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Abstract
Zinc is required for the regulation of proliferation, metabolism, and cell signaling. It is an intracellular second messenger, and 
the cellular level of ionic, mobile zinc is strictly controlled by zinc transporters. In mammals, zinc homeostasis is primarily 
regulated by ZIP and ZnT zinc transporters. The importance of these transporters is underscored by the list of diseases result-
ing from changes in transporter expression and activity. However, despite numerous structural studies of the transporters 
revealing both zinc binding sites and motifs important for transporter function, the exact molecular mechanisms regulating 
ZIP and ZnT activities are still not clear. For example, protein phosphorylation was found to regulate ZIP7 activity resulting 
in the release of Zn2+ from intracellular stores leading to phosphorylation of tyrosine kinases and activation of signaling 
pathways. In addition, sequence analyses predict all 24 human zinc transporters to be phosphorylated suggesting that protein 
phosphorylation is important for regulation of transporter function. This review describes how zinc transporters are implicated 
in a number of important human diseases. It summarizes the current knowledge regarding ZIP and ZnT transporter structures 
and points to how protein phosphorylation seems to be important for the regulation of zinc transporter activity. The review 
addresses the need to investigate the role of protein phosphorylation in zinc transporter function and regulation, and argues 
for a pressing need to introduce quantitative phosphoproteomics to specifically target zinc transporters and proteins involved 
in zinc signaling. Finally, different quantitative phosphoproteomic strategies are suggested.
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Introduction

Zinc has been implicated as a factor in the development and 
progression of many pathological conditions such as cancer, 
inflammation, diabetes as well as in neurological and psy-
chiatric diseases [1–14]. An estimated 3000 proteins interact 
with zinc, representing 10% of the genome, and zinc is a 
known regulator of gene expression through metal-respon-
sive transcription factor-1 [15–19]. Furthermore, zinc has 
been identified as an intracellular second messenger involved 
in regulating various pathways, adding an extra dimension to 
its role in cellular regulation [20–22]. The basal level varies 
in different cell types. It ranges from tens to hundreds of 
pM free zinc, and it is strictly controlled as deviations from 
the normal cellular level may be cytotoxic [23, 24]. As zinc 
flux is primarily controlled by zinc transporters, we expect 
zinc-related dysfunction is not likely to result from dietary 
zinc deficiency or abundance alone, but rather from devia-
tions in the function of proteins regulating zinc homeostasis.
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The review gives a brief introduction to the role of zinc 
transporters in human diseases as well as evidence linking 
protein phosphorylation of zinc transporters to zinc signal-
ing. The case is made that quantitative phosphoproteom-
ics is an important approach to now understand more fully 
the role of phosphorylation in regulating zinc homeostasis. 
Finally, different quantitative phosphoproteomic strategies 
are suggested. In addition to zinc ions, ZIP and ZnT trans-
porter are capable of transporting other cations such as iron, 
manganese, and cadmium. The mechanisms for transport of 
these ions and their link to different diseases is described 
elsewhere, and will not be discussed in this review as our 
focus will be on zinc transport [25–33].

Zinc transporters

Four major zinc transporter families have been identified: 
(1) P-type ATPases; (2) RND (resistance, nodulation and 
division) multidrug efflux transporters; (3) the Zrt-, Irt-
like protein (ZIP) family (Slc39A); and (4) the superfam-
ily of cation diffusion facilitators (CDF) that includes the 
ZnT family of zinc transporters. The P-type ATPases are 
identified in bacteria and plants [34, 35], whereas the RND 
transporters only exist in a few Gram-negative bacteria [36]. 
In humans, the uptake of zinc is regulated by zinc transport-
ers of the ZIP family (Slc39A) located in membranes such 
as the plasma membrane, the endoplasmic reticulum, and 
Golgi [37]. These transporter proteins import zinc from the 
extracellular environment or from organelles to increase the 
concentration of cytosolic zinc [37–39]. On the other hand, 
the mammalian CDF family and the Zn transporter (ZnT) 
family (Slc30A) mediates the export of zinc from the cytosol 
into organelles or out of the cell [37, 40]. ZnT transporters 
are found in membranes of intracellular organelles except for 
ZnT1 which is located in the plasma membrane [1, 41–43]. 
These two transporter families account for 14 human ZIP 
proteins and 10 human ZnT proteins and are responsible for 
controlling zinc homeostasis. In addition, zinc binding pro-
teins such as metallothioneins assist in regulating the level 
of free zinc in the cell.

Zinc transporters in diseases

Changes in the expression and activity of different zinc 
transporters have been directly linked to both systemic and 
central nervous system diseases, and to rare diseases such 
as acrodermatitis enteropathica (AE) [44] as well as lifestyle 

diseases and conditions affecting large numbers of people 
worldwide [45–58].

Diabetes

ZnT8 is the zinc transporter best studied in diabetes. It is 
expressed in pancreatic beta cells and functions as target 
autoantigen in patients with type 1 diabetes [59]. A com-
mon W325R variant in the ZnT8 large C-terminal domain 
(CTD) has been associated with changed autoantibody 
specificity in type 1 diabetes as well as increased risk of 
developing type 2 diabetes [60]. ZIP14 and ZIP4 were also 
found to be involved in diabetes as altered zinc traffick-
ing in Zip14−/− mice resulted in a phenotype with defects 
in glucose homeostasis [45], and in the murine pancre-
atic beta cell line MIN6, overexpression of ZIP4 leads 
to increased granular zinc content and glucose-stimulated 
insulin secretion [50].

Neurological and psychiatric diseases

In the nervous system, both transporters controlling zinc 
influx as well as zinc efflux play key roles in cellular regu-
lation. The increase in cytosolic zinc mediated by ZIP12 
leads to CREB phosphorylation and activation which is 
important for neuronal differentiation [61]. A mutation 
in the SLC39A8 gene encoding the zinc and manganese 
transporter ZIP8 results in low levels of both Zn2+ and 
Mn2+ in the blood and increased levels in urine due to 
increased renal wasting in the affected patients [62]. The 
resulting autosomal-recessive disorder is characterized by 
intellectual disability, developmental delay, hypotonia, 
strabismus, cerebellar atrophy, and variable short stature 
[62]. ZnT3 has been identified as critical for transport 
of zinc into synaptic vesicles of a subset of glutamater-
gic neurons [63–65], and ZnT3 expression is reduced in 
patients with Alzheimer’s disease [66, 67] and Parkinson’s 
disease-related dementia [68]. Moreover, ZnT3 expression 
decreases with age suggesting a role in the prevention of 
aging-related cognitive loss [69]. Recently, Whitfield 
et al. proved a link between reduced ZnT3 protein level 
and depression in patients with dementia [14]. In a study 
in postmortem brain tissue, Rafalo-Ulinska et al. found a 
reduction in the ZnT3 protein level as well as a significant 
increase in the level of ZnT1, ZnT4, ZnT5 protein in the 
prefrontal cortex of subjects diagnosed with major depres-
sive disorder (MDD) and in non-diagnosed suicide vic-
tims, relative to control subjects suggesting that zinc trans-
porters are important in the pathophysiology of MDD and 
suicide [12]. ZnT3 is also inked to increased risk of febrile 
seizures [63, 70]. Changes in the level of ZnT transporers 
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have also been identified in rats subjected to olfactory bul-
bectomy (OB), which is a model of depression [13].

Cancer

Dysregulation of zinc homeostasis is critical in a variety of 
cancers. ZIP4 is found to be upregulated in several types of 
cancer cells [53, 54, 58]. ZIP6 also plays an important role in 
numerous cancers, particularly breast cancer [47, 49, 56, 57, 
71]. Overexpression of ZnT2 is found to decrease invasive 
phenotypes of breast cancer cells [72]. In addition, reduced 
ZnT4 expression is observed in the progression from benign 
to invasive prostate cancer [73].

Immune response

ZIP10 is important for B-cell survival and function and 
along with ZIP6 is involved in antigen presentation to T cells 
[46, 52]. Dendritic cells are important for immune response 
as they are involved in antigen presentation to T cells [74]. 
When dendritic cells are exposed to lipopolysaccharides, it 
results in the fragmentation of a ligand for toll-like receptor 
4 (TLR4) from the outer membrane of Gram-negative bacte-
ria. The TLR4–TRIF (Toll/Il-1 receptor domain-containing 
adapter protein-inducing interferon β) axis is activated lead-
ing to the downregulation of ZIP6 and ZIP10, and upregu-
lation of ZnT1 and ZnT6 resulting in a significant drop in 
the intracellular zinc level [52]. ZIP8 is highly involved in 
inflammation [55], and was recently reported to be central 
to the development of osteoarthritis [51]. ZnT5 is required 
for the mast cell-mediated delayed-type allergic response 
by playing a role in Fc epsilonRI-induced translocation of 
protein kinase C (PKC) to the plasma membrane and in the 
nuclear translocation of nuclear factor kappaB [75].

ZnT and ZIP structures

No three-dimensional structures of full-length human ZnT or 
ZIP proteins have been solved. Instead, most structural infor-
mation on these transporters comes from sequence analysis 
and prediction studies as well as data on the crystal struc-
tures of prokaryotic homologs [76, 77]. The current knowl-
edge on zinc transporter structure and function is described 
in detail in recent reviews [46, 69, 78].

ZnT transporters

Based on the three-dimensional structure of Escherichia coli 
homolog YiiP, the ZnT transporters have been predicted to 
contain six transmembrane domains (TMDs) with intra-
cellular NH2 and COOH termini (Fig. 1a). The exception 
is ZnT5, which contains seven TMDs [78]. The literature 

presents different predictions for the location of the TMDs 
but overall, the ZnTs are described with a histidine/serine-
rich domain in a cytosolic loop of varying lengths between 
TMD4 and TMD5, and a large CTD with an overall struc-
tural similarity with the copper metallochaperone Hah1, 
although the ZnT CTDs do not share sequence homology 
with Hah1 [77] (Fig. 1a).

Based on studies of YiiP, TMD1, TMD2, TMD4, and 
TMD5 are thought to form a compact four-helix structure 
in which four conserved hydrophilic coordination residues 
in TMD2 and TDM5 form a intramembranous zinc-binding 
site [69]. Mutations of these conserved residues have been 
shown to inhibit zinc transport activity [80]. Three of these 
coordination residues are conserved between bacteria and 
human, whereas the fourth site is a histidine residue in ZnT 
but alternates between a histidine and a aspartate residue 
in YiiP [81]. This enables ZnT, in contrast to YiiP, to dis-
criminate between Zn2+ and the toxic ion Cd2+ [81]. Other 
studies point to the cytoplasmic domain as important for 
transporter activity as described for ZnT8 [60], as well as in 
ZnT10 where a L349P missense mutation in the CTD affects 
transporter activity, and a synonymous mutation (M250P) 
in the prokaryotic CDF protein, MamM, was found to be 
critical for the CTD fold illustrating the importance of the 
CTD [82]. The identification of a CDF superfamily lacking 
the CTD, however, points to additional strategies for zinc 
transport by ZnT transporters [43]. Furthermore, a di-proline 
motif in the luminal loop 2 conserved in ZnT5 and ZnT7 was 
recently found to be important for activation of the secretory 
and membrane-bound zinc-requiring enzyme, tissue-non-
specific alkaline phosphatase (TNAP) [83].

ZIP transporters

Based on sequence similarity, the ZIP family is divided 
into subfamily ZIP I, ZIP II, gufA, and LIV-1 (Liverpool-1) 
[84–86]. The ZIP1, ZIP2, and ZIP3 proteins belong to the 
ZIP II subfamily, ZIP9 to the ZIP I subfamily and ZIP11 to 
the gufA subfamily. The remaining nine ZIP proteins are 
part of the LIV-1 subfamily. These transporters are related 
to the estrogen-regulated gene, LIV-1 and have primarily 
been identified in mammals [85]. The ZIP transporters con-
tain eight putative transmembrane domains (TMDs) with 
extracellular NH2 and COOH termini (Fig. 1b) [38, 69, 78, 
79, 87]. They all have a very short COOH terminus and a 
large cytoplasmic loop between TMD3 and TMD4 [46, 85, 
88]. The cytoplasmic loop contains a histidine-rich motif 
with metal-binding properties [85]. In addition, mem-
bers of the LIV-1 subfamily have a HEXXH motif in their 
TMD5 expected to function as a metal binding site and their 
sequences include a large NH2-terminal extracellular domain 
(ECD) not found in other ZIP subfamilies [85]. The ECD 
contains a highly conserved proline–alanine–leucine (PAL) 
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motif, and for several of the LIV-1 subfamily members, these 
highly variable ECDs contain a high degree of histidine resi-
dues [69, 78, 85]. The expression of ZIP transporters at the 
cell surface is generally found to be upregulated upon die-
tary zinc deficiency (except for ZIP5) underscoring the tight 
connection between expression/function of the transporters 
and zinc signaling [89–91]. However, limited experimen-
tal data hamper our understanding of the regulation of zinc 
transport and zinc signaling in humans.

The ZIP4 protein is the best characterized of the ZIP 
transporters. ZIP4 is the ZIP transporter responsible 
for dietary zinc uptake as it is the exclusive transporter 
expressed on the apical surface of the intestinal epithe-
lium [89]. Reduced zinc uptake caused by mutations in the 
ZIP4 gene results in the rare autosomal recessive disorder 

acrodermatitis enteropathica (AE) [44]. Fifteen missense 
mutations in ZIP4 cause AE, of these, seven are found in 
the ECD emphasizing the central role of this domain [92, 
93]. Recently, the first crystal structure of a mammalian 
ZIP4-ECD was reported [94]. The study revealed two inde-
pendent subdomains; a helix-rich domain and a PAL motif 
containing domain connected by a short loop and stabilized 
by four disulfide bonds. The study showed how two ECDs 
form a dimer centered at the PAL motif. As some of the AE-
causing mutations eliminate the first and the fourth disulfide 
bond and downregulate ZIP4 glycosylation in mice, the two 
disulfide bonds are found to be critical for ZIP4 folding [94].

ZIP4 is found to be important for zinc transport activity, 
transporter processing and trafficking [94–96]. During zinc 
deficiency, the ZIP4-ECD is cleaved to form a ~ 35 kDa ZIP4 

Fig. 1   Predicted structures of 
ZnT and ZIP transporter pro-
teins. a Predicted structure of 
members of the Zn transporter 
(ZnT) family (Slc30A) adapted 
from [79]. b Predicted structure 
of members of the Zrt-, Irt-like 
protein (ZIP) family (Slc39A). 
The long extracellular domain 
at the N-terminus is unique for 
members of the LIV-1 subfam-
ily
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peptide. This peptide accumulates as a peripheral membrane 
protein, whereas the remaining ~ 37-kDa ZIP4 COOH-termi-
nal processed peptide accumulates as an integral membrane 
protein [96]. Two AE mutations are found to block ECD 
cleavage and other mutations have been shown to diminish 
cleavage suggesting that proteolytic processing of ECD is 
important for ZIP4 function in regulating zinc homeostasis 
[96]. ECD cleavage has been found to occur in both ZIP4, 
ZIP6, and ZIP10 [97].

Dempski and co-workers investigated the function of 
the large human ZIP4 (hZIP4) cytoplasmic loop between 
TMD3 and TMD4 (M3M4) [98]. Combining site-directed 
mutagenesis, metal binding affinity assays, and X-ray 
absorption spectroscopy demonstrated how two Zn2+ ions 
bind sequentially to two different sites in the cytosolic loop 
due to different zinc affinities [98]. First, one Zn2+ ion binds 
to a CysHis3 site with a nanomolar binding affinity. Then a 
second Zn2+ ion binds to a His4 site with a weaker affinity, 
suggesting a form of zinc sensing role of the M3M4 domain, 
perhaps involved in the regulation of the ZIP4 level at the 
plasma membrane according to the need for cytosolic zinc 
[98].

Studies of hZIP4 and the mouse homologue (mZIP4) 
have shown how the cytosolic concentration of zinc ions 
regulate ZIP4 surface expression [88]. The level of murine 
ZIP4 mRNA in enterocytes and yolk sac is increased upon 
zinc limitation and suppressed upon zinc repletion [89, 99], 
and mZIP4 protein expression at the plasma membrane is 
reduced when zinc-deficient mice are fed a zinc-replete diet 
[89]. High-cytosolic Zn2+ concentrations were found to 
reduce mZIP4 expression at the plasma membrane through 
Zn2+-dependent endocytosis [100]. Kim et al. demonstrated 
that both mZIP4 and hZIP4 protein accumulate at the plasma 
membrane during zinc deficiency and undergo endocytosis 
when cells are exposed to low zinc concentrations (~ 1 µM 
Zn) leading to reduced zinc uptake through ZIP4 [100]. Fur-
thermore, Mao and co-workers showed how a histidine-rich 
cluster in the cytoplasmic loop mediates ubiquitination and 
proteasomal degradation of hZIP4 at higher concentrations 
of zinc to protect against zinc cytotoxity [101].

It is clear that the regulation of cellular zinc is both strin-
gent and complex and that various strategies are used to 
control the level and activity of ZIP4, and other zinc trans-
porters as well [102].

General overview of protein 
phosphorylation

Protein phosphorylation is another post-translational modi-
fication (PTM) involved in zinc transport and signaling. It 
is a transient PTM that enables the cell to change the con-
formation, activity, and interaction of target proteins within 

a very short timeframe. It is a reversible modification, and a 
complex interplay between specific protein kinases and pro-
tein phosphatases keeps a strict temporal and spatial control 
of the phosphorylation and dephosphorylation of target pro-
teins at specific sites. This enables the cell to quickly trans-
duce extracellular signals into intracellular signals through 
signal transduction pathways in which a large range of target 
proteins are affected (Fig. 2). Protein phosphorylation is one 
of the most widespread regulatory mechanisms in nature, 
acting as an important modulator of intracellular biological 
processes such as proliferation, differentiation, cell survival, 
transcription, and translation [103–107]. Genomic sequenc-
ing indicates that 2–3% of all eukaryotic genes are likely 
to code for protein kinases [105], and at present, protein 
phosphorylation is the most studied and best understood 
post-translational modification [108, 109].

Protein phosphorylation is linked to zinc 
transporters and zinc signaling

Zinc and protein tyrosine phosphatases

A strong collaboration between zinc signaling and protein 
phosphorylation is clear from the actions of zinc as a second 
messenger in different cell types leading to the activation of 
various phosphorylation cascades, and the inhibition of pro-
tein tyrosine phosphatase (PTP) activity [20, 21]. PTPs play 
central roles in cellular function as key regulators of protein 
phosphorylation, directly affecting the activity of a great 
number of phosphoproteins and tyrosine kinase pathways 
[110–114]. PTPs contain a substrate binding site (in the 
P-loop) binding the phosphate ester group of the substrate 
and an active site (in the protein loop known as the WPD-
loop due to the conserved tryptophan–proline–aspartic acid 
sequence). The WPD-loop exists in an open conformation 
in which the conserved aspartic acid is positioned 8–10 Å 
from the active site [115]. Substrate binding results in a con-
formational change in the WPD-loop leading to a closure of 
the loop placing it over the active site and bringing the con-
served aspartic acid close to the bound substrate [115, 116]. 
Upon binding of a substrate, the nucleophilic Cys215 thiol 
in the P-loop attacks the substrate phosphate ester group. 
The leaving group is protonated by Asp181 in the WPD-
loop forming a phospho-enzyme intermediate and releasing 
peptidyl tyrosine [115, 116]. Subsequent hydrolysis of the 
phospho-enzyme intermediate releases inorganic phosphate 
and regenerates the PTP enzyme with the WPD-loop in the 
open conformation [117, 118].

PTPs are regulated by protein phosphorylation, redox 
signaling, dimerization, and proteolysis. We suspect that 
zinc may inhibit PTP activity by affecting these processes 
directly or using other mechanisms. The PTP regulating the 
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insulin and leptin signaling pathway, PTP1B (PTPN1) is 
one of the most extensively studied PTPs. Bellomo et al. 
optimised an assay for investigating zinc inhibition of PTPs 
using PTP1B [118]. They found the binding of zinc to 
PTP1B to require activation in the presence of a substrate 
as it only binds to the catalytic pocket of the closed PTP1B 
phospho-intermediate [118]. The analysis of three PTP1B 
3D structures (PDB id: 2CM2, 3I80, and 1A5Y) revealed 
putative zinc binding sites and supported the hypothesis of 
inhibition only of the phospho-intermediate. Furthermore, 
they showed how PTP1B inhibition can also result from an 
alternative mechanism possibly initiated by the binding of 
zinc to the PTP1B surface. As PTP1B and the zinc trans-
porter ZIP7 are both localized on the ER membrane, zinc 
influx through ZIP7 may play an important role in the regu-
lation of PTP1B activity [118].

Zinc and receptor tyrosine kinases

Zinc is found to induce phosphorylation of a variety of 
receptor tyrosine kinases including the insulin receptor (IR), 
IGF-1R, and EGFR resulting in the activation of the PI3K/
Akt and Erk signaling cascades [119, 120]. This affects 
insulin-stimulated glucose metabolism and cell survival. 
Zinc also initiates phosphorylation and activation of Erk1/2 
in neurons leading to neurotoxicity [121–124]. In 2002, Du 
et al. showed that a brief exposure to methylisothiazolinone, 
a widely used industrial and household biocide, resulted in a 
zinc-dependent activation of Erk1/2 via a 12-lipoxygenase-
mediated pathway leading to neuronal death in neurons in 
culture [122, 123]. Later, Ho and co-workers found zinc 
accumulation resulting from oxidative stress to selectively 
inhibit Erk1/2-directed phosphatases either by increased 
degradation or reduced enzyme activity leading to increased 

Fig. 2   Signal transduction 
pathway. The figure illustrates 
the principle of a protein phos-
phorylation cascade. Protein 
phosphorylation of target 
proteins is catalysed by protein 
kinases, whereas dephospho-
rylation is catalysed by protein 
phosphatases. As an example, 
binding of a ligand to a receptor 
tyrosine kinase results in dimer-
ization and autophosphorylation 
of the receptor. This leads to the 
phosphorylation and activation 
of kinase 2 initiating a phos-
phorylation cascade affecting 
several protein kinases. Through 
signal transduction pathways, 
the cell can propagate and 
enhance the cellular output. The 
cellular output depends on the 
specific pathway. Red P circle 
indicates protein phospho-
rylation. Double red P circles 
indicate protein phosphorylation 
at multiple sites. White figure—
protein phosphatase. Coloured 
figures—different protein 
kinases
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kinase activity in the murine hippocampal neuronal cell line, 
HT22 cells, and immature neurons [121].

The neurotrophin receptor, TrkB, is required for neu-
ronal survival and differentiation as well as synaptic struc-
ture, function, and plasticity [125, 126]. As a consequence, 
dysregulation of TrkB activity and signaling is involved in 
various neurological and psychiatric disorders [127–129]. 
TrkB is a receptor tyrosine kinase activated by the binding 
of neurotrophins leading to dimerization, increased kinase 
activity, and autophosphorylation of the receptor resulting 
in the activation of downstream phosphorylation cascades 
[130]. Zinc, however, is found to activate TrkB in a neuro-
trophin-independent manner [131, 132]. Activation results 
from increased activity of the Src family of protein tyros-
ine kinases. The TrkB activation by zinc has been shown 
to potentiate the hippocampal mossy fiber-CA3 pyramid 
synapse [132]. Also, Zn2+ induces the activation of Trk 
signaling pathways leading to multi-phosphorylation of the 
striatal-enriched phosphatase (STEP) as well as phospho-
rylation and activation of Erk2, a STEP substrate involved 
in Zn2+-dependent neurotoxicity [133].

Zinc and NFκB

NFκB (NF-kappa B, nuclear factor kappa-light-chain-
enhancer of activated B cells) is a major transcription factor 
also regulating immune responses to infection, stress, free 
radicals etc. NFκB is also important for synaptic signaling 
is NFκB [134]. In unstimulated cells, NFκB is located in the 
cytosol inactivated by the binding to inhibitory protein IκB 
(inhibitory proteins of NFκB). As a response to infection, the 
binding of pro-inflammatory cytokines stimulates the phos-
phorylation of IκB proteins by specific kinases such as IκB 
kinase (IKK). This leads to the ubiquitination and degrada-
tion of IκB. NFκB is subsequently released and free to trans-
locate to the nucleus to stimulate the transcription of specific 
target genes by binding to their promoter regions [135–137]. 
The research group of Sarkar found zinc to activate NFκB 
in HUT-78 cells [138]. They also found zinc to be required 
for gene expression of both interleukin-2 (IL-2) and inter-
leukin-2 receptor alpha and beta (IL-R2α and IL-R2β) which 
was also seen in vivo [139, 140]. Subsequently they showed 
that the upregulation of NFκB activity was a result of zinc 
stimulating IκB phosphorylation [141]. Increased protein 
tyrosine kinase (PTK) activity and reduced PTP activity 
caused by increased oxidative stress during aging was found 
to result in the phosphorylation of NFκB, NIK/IKK, and 
MAPKs (Erk, p38, and JNK) leading to NFκB activation 
[142, 143]. As a general point, zinc appears to play a key 
role in the regulation of PTK/PTP balance, by the activation 
of phosphorylation as a result of inhibition of PTPs or by 
direct activation of kinases.

Zinc signaling in cancer cells

Zinc transporters have also been linked to protein phospho-
rylation and signaling in cancer cells. In MDA-MB-468 
breast cancer cells and PC-3 prostate cancer cells transfected 
with ZIP9 (PC3-ZIP9) cells, ZIP9 was found to act as a 
specific Gi-coupled membrane androgen receptor (mAR) 
binding testosterone and initiating MAPK and zinc signal-
ing leading to apoptosis [144, 145].

In the estrogen receptor-positive human breast cancer cell 
line MCF-7, the ability of cells to spread to the lymph nodes 
was found to be a result of ZIP6-mediated zinc influx [71]. 
Signal transducer and activator of transcription 3 (STAT3) 
and oestrogen induce transcription of ZIP6. Upon transcrip-
tion, ZIP6 is proteolytically cleaved at the N-terminus to 
translocate to the plasma membrane where it mediates Zn2+ 
influx. The increase in cellular zinc then results in the phos-
phorylation and inactivation of glycogen synthase kinase-
3beta (GSK-3β) possibly through insulin-mimetic actions of 
zinc or indirectly through activation of Akt [71, 146, 147]. 
The inhibition of GSK-3β prevents it from phosphorylat-
ing transcription factor Snail, which is then retained in the 
nucleus acting as a transcriptional repressor of the E-cad-
herin gene, CDH1 (epithelial cadherin), CDH1, causing cell 
rounding, and detachment [71].

In 2012, it was shown in MCF-7 cells that the activity of 
human endoplasmic reticulum zinc channel hZIP7 was regu-
lated by protein phosphorylation at Ser275 and Ser276 upon 
zinc stimulation [20]. Phosphorylation of hZIP7 was linked 
to the release of Zn2+ ions from intracellular stores which 
further led to the phosphorylation of tyrosine kinases such as 
Erk1/2 and Akt, and the subsequent activation of signaling 
pathways within the cell [20, 148]. Two additional phospho-
rylation sites at S294 and T294 have also been found to be 
important for maximal hZIP7 activity [113].

Besides being important for the regulation of cell sign-
aling as mentioned above, protein phosphorylation is also 
likely to be central to the regulation of zinc transporter activ-
ity and regulation as in silico analysis predict all human ZnT 
and ZIP transporter proteins to be phosphorylated (Table 1 
and Table 2). This underscores the importance of character-
izing protein phosphorylation in zinc transporter proteins.

Mass spectrometry and quantitative 
phosphoproteomics for studying zinc 
signaling

Despite the ubiquitous role of protein phosphorylation, 
phosphoproteins have low abundance within the cell due to 
the transient nature of phosphorylation. In addition, phos-
phate groups are easily lost during sample handling. These 
problems make the identification and characterization of 
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phosphorylated proteins challenging, and for years, the 
study of protein phosphorylation was hampered by the lack 
of efficient and specific methods. Traditional molecular 
approaches frequently focus on the analysis of a single 
phosphoprotein and entire signaling pathways are stud-
ied protein by protein. One often has to work from the 

assumption or prior knowledge that specific proteins are 
phosphorylated and investigate this using approaches such 
as cloning, 1D or 2D gel electrophoresis combined with 
Pro-Q Diamond staining [182–190], radioactive labelling 
using 32P or 33P [182, 183], or directed antibody-based 
strategies limited by their low specificity and high cost. 

Table 1   Phosphorylation sites in human ZnT transporter proteins

Number of predicted phosphorylation sites (#P-sites) in human ZnT transport proteins according to the NetPhos 3.1 Server is listed along with 
phosphorylation sites that have been experimentally identified and published according to UniProt and PhosphoSitePlus [162, 163]. Phosphoryl-
ation sites listed in the NetPhos 3.1 Server with a prediction score above 0.5 are included. References listed in the table only account for research 
articles. References for phosphorylation sites found on curated info pages are not listed in the table.

Zinc transporter #P-sites 
(predicted)

#P-sites 
(published)

P-sites (published) References

ZnT1 39 15 S29, S167, S172, S173, T196, S426, S429, T439, T449, T462, S466, 
S468, S473, S505, S506

[149–156]

ZnT2 22 2 T239, S247
ZnT3 34 3 S32, S38, T66, S311 [157]
ZnT4 40 4 S12, S75, S313, S412
ZnT5 59 12 Y5, T30, Y32, T39, T88, S364, S378, T382, Y385, Y757, T762, Y763 [153, 158]
ZnT6 38 6 S122, T376, S381, S382, S388, T391, [152, 159, 160]
ZnT7 29 2 Y11, S31
ZnT8 25 2 T7, Y8,
ZnT9 53 3 T222, S230, S355
ZnT10 36 7 S187, S189, T192, S197, S402, S469, Y479 [161]

Table 2   Phosphorylation sites 
in human ZIP transporter 
proteins

Number of predicted phosphorylation sites (#P-sites) in human ZIP transport proteins according to the 
NetPhos 3.1 Server is listed along with phosphorylation sites that have been experimentally identified and 
published according to UniProt and PhosphoSitePlus [162, 163]. Phosphorylation sites listed in the Net-
Phos 3.1 Server with a prediction score above 0.5 are included. References listed in the table only account 
for research articles. References for phosphorylation sites found on curated info pages are not listed in the 
table.

Zinc transporter #P-sites 
(predicted)

#P-sites 
(published)

P-sites (published) References

ZIP1 14 0
ZIP2 23 0
ZIP3 26 3 S125, S129, Y147 [150, 159, 164]
ZIP4 57 2 T137, S490 [165, 166]
ZIP5 4 1 S336 [167]
ZIP6 34 11 S471, Y473, S475, S478, T479, 

T486, T490, Y493, Y528, 
Y531, S583

[152, 160, 168–172]

ZIP7 8 4 S275, S276, S293, T294 [113, 154, 173]
ZIP8 1 4 S275, S278, S288, T424 [172–174]
ZIP9 1 0
ZIP10 20 12 S323, T536, S539, T540, S546, 

T553, S556, S570, S573, T583, 
S591, Y596

[149, 152, 155, 158, 
159, 174–179]

ZIP11 4 2 S125, S153 [152, 153]
ZIP12 5 0
ZIP13 3 3 S39, T42, T44
ZIP14 9 5 S256, Y258, S260, S309, S311 [167, 169, 180, 181]
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Furthermore, detection provides no information of the spe-
cific sites of phosphorylation unless antibodies have been 
generated against specific phosphorylation sites.

Mass spectrometry (MS) is a powerful tool for discovery-
based analysis of proteins and phosphoproteins where no 
prior knowledge is required. In MS, the protein or peptide 
samples are ionized, separated according to their mass-to-
charge ratios before the ions are registered by a detector. 
The measurement of the mass-to-charge ratio of a sample 
molecule provides exact details on the mass, sequence and 
PTMs which in turn can give useful information about the 
structure, interaction and regulation of the particular mol-
ecule. The analysis of protein phosphorylation by MS, 
termed phosphoproteomics, requires selective phospho-
specific enrichment methods in combination with MS strat-
egies. Phosphorylation-specific antibodies have been used 
at both the protein and peptide levels. However, the poor 
specificity and sensitivity of anti-phosphoserine and anti-
phosphothreonine antibodies have limited their use leaving 
the more specific anti-phosphotyrosine antibodies as the pre-
ferred method for antibody-based enrichment [191–198]. In 
nature, however, the vast majority of protein phosphoryla-
tion is on serine and threonine residues [199].

For many years, the primary method for phosphopeptide 
enrichment prior to MS analysis was immobilized metal ion 
affinity chromatography (IMAC) using the affinity of nega-
tively charged phosphate groups on proteins and peptides 
towards positively charged metal ions (Fe3+, Al3+, Ga3+, or 
Co2+) chelated to nitriloacetic acid (NTA) or iminodiacetic 
acid (IDA)-coated beads [125, 200–208]. IMAC, however, 
has a limited selectivity when used on complex samples, and 
requires an O-methylesterification step for improved selec-
tivity adding more complexity to the sample [209]. Titanium 
dioxide (TiO2) was found to have affinity for phosphate ions 
in aqueous solutions [210–216]. This initiated great progress 
in the development of new and highly sensitive strategies 
for phospho-specific enrichment before MS analysis [214, 
217–220], and TiO2 chromatography quickly replaced all 
other strategies as the method of choice for large-scale 
phosphoproteomic studies [176, 179, 214, 217–228]. The 
reason for the popularity of the method is the high selec-
tivity toward phosphopeptides but also due to the setup 
being simple and fast, and that TiO2 beads, unlike IMAC, 
are extremely tolerant toward most buffers and salts used 
in cell biology laboratories [229]. Later, the strengths of 
both IMAC and TiO2 chromatography were combined in the 
SIMAC method (sequential elution from IMAC) improving 
not only the number of phosphorylation sites detected from 
complex samples, but also significantly increasing the detec-
tion of multiply phosphorylated peptides from low amounts 
of material [230, 231]. These strategies allow for large-scale 
phosphoproteomic screening of various cell lines and tissues 
[214, 217–220, 230]. Indeed, all but one phosphorylation 

site identified in human ZnT and ZIP transporters have been 
identified in large-scale phosphoproteomic studies (Tables 1, 
2).

The use of phosphoproteomic strategies can be very 
powerful. By combining these methods with quantitation 
strategies and highly efficient MS technology the compari-
son of proteins and PTMs in different cells, disease stages, 
treatments etc. is possible. Common quantitative strategies 
include the introduction of different isotopic labels to pro-
teins or peptides from samples to be compared. Subsequent 
MS analysis then reveals differences in the abundance of 
labelled species originating from the different samples. 
Labelling can be introduced at the protein level using met-
abolic labelling such as 14/15 N-labeling or stable isotope 
labelling by amino acids in cell culture (SILAC) where 
different isotopic tags are added to the media and incor-
porated into proteins during cell culturing [232]. Chemical 
modification is introduced either during protein digestion 
(O18-labelling) or at peptide level using isobaric peptide tags 
for relative and absolute quantification (iTRAQ), tandem 
mass tags (TMT) or dimethyl labelling introduced during 
sample preparation [233–238]. In addition, MS offers the 
use of label-free strategies where quantitation is performed 
by the comparison of liquid chromatography (LC)-MS or 
MS/MS data obtained in sequential experiments [239, 240]. 
The different strategies within phosphoproteomics and quan-
titative phosphoproteomics are described in various reviews 
[241–244].

Conclusions and future perspectives

Despite the power of these strategies, phosphoproteomic 
approaches have barely been used in the study of zinc home-
ostasis and zinc signaling. Except for one phosphorylation 
site, all sites identified in the ZnT and ZIP transporters were 
discovered in large-scale screenings to characterize phos-
phorylation profiles of different cell types or conditions or 
during the development of new MS strategies to identify 
even more phosphorylation sites [149–161, 164–181]. None 
of the studies were designed to investigate zinc homeostasis 
or zinc signaling. Instead the ZnT and ZIP protein phospho-
rylation sites were all identified by chance. The time is ripe 
for using these sensitive strategies to specifically target zinc 
transporters and proteins involved in zinc signaling. Quan-
titative phosphoproteomic approaches have already proven 
their potential in biological studies [245–249].

The low-abundance and highly hydrophobic nature of 
membrane proteins adds additional challenge to the iden-
tification of phosphorylation sites in zinc transporter pro-
teins which could explain why the sites identified primarily 
come from large-scale studies using large amounts of start-
ing material. Over-expression of specific zinc transporters 
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combined with membrane enrichment strategies would 
improve identification in discovery-based studies. The 
identification of novel phosphorylation sites in ZnT and ZIP 
proteins will enable the investigation of possible cytosolic 
binding partners in pull-down experiments using phospho-
specific antibodies directed against these novel sites.

In addition, these approaches will be useful for under-
standing zinc physiology from studies of over-expressing 
or knocking out zinc transporters, time and dose dependent 
zinc stimulation, or studying specific diseases linked to aber-
rant zinc homeostasis. Combining such data with molecu-
lar methodology will lead to a deeper understanding of the 
molecular mechanisms regulating zinc homeostasis and shed 
light on the signaling pathways affected by zinc stimulation.
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