≤ 0. (2.2)

2◦ For any (x, y, u, v) ∈ D,

U(x, y, u, v) ≥ V (x, y, u, v). (2.3)

3◦ For any (x, y, u, v) ∈ D and any d ∈ H, e ∈ [−u, u] we have

U(x, y, u, v) ≥ 1
2

[
U
(
x − d,

√
y2 + |d|2, u − e, v ∨ (u − e)

)

+ U
(
x + d,

√
y2 + |d|2, u + e, v ∨ (u + e)

)]
.

(2.4)

(Here and below, a ∨ b stands for the maximum of the numbers a and b.)
The conditions 1◦ and 2◦ can be regarded as certain majorizations for

U ; the function can be neither too small nor too big. The most mysterious
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condition is the third one, and it can be understood as a concavity-type
property.

The interplay between the existence of such a function and the validity
of (2.1) is described in the two statements below.

Theorem 2.1. If there exists U satisfying the properties 1◦, 2◦ and 3◦, then
the inequality (2.1) holds true.

Proof. Fix a nonzero weight w and an integrable function f : [0, 1) → H.
First we will show that the sequence (

∫ 1

0
U(fn, Sn(f), wn,Md,nw)ds)n≥0 is

nonincreasing (there is no problem with the existence of the integral for
each n, since fn, Sn(f), wn and Md,nw take only a finite number of values).
To achieve this, fix an integer n and let In+1 be the support of hn+1. Then
the functions U(fn, Sn(f), wn,Md,nw) and U(fn+1, Sn+1(f), wn+1,Md,n+1w)
coincide outside In+1 (since so do the pairs fn, fn+1; Sn(f), Sn+1(f); wn,
wn+1; and Md,nw, Md,n+1w), and hence

∫

[0,1)\In+1

U(fn, Sn(f), wn,Md,nw)ds

=
∫

[0,1)\In+1

U(fn+1, Sn+1(f), wn+1,Md,n+1w)ds.

Thus, we only need to show an appropriate bound for the integrals over
In+1. To do this, note that fn, Sn(f), wn and Md,nw are constant on In+1.
Denote the corresponding values by x, y, u and v; then, clearly, we have
(x, y, u, v) ∈ D (the fact that v > 0 follows directly from the assumption
〈w〉[0,1) > 0). Next, let I−, I+ be the left and the right half of In+1; then fn+1

and wn+1 are constant on I± and the corresponding values can be denoted
by x ± d and u ± e, for some d ∈ H and e ∈ [−u, u]. Furthermore, directly
from the definition of the truncated square and maximal functions, we see
that Sn+1(f) =

√
y2 + |d|2 and Md,n+1w = v ∨ (u ± e) on I±. Consequently,

the inequality
∫

In+1

U(fn, Sn(f), wn,Md,nw)ds

≥
∫

In+1

U(fn+1, Sn+1(f), wn+1,Md,n+1w)ds

is equivalent to (2.4), and therefore the desired monotonicity of the sequence
(
∫ 1

0
U(fn, Sn(f), wn,Md,nw)ds)n≥0 is established. Combining this property

with (2.3), we get
∫ 1

0

V (fn, Sn(f), wn,Md,nw)ds ≤
∫ 1

0

U(fn, Sn(f), wn,Md,nw)ds

≤
∫ 1

0

U(f0, S0(f), w0,Md,0w)ds ≤ 0. (2.5)

To see why the latter bound holds, note that |f0| = S0(f) and w0 = Md,0w,
so in fact we even have the pointwise estimate U(f0, S0(f), w0,Md,0w) ≤ 0,
due to (2.2). This proves the claim. �
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A beautiful fact is that the implication of the above theorem can be
reversed; though we will not exploit it, we believe it is worth to be stated
and proved.

Theorem 2.2. If the inequality (2.1) holds true, then there exists U satisfying
the properties 1◦, 2◦ and 3◦.

Proof. There is an abstract formula for the special function. Namely, for any
(x, y, u, v) ∈ D, put

U(x, y, u, v) = sup
{∫ 1

0

V
(
fn,
√

y2 − |x|2 + S2
n(f), wn, (Md,nw) ∨ v

)
ds

}
,

where the supremum is taken over all n, all integrable functions f satisfying
〈f〉[0,1) = x and all nonzero weights w with 〈w〉[0,1) = u. Let us verify that
this object has all the required properties. The first condition is easy to check:
we have

√|x|2 − |x|2 + S2
n(f) = Sn(f) and (Md,nw) ∨ u = Md,nw provided

〈w〉[0,1) = u. Thus, U(x, |x|, u, u) ≤ 0, since in the light of (2.1), any integral
appearing under the supremum defining U(x, |x|, u, u) is nonpositive. The
majorization 2◦ is also straightforward: considering constant functions f ≡ x
and w ≡ u, we see that for all n,

∫ 1

0

V
(
fn,
√

y2 − |x|2 + S2
n(f), wn, (Md,nw) ∨ v

)
ds = V (x, y, u, v)

and hence, by the very definition, U(x, y, u, v) ≥ V (x, y, u, v). To check 3◦,
fix x, y, u, v, d and e as in its formulation. For a fixed ε > 0, there are a
function f+, a nonzero weight w+ and a nonnegative integer n such that
〈f+〉[0,1) = x + d, 〈w+〉[0,1) = u + e and

U(x + d,
√

y2 + |d|2, u + e, v ∨ (u + e)) − ε

≤
∫ 1

0

V
(
f+

n ,
√

y2+|d|2−|x+d|2+S2
n(f+), w+

n , (Md,nw+) ∨ v ∨ (u+e)
)
ds

(2.6)

(i.e., f+, w+, n are parameters for which the supremum in the definition of
U
(
x+ d,

√
y2 + |d|2, u+ e, v ∨ (u+ e)

)
is almost attained, up to ε). Similarly,

pick f−, w−, m satisfying 〈f−〉[0,1) = x − d, 〈w−〉[0,1) = u − e and

U(x − d,
√

y2 + |d|2, u − e, v ∨ (u − e)) − ε

≤
∫ 1

0

V
(
f−

m,
√

y2+|d|2−|x−d|2+S2
m(f−), w−

m, (Md,mw−) ∨ v ∨ (u−e)
)
ds.

(2.7)

Replacing f± by f+
n and f−

m if necessary, we may assume that f+
n = f+

n+1 =
f+

n+2 = . . . and f−
m = f−

m+1 = f−
m+2 = · · · . Using the same cutting-off

procedure, we may also assume that w+
n = w+

n+1 = w+
n+2 = · · · and w−

m =
w−

m+1 = w−
m+2 = · · · . Now, let us splice the functions f± into one function

f and the weights w± into one weight w, with the use of the formula
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(f(s), w(s)) =

{
(f+(2s), w+(2s)) if s ∈ [0, 1/2),
(f−(2s − 1), w−(2s − 1)) if s ∈ [1/2, 1).

That is, we “squeeze” the domain of f+, w+ into the interval [0, 1/2), we
“squeeze” the domain of f− and w− into the interval [1/2, 1), and then we
“glue” f± into one function, and w± into one weight on [0, 1). Clearly, we
have

〈f〉[0,1)=
1
2
〈f+〉[0,1)+

1
2
〈f−〉[0,1)=x, 〈w〉[0,1)=

1
2
〈w+〉[0,1)+

1
2
〈w−〉[0,1)=u

and hence, for any k,

U(x, y, u, v) ≥
∫ 1

0

V

(
fk,
√

y2 − |x|2 + S2
k(f), wk, (Md,kw) ∨ v

)
ds

=
∫ 1/2

0

V

(
fk,
√

y2 − |x|2 + S2
k(f), wk, (Md,kw) ∨ v

)
ds

+
∫ 1

1/2

V

(
fk,
√

y2 − |x|2 + S2
k(f), wk, (Md,kw) ∨ v

)
ds.

Using the structural properties of the Haar system, it is not difficult to check
that if k is sufficiently large, then the last two integrals are equal to right-
hand sides or (2.6) and (2.7). Since ε was arbitrary, we obtain the desired
condition 3◦. �

3. A Weak-Type Inequality

We turn our attention to the weak-type estimate (1.6) which, as we will
see, corresponds to the choice V1(x, y, u, v) = uχ{y≥1} − 2|x|v. To define the
associated special function, consider the splitting of the domain D into the
sets

D1 =
{

(x, y, u, v) ∈ D : y < 1 and |x| +
√

1 +
u

v
(y2 − 1) ≤ 1

}
,

D2 = D\D1.

Let U1 : D → R be given by

U1(x, y, u, v) =

{
y2u − |x|2v if (x, y, u, v) ∈ D1,

u − 2|x|v if (x, y, u, v) ∈ D2.

We start the analysis with the following majorizations.

Lemma 3.1. (i) The functions U1 and V1 satisfy 1◦ and 2◦.
(ii) For any (x, y, u, v) ∈ D we have

U1(x, y, u, v) ≤ u − 2|x|v. (3.1)

(iii) If y < 1 and |x| ≤ 1 +
√

1 + u
v (y2 − 1), then

U1(x, y, u, v) ≤ y2u − |x|2v. (3.2)
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Proof. (i) The condition 1◦ is easy. Indeed, if (x, |x|, u, u) ∈ D1, then we have
U1(x, |x|, u, u) = 0; on the other hand, if (x, |x|, u, u) ∈ D2, then |x| > 1/2
and hence U1(x, |x|, u, u) ≤ 0. The majorization 2◦ is also simple. Clearly,
it is enough to handle the case when (x, y, u, v) ∈ D1; but then |x| ≤ 1 and
hence

y2u − |x|2v ≥ −|x|2v ≥ −2|x|v,

as desired.
(ii) We may assume that (x, y, u, v) ∈ D1, since otherwise both sides

are equal. Then the inequality is equivalent to y2u−u ≤ |x|2v − 2|x|v, which
can be further transformed into

1 +
u

v
(y2 − 1) ≤ (1 − |x|)2.

This bound follows directly from the definition of D1.
(iii) If |x| ≤ 1−√1 + u

v (y2 − 1), then both sides are equal. On the other
hand, if |x| > 1 −√1 + u

v (y2 − 1), then the inequality becomes

(1 − |x|)2 ≤ 1 +
u

v
(y2 − 1).

This is equivalent to saying that

1 −
√

1 +
u

v
(y2 − 1) ≤ |x| ≤ 1 +

√
1 +

u

v
(y2 − 1),

which holds true due to the above assumptions on x, y, u and v. �

Let us check the concavity-type condition.

Lemma 3.2. The function U1 satisfies the property 3◦.

Proof. Let us first consider the case (x, y, u, v) ∈ D2, which is much easier.
Using (3.1), we write

U1

(
x − d,

√
y2 + |d|2, u − e, v ∨ (u − e)

)

+U1

(
x + d,

√
y2 + |d|2, u + e, v ∨ (u + e)

)

≤ (u − e) − 2|x − d|(v ∨ (u − e)) + (u + e) − 2|x + d|(v ∨ (u + e))
≤ 2u − 2|x − d|v − 2|x + d|v
≤ 2u − 4|x|v
= 2U1(x, y, u, v).

Now we turn to the analysis of the more difficult case (x, y, u, v) ∈ D1.
Suppose first that y2 + |d|2 ≥ 1. Then (2.4) is equivalent to

(y2 − 1)u ≥ |x|2v − |x − d|(v ∨ (u − e)) − |x + d|(v ∨ (u + e)). (3.3)

We will show a slightly stronger estimate

y2 − 1 ≥ |x|2 − |x − d| − |x + d|. (3.4)

To see that (3.3) can be deduced from it, note that y < 1 and hence

(y2 − 1)u ≥ (y2 − 1)v ≥ |x|2v − |x − d|v − |x + d|v
≥ |x|2v − |x − d|(v ∨ (u − e)) − |x + d|(v ∨ (u + e)),



Vol. 85 (2016) Square Function Inequalities 367

as desired. To show (3.4), we note that |x| ≤ 1−y in D1. Using this inequality,
our assumption y2+|d|2 ≥ 1 and the triangle inequality |x+d|+|x−d| ≥ 2|d|,
we get

|x|2 − y2 + 1 ≤ 2(1 − y) ≤ 2
√

1 − y2 ≤ 2|d| ≤ |x + d| + |x − d|.
It remains to consider the case (x, y, u, v) ∈ D1 and y2 + |d|2 < 1. First we
will prove that

U1(x + d,
√

y2 + |d|2, u + e, v ∨ (u + e))
≤ (y2 + |d|2)(u + e) − |x + d|2(v ∨ (u + e)),

U1(x − d,
√

y2 + |d|2, u − e, v ∨ (u − e))
≤ (y2 + |d|2)(u − e) − |x − d|2(v ∨ (u − e)). (3.5)

It is enough to show the first estimate, the second one follows from the change
of signs of d and e. In the light of (3.2), this bound will hold true if we show
that

|x + d| ≤ 1 +
√

1 +
u + e

v ∨ (u + e)
(y2 + |d|2 − 1).

But this is simple: (x, y, u, v) ∈ D1 implies |x| ≤ 1, so

|x + d| ≤ |x| + |d| ≤ 1 +
√

y2 + |d|2

≤ 1 +
√

1 +
u + e

v ∨ (u + e)
(y2 + |d|2 − 1).

Now add the two inequalities in (3.5). We get that the right hand side of
(2.4) does not exceed

(y2 + |d|2)u − 1
2
[|x + d|2(v ∨ (u + e)) + |x − d|2(v ∨ (u − e))

]

≤ (y2 + |d|2)u − 1
2
[|x + d|2v + |x − d|2v]

= y2u − |x|2v + |d|2(u − v)
≤ U1(x, y, u, v).

This completes the proof. �

Proof of (1.6). Applying Theorem 2.1 to the functions U1 and V1 defined
above, we obtain
∫ 1

0

wnχ{Sn(f)≥1} − 2|fn|Md,nwds =
∫ 1

0

V1(fn, Sn(f), wn,Md,nw)ds ≤ 0

(3.6)

for all n. However, wn is the projection of w onto the space generated by h0,
h1, . . . , hn, and similarly, fn is the projection of f . This implies

∫ 1

0

wnχ{Sn(f)≥1}ds =
∫ 1

0

wχ{Sn(f)≥1}ds
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and
∫ 1

0

|fn|Md,nwds ≤
∫ 1

0

|f |Md,nwds.

Consequently, (3.6) implies
∫ 1

0

wχ{Sn(f)≥1}ds ≤ 2
∫ 1

0

|f |Md,nwds ≤ 2
∫ 1

0

|f |Mdwds.

Let n go to infinity and apply Lebesgue’s monotone convergence theorem to
obtain

∫ 1

0

wχ{S(f)>1}ds ≤ 2
∫ 1

0

|f |Mdwds.

To get the non-strict inequality under the indicator function, fix η ∈ (0, 1)
and apply the above bound to f/η; then

∫ 1

0

wχ{S(f)≥1}ds ≤
∫ 1

0

wχ{S(f)>η}ds ≤ 2η−1

∫ 1

0

|f |Mdwds.

Letting η → 1 completes the proof. �

4. Moment Inequality, 1 < p < 2

4.1. On the Estimate (1.7)
Let us start with some technical statements.

Lemma 4.1. Let p ∈ (1, 2) and x, d ∈ H.

(i) If |d| < |x|, then
|x + d|p + |x − d|p − 2|x|p ≥ p(p − 1)|x|p−2|d|2.

(ii) If |d| ≥ |x|, then
|x + d|p + |x − d|p − 2|x|p ≥ (2p − 2)|d|p.

Proof. (i) We have

|x + d|p + |x − d|p =
(|x|2 + |d|2 − 2〈x, d〉)p/2 +

(|x|2 + |d|2 + 2〈x, d〉)p/2

and the function t 
→ tp/2 is concave on [0,∞). This implies that if we keep
|x| and |d| fixed, the left-hand side of the desired inequality is the least when
|〈x, d〉| is the largest. In other words, it suffices to show the estimate for
H = R, and we may clearly assume that both x and d are nonnegative.
Having fixed such an x, consider the function F : [0, x] → R given by

F (t) = (x + t)p + (x − t)p − 2xp − p(p − 1)xp−2t2.

We have F (0) = F ′(0+) = 0 and, for t ∈ (0, x),

F ′′(t) = p(p − 1)
[
(x + t)p−2 + (x − t)p−2 − 2xp−2

] ≥ 0,

since the function t 
→ tp−2 is convex on (0,∞). This implies that F is
nonnegative, which is exactly what we need.
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(ii) Arguing as above, we may assume that H = R and x, d ≥ 0. Fix x
and consider G : [x,∞) → R defined by the formula

G(t) = (x + t)p + (t − x)p − 2xp − (2p − 2)tp.

Clearly, we have G(0) = 0 and

G′(t) = p
[
(x + t)p−1 + (t − x)p−1 − (2p − 2)tp−1

]
.

Now, keep t fixed and denote the expression in the square brackets by H(x).
Then for any s ∈ (0, t) we have

H ′(s) = (p − 1)[(s + t)p−2 − (t − s)p−2] < 0.

This yields

G′(t) ≥ p
[
2p−1tp−1 − (2p − 2)tp−1

] ≥ 0,

where the latter bound, equivalent to 2p−1 + 2 ≥ 2p, follows from

2p−2 + 1 ≥ 2 · 2(p−2)/2 = 2p/2 ≥ 2p−1.

This implies that G is nondecreasing on [x,∞), and hence it is nonnegative.
�

As we will see, the inequality (1.7) follows from (2.1) with Vp(x, y, u, v) =

ypu −
(

6p
p−1

)p

|x|pv. Introduce the function Up : D → R by

Up(x, y, u, v) =

{
ypu − Cp

p |x|pv if y ≥ βp|x|,
ypu − (Cp

p |x|p + βp|x|yp−1 − yp)v if y < βp|x|,

where Cp
p = 2

2p−1−1 and βp = 2
√
2p

p−1 . The reason why we choose these partic-
ular special constants, will be clarified below, in Remark 4.4. Of course, we
have

Up(x, y, u, v) = ypu − max
{
Cp

p |x|p, Cp
p |x|p + βp|x|yp−1 − yp

}
v. (4.1)

Let us now verify that Up, Vp enjoy all the required properties.

Lemma 4.2. The functions Up, Vp satisfy 1◦ and 2◦.

Proof. The first inequality is equivalent to u − (Cp
p + βp − 1)u ≤ 0, which

holds trivially. To show the second bound, observe first that
(

6p

p − 1

)p

= 2p

(
3p

p − 1

)p

≥ Cp
p + βp

p ,

which holds due to

Cp
p =

2
2p−1 − 1

≤ 2
(p − 1) ln 2

≤ 3p

p − 1
≤
(

3p

p − 1

)p

and βp ≤ 3p

p − 1
.

So, the majorization is evident for y ≥ βp|x|; for remaining (x, y), the estimate
is equivalent to

(
6p

p − 1

)p

|x|p ≥ Cp
p |x|p + βp|x|yp−1 − yp.
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But y < βp|x|, so

Cp
p |x|p + βp|x|yp−1 − yp ≤ Cp

p |x|p + βp|x|yp−1

≤ Cp
p |x|p + βp

p |x|p ≤
(

6p

p − 1

)p

|x|p.

The proof is complete. �

We turn our attention to the main, concavity-type property.

Lemma 4.3. The function Up satisfies 3◦.

Proof. Assume first that y ≥ βp|x|. Directly from (4.1), we see that the
right-hand side of (2.4) does not exceed

(y2 + |d|2)p/2u − Cp
p

[ |x + d|p + |x − d|p
2

]
v.

Hence it is enough to prove that

(y2 + |d|2)p/2 − yp ≤ Cp
p

[ |x + d|p + |x − d|p − 2|x|p
2

]
.

We consider two cases: if |d| < |x|, then we apply the mean-value property
to obtain

(y2 + |d|2)p/2 − yp ≤ p

2
yp−2|d|2 ≤ p

2
βp−2

p |x|p−2|d|2

≤ Cp
pp(p − 1)

2
|x|p−2|d|2 ≤Cp

p

[ |x + d|p+|x − d|p − 2|x|p
2

]
,

since Cp
p (p − 1) ≥ βp−2

p , as one easily checks. In the second case |d| ≥ |x|, we
write

(y2 + |d|2)p/2 − yp ≤ |d|p ≤ Cp
p (2p−1 − 1)|d|p

≤ Cp
p

[ |x + d|p + |x − d|p − 2|x|p
2

]
,

since Cp
p (2p−1 − 1) ≥ 1.

It remains to establish (2.4) for y < βp|x|. Observe that the right-hand
side of the estimate does not exceed

1
2

[
Up

(
x − d,

√
y2 + |d|2, u − e, v

)
+ Up

(
x + d,

√
y2 + |d|2, u + e, v

)]
,

since the increase in the variable v makes the function Up smaller. In the light
of (4.1), this is not larger than

(y2 + |d|2)p/2u − Cp
p

[ |x + d|p + |x − d|p
2

]
v

−βp|x|(y2 + |d|2)(p−1)/2v + (y2 + |d|2)p/2v
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(we have used here the triangle inequality 2|x| ≤ |x+ d|+ |x− d|). Hence, we
will be done if we prove that

((y2 + |d|2)p/2 − yp)u

≤
{

Cp
p

[ |x + d|p + |x − d|p − 2|x|p
2

]

+βp|x|((y2 + |d|2)(p−1)/2 − yp−1) − ((y2 + |d|2)p/2 − yp)

}

v.

Actually, it is enough to show this bound for u = v. Indeed, having this done,
we will get that the expression in the parentheses on the right is nonnegative;
thus, taking v larger than u will make the right-hand side even larger than
the left-hand side. So, from now on, we focus on the estimate

2((y2 + |d|2)p/2 − yp) ≤ Cp
p

[ |x + d|p + |x − d|p − 2|x|p
2

]

+βp|x|((y2 + |d|2)(p−1)/2 − yp−1).

If βp|x| ≥ 2p
p−1 (y2 + |d|2)1/2, the above bound holds true, since, by the mean-

value property for the convex function t 
→ tp/(p−1),

2((y2 + |d|2)p/2 − yp) ≤ 2p

p − 1
(y2 + |d|2)1/2((y2 + |d|2)(p−1)/2 − yp−1).

So, assume that βp|x| < 2p
p−1 (y2 + |d|2)1/2. If |d| ≥ |x|, then

2((y2 + |d|2)p/2 − yp) ≤ 2|d|p = Cp
p (2p−1 − 1)|d|p

≤ Cp
p

[ |x + d|p + |x − d|p − 2|x|p
2

]
.

On the other hand, if |d| < |x|, then y ≥ |x| (otherwise, the estimate
βp|x| < 2p

p−1 (y2 + |d|2)1/2 would not hold) and, by the mean-value property,

2((y2 + |d|2)p/2 − yp) ≤ 2((|x|2 + |d|2)p/2 − |x|p)
≤ p|x|p−2|d|2 ≤ Cp

p

( |x + d|p + |x − d|p − 2|x|p
2

)
,

since Cp
p

p(p−1)
2 ≥ p. This completes the proof of the lemma. �

Proof of (1.7). By Theorem 2.1, we get that for each n,
∫ 1

0

Sn(f)pwnds ≤
(

6p

p − 1

)p ∫ 1

0

|fn|pMd,nwds.

Since wn is the projection of w and fn is the projection of f , the above
estimate implies, in the light of Jensen’s inequality,

∫ 1

0

Sn(f)pwds ≤
(

6p

p − 1

)p ∫ 1

0

|f |pMd,nwds

≤
(

6p

p − 1

)p ∫ 1

0

|f |pMdwds.



372 A. Osȩkowski IEOT

It remains to let n go to infinity and apply Lebesgue’s monotone convergence
theorem to get the assertion. �

Remark 4.4. Let us now comment why we have chosen the above values for
the constants Cp and βp. To this end, let us gather all the properties of Cp

and βp which were needed in the above considerations: first, in the proof of
the majorization 2◦ we have needed the estimate

Cp
p + βp

p ≤
(

6p

p − 1

)p

. (4.2)

Furthermore, in the later calculations we have required the following five
inequalities: Cp

p (p − 1) ≥ βp−2
p , Cp

p (2p−1 − 1) ≥ 1, Cp
p (2p−1 − 1) ≥ 2, βp ≥

2
√
2p

p−1 and Cp
p

p(p−1)
2 ≥ p. Clearly, in the light of (4.2), we should take the

smallest βp allowed: βp = 2
√
2p

p−1 . From the remaining four lower bounds for
Cp, the condition Cp

p (2p−1 − 1) ≥ 2 is the strongest; this leads to the choice
Cp

p = 2/(2p−1 − 1) used above.

4.2. A Related Result

This subsection is devoted to the weighted Lp-estimate (1.9), which, in com-
parison to (1.7), has a different weight standing on the right. The correspond-
ing special function is obtained as a combination of U1 (the function leading
to the weak-type estimate) and a certain interpolation-type argument. Let
us start with a technical observation.

Lemma 4.5. Let (x, y, u, v) ∈ D with u > 0. The condition

y ≤ 1 and |x| +
√

1 +
u

v
(y2 − 1) ≤ 1, (4.3)

appearing in the definition of D1, is equivalent to saying that

v

u
|x| +

√

|x|2
(

v2

u2
− v

u

)
+ y2 ≤ 1. (4.4)

Proof. Suppose that (4.3) holds. Then 1 ≥ |x| +
√

1 + u
v (y2 − 1) ≥ |x| +√

1 − u
v , and hence

|x| ≤ 1 −
√

1 − u

v
≤ u

v
. (4.5)

Furthermore, the second inequality in (4.3) implies 1+ u
v (y2 −1) ≤ (1−|x|)2,

which is equivalent to |x|2( v2

u2 − v
u ) + y2 ≤ (1 − v

u |x|)2. By (4.5), this yields
the validity of (4.4). The reasoning in the reverse direction is similar and left
to the reader. �

Thus, if we substitute X = v
ux, Y =

√
|x|2( v2

u2 − v
u ) + y2, then the

function of Sect. 2 is given by

U1(x, y, u, v) = u

{
Y 2 − |X|2 if |X| + Y ≤ 1,

1 − 2|X| if |X| + Y > 1.
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The expression on the right is the famous special function invented by Burk-
holder (see page 21 in [4] for a slightly transformed formula: one can actually
find the function L(x, y) = 1−U(x, y) there), who used it in the proof of the
weak-type inequality for martingale transforms. Now, for any t > 0, we have

U1(x/t, y/t, u, v) = u

{
t−2(Y 2 − |X|2) if |X| + Y ≤ 1,

1 − 2|X|/t if |X| + Y > 1.

If we define

Up(x, y, u, v) =
p(p − 1)(2 − p)

2

∫ ∞

0

tp−1U1(x/t, y/t, u, v)dt,

then a little calculation (cf. [15]) reveals that

Up(x, y, u, v)

=
p(p−1)(2−p)

2
u

[∫ |X|+Y

0

tp−1(1−2X/t)dt+
∫ ∞

|X|+Y

tp−3(Y 2−X2)dt

]

= u(Y − (p − 1)−1|X|)(|X| + Y )p−1.

We will require the following majorization.

Lemma 4.6. For any (x, y, u, v) ∈ D with u > 0 we have

Up(x, y, u, v) ≥ pp−2(ypu − (p − 1)−p|x|pvpu1−p). (4.6)

Proof. Divide both sides by u. Since y ≤ Y , it is enough to show the inequality

(Y − (p − 1)−1|X|)(|X| + Y )p−1 ≥ pp−2
(
Y p − (p − 1)−p|X|p) .

This estimate can be found on p. 17 of Burkholder’s survey [4]. �

Proof of (1.9). By a straightforward approximation, we may assume that the
weight w is positive almost everywhere. Fix a nonnegative integer n and a
positive number t. We know that

∫ 1

0

U1(fn/t, Sn(f)/t, wn,Md,nw)ds ≤ 0,

by (2.5) applied to the function f/t. Therefore, by Fubini’s theorem and the
definition of Up, we get

∫ 1

0

Up(fn/t, Sn(f)/t, wn,Md,nw)ds ≤ 0

(the use of Fubini’s theorem is permitted since the functions fn, Sn(f), wn

and Md,nw take values in a finite set). Combining this with (4.6), we obtain
∫ 1

0

Sn(f)pwnds ≤ (p − 1)−p

∫ 1

0

|fn|p(Md,nw)pw1−p
n ds.

Now, the function (r, s) 
→ rps1−p is convex on [0,∞) × (0,∞): indeed, its
Hessian matrix

[
p(p − 1)rp−2s1−p −p(p − 1)rp−1s−p

−p(p − 1)rp−1s−p p(p − 1)rps−1−p

]
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is nonnegative definite. Therefore, since (fn, wn) is the projection of (f, w),
Jensen’s inequality implies

∫ 1

0

|fn|p(Md,nw)pw1−p
n ds ≤ ∫ 1

0
|f |p(Md,nw)pw1−pds

≤ ∫ 1

0
|f |p(Mdw)pw1−pds.

It remains to note that
∫ 1

0

Sn(f)pwnds =
∫ 1

0

Sn(f)pwds

and let n → ∞ to obtain the assertion. �

5. Moment Inequality, p ≥ 2

5.1. On the Estimate (1.8)
This time, the function Vp : D → R is given by

Vp(x, y, u, v) =
2
p

(
ypu −

(p

2

)p/2

|x|pvp/2u1−p/2

)
,

while the special function Up : D → R is

Up(x, y) = ypu − p

2
yp−2|x|2v.

Let us verify that the above functions have all the necessary properties.

Lemma 5.1. The functions Up and Vp enjoy 1◦ and 2◦.

Proof. The first inequality is obvious: Up(x, |x|, u, u) =
(
1 − p

2

) |x|pu ≤ 0.
The second estimate follows at once from the mean-value property applied
to the function t 
→ tp/2, since

Up(x, y, u, v) = (yu1/p)p − p

2
(yu1/p)p−2|x|2vu−1+2/p. �

As previously, the main difficulty lies in proving the concavity-type con-
dition. However, this time the calculations are relatively short and simple.

Lemma 5.2. The function Up satisfies the property 3◦.

Proof. The right-hand side of (2.4) is equal to

(y2 + |d|2)p/2u

− p

4
(y2 + |d|2)p/2−1(|x + d|2(v ∨ (u + e)) + |x − d|2(v ∨ (u − e)))

≤ (y2 + |d|2)p/2u − p

4
(y2 + |d|2)p/2−1(|x + d|2v + |x − d|2v)

= (y2 + |d|2)p/2u − p

2
(y2 + |d|2)p/2−1(|x|2 + |d|2)v

= Up(x, y, u, v)

+ [(y2 + |d|2)p/2 − yp]u − p

2
[(y2 + |d|2)p/2−1(|x|2 + |d|2) − yp−2|x|2]v.
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Since (y2 + |d|2)p/2 − yp ≥ 0 and u ≤ v, we will be done if we show that

(y2 + |d|2)p/2 − yp ≤ p

2
[(y2 + |d|2)p/2−1(|x|2 + |d|2) − yp−2|x|2],

or

(y2 + |d|2)p/2−1
[
y2 + |d|2 − p

2
(|x|2 + |d|2)

]
≤ yp−2

[
y2 − p

2
|x|2
]
. (5.1)

To prove this, it is enough to show that the function

F (s) = (y2 + s)p/2−1
[
y2 + s − p

2
(|x|2 + s)

]

is nonincreasing on [0,∞). But this is straightforward: a direct differentiation
shows that

F ′(s) = −p

2

(p

2
− 1
)

(y2 + s)p/2−2(|x|2 + s) ≤ 0. �

Proof of (1.8). The argument goes along the same lines as that in the proof
of (1.9). We leave the straightforward modifications to the reader. �

Let us make a comment analogous to Remark 4.4 above.

Remark 5.3. There is a natural question whether the parameter p/2 appear-
ing in the definition of Up can be decreased: this would lead to the improve-
ment of the Lp-constant in our main estimate. It turns out that if one replaces
this parameter with some α < p/2, then the above proof does not work.
Indeed, the resulting function

F (s) = (y2 + s)p/2−1
[
y2 + s − α(|x|2 + s)

]

satisfies

F ′(0+) =
(p

2
− α

)
yp−2 − α

(p

2
− 1
)

yp−4x2

which is positive for some x, y; therefore, (5.1) is not satisfied for some x, y
and d.

5.2. Lack of Fefferman–Stein Inequalities for p > 2
Now we will present a counterexample showing that for any p > 2 there is
no finite Cp such that

‖S(f)‖Lp(w) ≤ Cp‖f‖Lp(Mdw)

for all f and w, even if H = R. Actually, there is an example which works
for all p simultaneously. Fix a (large) integer N and set

w = 2Nχ[0,2−N ) = h0 + h1 + 2h2 + 4h4 + · · · + 2N−1h2N−1 .

We have w0 = χ[0,1) and w2k = 2k+1χ[0,2−k−1) for any 0 ≤ k ≤ N − 1.
Furthermore, for any 0 ≤ k ≤ N − 2 and � ∈ {2k, 2k + 1, . . . , 2k+1 − 1} we
have w� = w2k ; and w� = w2N−1 for � ≥ 2N−1. Consequently, we see that

Mdw = 2Nχ[0,2−N ) +
N−1∑

k=0

2kχ[2−k−1,2−k)

and hence
∫ 1

0
Mdw = 1 + N/2. Next, set f = h0 − h1 + h2 − h4 + h8 −

· · · + (−1)Nh2N−1 . On [2−k−1, 2−k), we have h0 = h1 = · · · = h2k−1 = 1 and
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h2k = −1, so |f | ≤ 2 there; similarly, on [0, 2−N ) we have h0 = h1 = h2 =
h4 = · · · = h2N−1 = 1, so |f | ≤ 2 there. Thus,

∫ 1

0

|f |pMdw ≤ 2p(1 + N/2). (5.2)

On the other hand, on [0, 2−N ) we have S(f) =
√

N + 1 and hence
∫ 1

0

S(f)pw = 2−N · (N + 1)p/2 · 2N = (N + 1)p/2.

Comparing this to (5.2), we conclude that there are no Fefferman–Stein
inequalities for the square function in the case p > 2.

6. Martingale Inequalities

All the results established above have their counterparts in the martingale
theory. Let us start with introducing the necessary background and notation.
Suppose that (Ω,F ,P) is a complete probability space, equipped with the
continuous-time filtration (Ft)t≥0. We assume that F0 contains all the events
of probability 0. Let X = (Xt)t≥0 be an adapted continuous-path and uni-
formly integrable martingale taking values in H (recall that we have assumed
that H = �2). Denote by [X] = ([X]t)t≥0 the square bracket (quadratic vari-
ation) associated to X; see Dellacherie and Meyer [8] for the definition in the
case when X takes values in R, and extend it to the vector setting by the for-
mula [X]t =

∑∞
j=1[X

j ]t, where Xj stands for the j-th coordinate of X. Next,
let W = (Wt)t≥0 be a weight, i.e., a nonnegative, continuous-path and uni-
formly integrable martingale, and let W ∗ = sups≥0 Ws, W ∗

t = sup0≤s≤t Ws

be the maximal and truncated maximal functions of W .
We are ready to formulate the main result of this section. In anal-

ogy to the notation used in the previous sections, we set ‖X∞‖Lp(W∞) =
(E|X∞|pW∞)1/p for all 1 ≤ p < ∞.

Theorem 6.1. For any X, W as above, we have the following:

E1{[X]∞≥1}W∞ ≤ 2‖X∞‖L1(W ∗), (6.1)

‖[X]1/2
∞ ‖Lp(W∞) ≤ 6p

p − 1
‖X∞‖Lp(W ∗), 1 < p < 2, (6.2)

‖[X]1/2
∞ ‖Lp(W∞) ≤ (p − 1)−1‖X∞‖Lp((W ∗)pW 1−p∞ ). (6.3)

and

‖[X]1/2
∞ ‖Lp(W∞) ≤

√
p

2
‖X∞‖

Lp((W ∗)p/2W
1−p/2
∞ )

, p ≥ 2. (6.4)

Proof. We will focus on proving (6.1); the reasoning leading to the remaining
estimates is similar and left to the reader. It is convenient to split the proof
into two parts.
Step 1. Reductions. With no loss of generality, we may assume that X, [X]
and W are bounded. Indeed, fix a large positive number M , consider the
stopping time τM = inf{t : |Xt|+[X]t +Wt ≥ M} and the bounded processes
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XM
t = Xt1{τM>0}, WM

t = Wt1{τM>0}, t ≥ 0. Having established (6.1) for
XM and WM , we let M → ∞ and obtain the weak-type estimate in full
generality. The proof of (6.1) rests on Itô’s formula applied to the function U1

and the process (X, [X],W,W ∗). However, there are two problems which need
to be overcome. First, there is no Itô’s formula for processes taking values
in infinite-dimensional Hilbert spaces, see [13]; furthermore, the function U1

does not have the necessary regularity (it is not of class C2). The first obstacle
is removed very easily: clearly, it is enough to show the weak-type bound for
R

n-valued martingales, and then let n → ∞. To handle the second issue, we
will use an additional mollification argument. Let g : R

n × R × R × R →
[0,∞) be a C∞ function, supported on the unit ball of Rn+3 and satisfying∫
Rn+3 g = 1. Given δ > 0, define a function U δ

1 : {(x, y, u, v) ∈ R
n × [0,∞) ×

[0,∞) × [0,∞) : u ≤ v} → R by the convolution

Uδ
1 (x, y, u, v)

=
∫

Rn+3
U1(x+δs1, y+δ+δs2, u+δ+δs3, v+5δ+δs4)g(s1, s2, s3, s4)ds.

This function is of class C∞. Furthermore, we see that

U δ
1v(x, y, u, v) ≤ 0, (6.5)

since U1 is nonincreasing as a function of its fourth variable. Finally, as we
will show now, the property (2.4) (which is satisfied by U1) implies a certain
differential inequality for U δ

1 . Namely, take (x, y, u, v) ∈ R
n × [0,∞)×(0,∞)2

satisfying u ≤ v, and fix d ∈ R
n, e ∈ R and t > 0. If t is sufficiently small (so

that u ± te ≥ 0), then (2.4) for U1 guarantees

U δ
1 (x, y, u, v)

≥ 1
2

[
U δ
1 (x−td,

√
y2+t2|d|2, u−te, v)+U δ

1 (x+td,
√

y2+t2|d|2, u+te, v)
]
.

Now put all the terms on the right-hand side, divide throughout by t2 and
let t go to zero. As the result, we get that

〈U δ
1xx(x, y, u, v)d, d〉 + U δ

1y(x, y, u, v)|d|2 + U δ
1uu(x, y, u, v)e2

+ 2〈U δ
1xu(x, y, u, v)e, d〉 ≤ 0. (6.6)

Step 2. Application of Itô’s formula. Introduce the auxiliary process Zt =
(Xt, [X]1/2

t ,Wt,W
∗
t ), t ≥ 0. By the above assumptions, we see that Z is

bounded and has continuous paths. If we fix t ≥ 0 and apply Itô’s formula,
we get

U δ(Zt) = U δ(Z0) + I1 + I2 + I3/2, (6.7)
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where

I1 =
∫ t

0

U δ
1x(Zs)dXs +

∫ t

0

U δ
1u(Zs)dWs,

I2 =
∫ t

0

U δ
1v(Zs)dW ∗

s ,

I3 =
∫ t

0

U δ
1y(Zs)d[X]s +

1
2

∫ t

0

D2
xuU δ

1 (Zs)d[X,W ]s.

Here the second integral in I3 is the shortened notation for the sum of all the
relevant second-order terms, i.e.,

∫ t

0

D2
xuU δ

1 (Zs)d[X,W ]s =
n∑

j,k=1

∫ t

0

U δ
1xjxk

(Zs)d[Xj ,Xk]s

+ 2
n∑

j=1

∫ t

0

U δ
1xju(Zs)d[Xj ,W ]s

+
∫ t

0

U δ
1uu(Zs)d[W ]s.

Let us look at the terms I1, I2 and I3 separately. By properties of stochastic
integrals, the first term is a martingale (since X and W are bounded). The
second term is nonpositive, by (6.5) and the fact that the process W ∗ is
nondecreasing. Finally, I3 is also nonpositive, which follows directly from
(6.6). Indeed, pick the sequence sk = jt/N , j = 0, 1, 2, . . . , N , and, for any j,
apply (6.6) to x = Xsj−1 , y = [X]1/2

sj−1 , u = Wsj−1 , v = W ∗
sj−1

, d = Xsj
−Xsj−1

and e = Wsj
− Wsj−1 . Summing the obtained inequalities over j and letting

N → ∞ we get I3 ≤ 0.
Therefore, coming back to (6.7), we see that we have proved the estimate

EU δ
1 (Zt) ≤ EU δ

1 (Z0).

But U1 is a continuous function, so U δ
1 → U1 pointwise as δ → 0. Therefore,

if we combine this with the boundedness of the process Z, we get

EU1(Xt, [X]1/2
t ,Wt,W

∗
t ) ≤ EU1(X0, [X]1/2

0 ,W0,W
∗
0 ).

However, we have [X0]1/2 = |X0| and W ∗
0 = W0; thus, by (2.2), the right-

hand side above is nonpositive. Plugging the majorization (2.3) yields

EWt1{[X]t≥1} ≤ 2E|Xt|W ∗
t .

It remains to carry out the appropriate limiting procedure, which goes along
the same lines as in the analytic setting. Since Wt = E(W∞|Ft) and Xt =
E(X∞|Ft), the above estimate implies that EW∞1{[X]t≥1} ≤ 2E|X∞|W ∗

t ≤
2E|X∞|W ∗, by conditional Jensen’s inequality. Letting t → ∞ gives

EW∞1{[X]∞>1} ≤ 2E|X∞|W ∗
t ≤ 2E|X∞|W ∗,

and to get the non-strict estimate under the indicator, one applies the latter
bound to X/η, η ∈ (0, 1), and lets η → 1 (see the proof of (1.6) above). �
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