Skip to main content

Advertisement

Log in

Overview upon miR-21 in lung cancer: focus on NSCLC

  • Review
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Considering the high mortality rate encountered in lung cancer, there is a strong need to explore new biomarkers for early diagnosis and also improved therapeutic targets to overcome this issue. The implementation of microRNAs as important regulators in cancer and other pathologies expanded the possibilities of lung cancer management and not only. MiR-21 represents an intensively studied microRNA in many types of cancer, including non-small cell lung cancer (NSCLC). Its role as an oncogene is underlined in multiple studies reporting the upregulated expression of this sequence in patients diagnosed with this malignancy; moreover, several studies associated this increased expression of miR-21 with a worse outcome within NSCLC patients. The same pattern is supported by the data existent in the Cancer Genome Atlas (TCGA). The carcinogenic advantage generated by miR-21 in NSCLC resides in the target genes involved in multiple pathways such as cell growth and proliferation, angiogenesis, invasion and metastasis, but also chemo- and radioresistance. Therapeutic modulation of miR-21 by use of antisense sequences entrapped in different delivery systems has shown promising results in impairment of NSCLC. Hereby, we review the mechanisms of action of miR-21 in cancer and the associated changes upon tumor cells together a focused perspective on NSCLC signaling, prognosis and therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

NSCLC:

Non-small cell lung cancer

PTEN:

Phosphatase and tensin homolog

LUAD:

Lung adenocarcinoma

TCGA:

The Cancer Genome Atlas

References

  1. Ferlay J, Soerjomataram I, Dikshit R, Eser S, Mathers C, Rebelo M et al (2015) Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012. Int J Cancer 136(5):E359–E386

    Article  PubMed  CAS  Google Scholar 

  2. Travis WD, Brambilla E, Nicholson AG, Yatabe Y, Austin JH, Beasley MB et al (2015) The 2015 World Health Organization Classification of lung tumors: impact of genetic, clinical and radiologic advances Since the 2004 classification. J Thorac Oncol 10(9):1243–1260

    Article  PubMed  Google Scholar 

  3. Office of the Surgeon General (US), Office on Smoking and Health (US) (2004) The health consequences of smoking: a report of the surgeon general. Centers for Disease Control and Prevention (US), Atlanta, GA

    Google Scholar 

  4. Pikor LA, Ramnarine VR, Lam S, Lam WL (2013) Genetic alterations defining NSCLC subtypes and their therapeutic implications. Lung Cancer (Amst, Neth) 82(2):179–189

    Article  Google Scholar 

  5. Voortman J, Goto A, Mendiboure J, Sohn JJ, Schetter AJ, Saito M et al (2010) MicroRNA expression and clinical outcomes in patients treated with adjuvant chemotherapy after complete resection of non-small cell lung carcinoma. Can Res 70(21):8288–8298

    Article  CAS  Google Scholar 

  6. Calin GA, Dumitru CD, Shimizu M, Bichi R, Zupo S, Noch E et al (2002) Frequent deletions and down-regulation of micro- RNA genes miR15 and miR16 at 13q14 in chronic lymphocytic leukemia. Proc Natl Acad Sci USA 99(24):15524–15529

    Article  PubMed  CAS  Google Scholar 

  7. Rodriguez A, Griffiths-Jones S, Ashurst JL, Bradley A (2004) Identification of mammalian microRNA host genes and transcription units. Genome Res 14(10A):1902–1910

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Bortolin-Cavaille ML, Dance M, Weber M, Cavaille J (2009) C19MC microRNAs are processed from introns of large Pol-II, non-protein-coding transcripts. Nucleic Acids Res 37(10):3464–3473

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Gulei D, Mehterov N, Nabavi SM, Atanasov AG, Berindan-Neagoe I (2017) Targeting ncRNAs by plant secondary metabolites: the ncRNAs game in the balance towards malignancy inhibition. Biotechnol Adv. https://doi.org/10.1016/j.biotechadv.2017.11.003

    Article  PubMed  Google Scholar 

  10. Redis RS, Berindan-Neagoe I, Pop VI, Calin GA (2012) Non-coding RNAs as theranostics in human cancers. J Cell Biochem 113(5):1451–1459

    PubMed  PubMed Central  CAS  Google Scholar 

  11. Pop-Bica C, Gulei D, Cojocneanu-Petric R, Braicu C, Petrut B, Berindan-Neagoe I (2017) Understanding the role of non-coding RNAs in bladder cancer: from dark matter to valuable therapeutic targets. Int J Mol Sci 18(7):1514

    Article  PubMed Central  Google Scholar 

  12. Hsu SD, Lin FM, Wu WY, Liang C, Huang WC, Chan WL et al (2011) miRTarBase: a database curates experimentally validated microRNA-target interactions. Nucl Acids Res 39(Database issue):D163–D169

    Article  PubMed  CAS  Google Scholar 

  13. Braicu C, Calin GA, Berindan-Neagoe I (2013) MicroRNAs and cancer therapy—from bystanders to major players. Curr Med Chem 20(29):3561–3573

    Article  PubMed  CAS  Google Scholar 

  14. Gulei D, Magdo L, Jurj A, Raduly L, Cojocneanu-Petric R, Moldovan A et al (2018) The silent healer: miR-205-5p up-regulation inhibits epithelial to mesenchymal transition in colon cancer cells by indirectly up-regulating E-cadherin expression. Cell Death Dis 9(2):66

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Ouellet DL, Perron MP, Gobeil LA, Plante P, Provost P (2006) MicroRNAs in gene regulation: when the smallest governs it all. J Biomed Biotechnol 2006(4):69616

    PubMed  PubMed Central  Google Scholar 

  16. Berindan-Neagoe I, Monroig Pdel C, Pasculli B, Calin GA (2014) MicroRNAome genome: a treasure for cancer diagnosis and therapy. CA Cancer J Clin 64(5):311–336

    Article  PubMed  PubMed Central  Google Scholar 

  17. Xi X, Li T, Huang Y, Sun J, Zhu Y, Yang Y et al (2017) RNA biomarkers: frontier of precision medicine for cancer. Non-Coding RNA 3(1):9

    Article  PubMed Central  Google Scholar 

  18. Zhang HD et al. (2018) CircRNA: a novel type of biomarker for cancer. Breast cancer 25(1):1–7

    Article  PubMed  Google Scholar 

  19. Hayes J, Peruzzi PP, Lawler S (2014) MicroRNAs in cancer: biomarkers, functions and therapy. Trends Mol Med 20(8):460–469

    Article  PubMed  CAS  Google Scholar 

  20. Bertoli G, Cava C, Castiglioni I (2015) MicroRNAs: new biomarkers for diagnosis, prognosis, therapy prediction and therapeutic tools for breast cancer. Theranostics 5(10):1122–1143

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Budisan L, Gulei D, Zanoaga OM, Irimie AI, Sergiu C, Braicu C et al (2017) Dietary intervention by phytochemicals and their role in modulating coding and non-coding genes in cancer. Int J Mol Sci 18(6):1178

    Article  PubMed Central  Google Scholar 

  22. Berindan-Neagoe I, Calin GA (2014) Molecular pathways: microRNAs, cancer cells, and microenvironment. Clin Cancer Res 20(24):6247–6253

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Cai X, Hagedorn CH, Cullen BR (2004) Human microRNAs are processed from capped, polyadenylated transcripts that can also function as mRNAs. RNA 10(12):1957–1966

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Krichevsky AM, Gabriely G (2009) miR-21: a small multi-faceted RNA. J Cell Mol Med 13(1):39–53

    Article  PubMed  CAS  Google Scholar 

  25. Zhou X, Ren Y, Moore L, Mei M, You Y, Xu P et al (2010) Downregulation of miR-21 inhibits EGFR pathway and suppresses the growth of human glioblastoma cells independent of PTEN status. Lab Investig 90(2):144–155

    Article  PubMed  CAS  Google Scholar 

  26. Iliopoulos D, Jaeger SA, Hirsch HA, Bulyk ML, Struhl K (2010) STAT3 activation of miR-21 and miR-181b-1 via PTEN and CYLD are part of the epigenetic switch linking inflammation to cancer. Mol Cell 39(4):493–506

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Ma X, Choudhury SN, Hua X, Dai Z, Li Y (2013) Interaction of the oncogenic miR-21 microRNA and the p53 tumor suppressor pathway. Carcinogenesis 34(6):1216–1223

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Berindan-Neagoe I, Balacescu O, Burz C, Braicu C, Balacescu L, Tudoran O et al (2009) p53 gene therapy using RNA interference. J BUON 14(Suppl 1):S51–S59

    PubMed  Google Scholar 

  29. Braicu C, Pileczki V, Irimie A, Berindan-Neagoe I (2013) p53siRNA therapy reduces cell proliferation, migration and induces apoptosis in triple negative breast cancer cells. Mol Cell Biochem 381(1–2):61–68

    Article  PubMed  CAS  Google Scholar 

  30. Chira S, Gulei D, Hajitou A, Berindan-Neagoe I (2018) Restoring the p53 ‘Guardian’ phenotype in p53-deficient tumor cells with CRISPR/Cas9. Trends Biotechnol 36(7):653–660

    Article  PubMed  CAS  Google Scholar 

  31. Chan JA, Krichevsky AM, Kosik KS (2005) MicroRNA-21 is an antiapoptotic factor in human glioblastoma cells. Can Res 65(14):6029–6033

    Article  CAS  Google Scholar 

  32. Lakomy R, Sana J, Hankeova S, Fadrus P, Kren L, Lzicarova E et al (2011) MiR-195, miR-196b, miR-181c, miR-21 expression levels and O-6-methylguanine-DNA methyltransferase methylation status are associated with clinical outcome in glioblastoma patients. Cancer Sci 102(12):2186–2190

    Article  PubMed  CAS  Google Scholar 

  33. Ivo D’Urso P, Fernando D’Urso O, Damiano Gianfreda C, Mezzolla V, Storelli C, Marsigliante S (2015) miR-15b and miR-21 as circulating biomarkers for diagnosis of glioma. Curr Genom 16(5):304–311

    Article  CAS  Google Scholar 

  34. Huang GL, Zhang XH, Guo GL, Huang KT, Yang KY, Shen X et al (2009) Clinical significance of miR-21 expression in breast cancer: SYBR-Green I-based real-time RT-PCR study of invasive ductal carcinoma. Oncol Rep 21(3):673–679

    PubMed  CAS  Google Scholar 

  35. Han JG, Jiang YD, Zhang CH, Yang YM, Pang D, Song YN et al (2017) A novel panel of serum miR-21/miR-155/miR-365 as a potential diagnostic biomarker for breast cancer. Ann Surg Treat Res 92(2):55–66

    Article  PubMed  PubMed Central  Google Scholar 

  36. Pulito C, Mori F, Sacconi A, Goeman F, Ferraiuolo M, Pasanisi P et al (2017) Metformin-induced ablation of microRNA 21-5p releases Sestrin-1 and CAB39L antitumoral activities. Cell Discov 3:17022

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Park SK, Park YS, Ahn JY, Do EJ, Kim D, Kim JE et al (2016) MiR 21-5p as a predictor of recurrence in young gastric cancer patients. J Gastroenterol Hepatol 31(8):1429–1435

    Article  PubMed  CAS  Google Scholar 

  38. Riccioni R, Lulli V, Castelli G, Biffoni M, Tiberio R, Pelosi E et al (2015) miR-21 is overexpressed in NPM1-mutant acute myeloid leukemias. Leuk Res 39(2):221–228

    Article  PubMed  CAS  Google Scholar 

  39. Oue N, Anami K, Schetter AJ, Moehler M, Okayama H, Khan MA et al (2014) High miR-21 expression from FFPE tissues is associated with poor survival and response to adjuvant chemotherapy in colon cancer. Int J Cancer 134(8):1926–1934

    Article  PubMed  CAS  Google Scholar 

  40. Li T, Li RS, Li YH, Zhong S, Chen YY, Zhang CM et al (2012) miR-21 as an independent biochemical recurrence predictor and potential therapeutic target for prostate cancer. J Urol 187(4):1466–1472

    Article  PubMed  CAS  Google Scholar 

  41. Huang W, Kang XL, Cen S, Wang Y, Chen X (2015) High-level expression of microRNA-21 in peripheral blood mononuclear cells is a diagnostic and prognostic marker in prostate cancer. Genet Test Mol Biomark 19(9):469–475

    Article  CAS  Google Scholar 

  42. Wang WY, Zhang HF, Wang L, Ma YP, Gao F, Zhang SJ et al (2014) miR-21 expression predicts prognosis in hepatocellular carcinoma. Clin Res Hepatol Gastroenterol 38(6):715–719

    Article  PubMed  CAS  Google Scholar 

  43. Guo X, Lv X, Lv X, Ma Y, Chen L, Chen Y (2017) Circulating miR-21 serves as a serum biomarker for hepatocellular carcinoma and correlated with distant metastasis. Oncotarget 8(27):44050–44058

    PubMed  PubMed Central  Google Scholar 

  44. Wang L, Wang J (2012) MicroRNA-mediated breast cancer metastasis: from primary site to distant organs. Oncogene 31(20):2499–2511

    Article  PubMed  CAS  Google Scholar 

  45. Zhang H, Li Y, Lai M (2010) The microRNA network and tumor metastasis. Oncogene 29(7):937–948

    Article  PubMed  CAS  Google Scholar 

  46. Sahay D, Leblanc R, Grunewald TG, Ambatipudi S, Ribeiro J, Clezardin P et al (2015) The LPA1/ZEB1/miR-21-activation pathway regulates metastasis in basal breast cancer. Oncotarget 6(24):20604–20620

    Article  PubMed  PubMed Central  Google Scholar 

  47. Hu Y, Wang C, Li Y, Zhao J, Chen C, Zhou Y et al (2015) MiR-21 controls in situ expansion of CCR6(+) regulatory T cells through PTEN/AKT pathway in breast cancer. Immunol Cell Biol 93(8):753–764

    Article  PubMed  CAS  Google Scholar 

  48. Zhang L, Zhan X, Yan D, Wang Z (2016) Circulating MicroRNA-21 Is Involved in Lymph Node Metastasis in Cervical Cancer by Targeting RASA1. Int J Gynecol Cancer 26(5):810–816

    Article  PubMed  Google Scholar 

  49. Liu LZ, Li C, Chen Q, Jing Y, Carpenter R, Jiang Y et al (2011) MiR-21 induced angiogenesis through AKT and ERK activation and HIF-1alpha expression. PLoS One 6(4):e19139

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  50. Yang Z, Fang S, Di Y, Ying W, Tan Y, Gu W (2015) Modulation of NF-kappaB/miR-21/PTEN pathway sensitizes non-small cell lung cancer to cisplatin. PLoS One 10(3):e0121547

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  51. Su Q, Li L, Liu Y, Zhou Y, Wang J, Wen W (2015) Ultrasound-targeted microbubble destruction-mediated microRNA-21 transfection regulated PDCD4/NF-kappaB/TNF-alpha pathway to prevent coronary microembolization-induced cardiac dysfunction. Gene Ther 22(12):1000–1006

    Article  PubMed  CAS  Google Scholar 

  52. Gui F, Hong Z, You Z, Wu H, Zhang Y (2016) MiR-21 inhibitor suppressed the progression of retinoblastoma via the modulation of PTEN/PI3 K/AKT pathway. Cell Biol Int 40(12):1294–1302

    Article  PubMed  CAS  Google Scholar 

  53. Song L, Liu S, Zhang L, Yao H, Gao F, Xu D et al (2016) MiR-21 modulates radiosensitivity of cervical cancer through inhibiting autophagy via the PTEN/Akt/HIF-1alpha feedback loop and the Akt-mTOR signaling pathway. Tumour Biol 37(9):12161–12168

    Article  PubMed  CAS  Google Scholar 

  54. Zhang JG, Wang JJ, Zhao F, Liu Q, Jiang K, Yang GH (2010) MicroRNA-21 (miR-21) represses tumor suppressor PTEN and promotes growth and invasion in non-small cell lung cancer (NSCLC). Clin Chim Acta 411(11–12):846–852

    Article  PubMed  CAS  Google Scholar 

  55. Liu ZL, Wang H, Liu J, Wang ZX (2013) MicroRNA-21 (miR-21) expression promotes growth, metastasis, and chemo- or radioresistance in non-small cell lung cancer cells by targeting PTEN. Mol Cell Biochem 372(1–2):35–45

    Article  PubMed  CAS  Google Scholar 

  56. Jiang LP, He CY, Zhu ZT (2017) Role of microRNA-21 in radiosensitivity in non-small cell lung cancer cells by targeting PDCD4 gene. Oncotarget 8(14):23675–23689

    PubMed  PubMed Central  Google Scholar 

  57. Forgacs E, Biesterveld EJ, Sekido Y, Fong K, Muneer S, Wistuba II et al (1998) Mutation analysis of the PTEN/MMAC1 gene in lung cancer. Oncogene 17(12):1557–1565

    Article  PubMed  CAS  Google Scholar 

  58. Kohno T, Takahashi M, Manda R, Yokota J (1998) Inactivation of the PTEN/MMAC1/TEP1 gene in human lung cancers. Genes Chromosom Cancer 22(2):152–156

    Article  PubMed  CAS  Google Scholar 

  59. Hosoya Y, Gemma A, Seike M, Kurimoto F, Uematsu K, Hibino S et al (1999) Alteration of the PTEN/MMAC1 gene locus in primary lung cancer with distant metastasis. Lung cancer (Amst, Neth) 25(2):87–93

    Article  CAS  Google Scholar 

  60. Zhong Z, Dong Z, Yang L, Gong Z (2012) miR-21 induces cell cycle at S phase and modulates cell proliferation by down-regulating hMSH2 in lung cancer. J Cancer Res Clin Oncol 138(10):1781–1788

    Article  PubMed  CAS  Google Scholar 

  61. Lin L, Tu HB, Wu L, Liu M, Jiang GN (2016) MicroRNA-21 regulates non-small cell lung cancer cell invasion and chemo-sensitivity through SMAD7. Cell Physiol Biochem 38(6):2152–2162

    Article  PubMed  CAS  Google Scholar 

  62. Jiang S, Wang R, Yan H, Jin L, Dou X, Chen D (2016) MicroRNA-21 modulates radiation resistance through upregulation of hypoxia-inducible factor-1alpha-promoted glycolysis in non-small cell lung cancer cells. Mol Med Rep 13(5):4101–4107

    Article  PubMed  CAS  Google Scholar 

  63. Fujita S, Ito T, Mizutani T, Minoguchi S, Yamamichi N, Sakurai K et al (2008) miR-21 Gene expression triggered by AP-1 is sustained through a double-negative feedback mechanism. J Mol Biol 378(3):492–504

    Article  PubMed  CAS  Google Scholar 

  64. Li C, Nguyen HT, Zhuang Y, Lin Y, Flemington EK, Guo W et al (2011) Post-transcriptional up-regulation of miR-21 by type I collagen. Mol Carcinog 50(7):563–570

    Article  PubMed  CAS  Google Scholar 

  65. Jajoo S, Mukherjea D, Kaur T, Sheehan KE, Sheth S, Borse V et al (2013) Essential role of NADPH oxidase-dependent reactive oxygen species generation in regulating microRNA-21 expression and function in prostate cancer. Antioxid Redox Signal 19(16):1863–1876

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  66. Muppala S, Mudduluru G, Leupold JH, Buergy D, Sleeman JP, Allgayer H (2013) CD24 induces expression of the oncomir miR-21 via Src, and CD24 and Src are both post-transcriptionally downregulated by the tumor suppressor miR-34a. PLoS One 8(3):e59563

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  67. Mathew R, Hartmuth K, Mohlmann S, Urlaub H, Ficner R, Luhrmann R (2008) Phosphorylation of human PRP28 by SRPK2 is required for integration of the U4/U6-U5 tri-snRNP into the spliceosome. Nat Struct Mol Biol 15(5):435–443

    Article  PubMed  CAS  Google Scholar 

  68. Yin J, Park G, Lee JE, Choi EY, Park JY, Kim TH et al (2015) DEAD-box RNA helicase DDX23 modulates glioma malignancy via elevating miR-21 biogenesis. Brain 138(Pt 9):2553–2570

    Article  PubMed  Google Scholar 

  69. Liu X, Winey M (2012) The MPS1 family of protein kinases. Annu Rev Biochem 81:561–585

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  70. Maachani UB, Tandle A, Shankavaram U, Kramp T, Camphausen K (2016) Modulation of miR-21 signaling by MPS1 in human glioblastoma. Oncotarget 7(33):52912–52927

    Article  PubMed  Google Scholar 

  71. Loffler D, Brocke-Heidrich K, Pfeifer G, Stocsits C, Hackermuller J, Kretzschmar AK et al (2007) Interleukin-6 dependent survival of multiple myeloma cells involves the Stat3-mediated induction of microRNA-21 through a highly conserved enhancer. Blood 110(4):1330–1333

    Article  PubMed  CAS  Google Scholar 

  72. Ferraro A, Kontos CK, Boni T, Bantounas I, Siakouli D, Kosmidou V et al (2014) Epigenetic regulation of miR-21 in colorectal cancer: ITGB4 as a novel miR-21 target and a three-gene network (miR-21-ITGBeta4-PDCD4) as predictor of metastatic tumor potential. Epigenetics 9(1):129–141

    Article  PubMed  CAS  Google Scholar 

  73. Zhou M, Zeng J, Wang X, Wang X, Huang T, Fu Y et al (2015) Histone demethylase RBP2 decreases miR-21 in blast crisis of chronic myeloid leukemia. Oncotarget 6(2):1249–1261

    Article  PubMed  Google Scholar 

  74. Markou A, Tsaroucha EG, Kaklamanis L, Fotinou M, Georgoulias V, Lianidou ES (2008) Prognostic value of mature microRNA-21 and microRNA-205 overexpression in non-small cell lung cancer by quantitative real-time RT-PCR. Clin Chem 54(10):1696–1704

    Article  PubMed  CAS  Google Scholar 

  75. Cho WC, Chow AS, Au JS (2009) Restoration of tumour suppressor hsa-miR-145 inhibits cancer cell growth in lung adenocarcinoma patients with epidermal growth factor receptor mutation. Eur J Cancer 45(12):2197–2206

    Article  PubMed  CAS  Google Scholar 

  76. Xie Y, Todd NW, Liu Z, Zhan M, Fang H, Peng H et al (2010) Altered miRNA expression in sputum for diagnosis of non-small cell lung cancer. Lung Cancer 67(2):170–176

    Article  PubMed  Google Scholar 

  77. Wei J, Gao W, Zhu CJ, Liu YQ, Mei Z, Cheng T et al (2011) Identification of plasma microRNA-21 as a biomarker for early detection and chemosensitivity of non-small cell lung cancer. Chin J Cancer 30(6):407–414

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  78. Shen H, Zhu F, Liu J, Xu T, Pei D, Wang R et al (2014) Alteration in Mir-21/PTEN expression modulates gefitinib resistance in non-small cell lung cancer. PLoS One 9(7):e103305

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  79. Geng Q, Fan T, Zhang B, Wang W, Xu Y, Hu H (2014) Five microRNAs in plasma as novel biomarkers for screening of early-stage non-small cell lung cancer. Respir Res 15:149

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  80. Zhang H, Mao F, Shen T, Luo Q, Ding Z, Qian L et al (2017) Plasma miR-145, miR-20a, miR-21 and miR-223 as novel biomarkers for screening early-stage non-small cell lung cancer. Oncol Lett 13(2):669–676

    Article  PubMed  CAS  Google Scholar 

  81. Yang JS, Li BJ, Lu HW, Chen Y, Lu C, Zhu RX et al (2015) Serum miR-152, miR-148a, miR-148b, and miR-21 as novel biomarkers in non-small cell lung cancer screening. Tumour Biol 36(4):3035–3042

    Article  PubMed  CAS  Google Scholar 

  82. Cortez MA, Bueso-Ramos C, Ferdin J, Lopez-Berestein G, Sood AK, Calin GA (2011) MicroRNAs in body fluids–the mix of hormones and biomarkers. Nat Rev Clin Oncol 8(8):467–477

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  83. Zaharie F, Muresan MS, Petrushev B, Berce C, Gafencu GA, Selicean S et al (2015) Exosome-carried microRNA-375 inhibits cell progression and dissemination via Bcl-2 blocking in colon cancer. J Gastrointest Liver Dis JGLD 24(4):435–443

    Google Scholar 

  84. Heijnen HF, Schiel AE, Fijnheer R, Geuze HJ, Sixma JJ (1999) Activated platelets release two types of membrane vesicles: microvesicles by surface shedding and exosomes derived from exocytosis of multivesicular bodies and alpha-granules. Blood 94(11):3791–3799

    PubMed  CAS  Google Scholar 

  85. Braicu C, Tomuleasa C, Monroig P, Cucuianu A, Berindan-Neagoe I, Calin GA (2015) Exosomes as divine messengers: are they the Hermes of modern molecular oncology? Cell Death Differ 22(1):34–45

    Article  PubMed  CAS  Google Scholar 

  86. Thery C, Zitvogel L, Amigorena S (2002) Exosomes: composition, biogenesis and function. Nat Rev Immunol 2(8):569–579

    Article  PubMed  CAS  Google Scholar 

  87. Gulei D, Irimie AI, Cojocneanu-Petric R, Schultze JL, Berindan-Neagoe I (2018) Exosomes-small players, big sound. Bioconjugate Chem 29(3):635–648

    Article  CAS  Google Scholar 

  88. Greening DW, Gopal SK, Xu R, Simpson RJ, Chen W (2015) Exosomes and their roles in immune regulation and cancer. Semin Cell Dev Biol 40:72–81

    Article  PubMed  CAS  Google Scholar 

  89. Fevrier B, Raposo G (2004) Exosomes: endosomal-derived vesicles shipping extracellular messages. Curr Opin Cell Biol 16(4):415–421

    Article  PubMed  CAS  Google Scholar 

  90. Valadi H, Ekstrom K, Bossios A, Sjostrand M, Lee JJ, Lotvall JO (2007) Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nat Cell Biol 9(6):654–659

    Article  PubMed  CAS  Google Scholar 

  91. Gonzalez-Begne M, Lu B, Han X, Hagen FK, Hand AR, Melvin JE et al (2009) Proteomic analysis of human parotid gland exosomes by multidimensional protein identification technology (MudPIT). J Proteome Res 8(3):1304–1314

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  92. Gallo A, Tandon M, Alevizos I, Illei GG (2012) The majority of microRNAs detectable in serum and saliva is concentrated in exosomes. PLoS One 7(3):e30679

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  93. Bullock M, Silva A, Kanlikilicer-Unaldi P, Filant J, Rashed M, Sood A et al (2015) Exosomal non-coding RNAs: diagnostic, prognostic and therapeutic applications in cancer. Non-Coding RNA 1(1):53

    Article  PubMed  PubMed Central  Google Scholar 

  94. Zhou X, Wen W, Shan X, Zhu W, Xu J, Guo R et al (2017) A six-microRNA panel in plasma was identified as a potential biomarker for lung adenocarcinoma diagnosis. Oncotarget 8(4):6513–6525

    Article  PubMed  Google Scholar 

  95. Liu Q, Yu Z, Yuan S, Xie W, Li C, Hu Z et al (2017) Circulating exosomal microRNAs as prognostic biomarkers for non-small-cell lung cancer. Oncotarget 8(8):13048–13058

    PubMed  Google Scholar 

  96. Gallach S, Jantus-Lewintre E, Calabuig-Farinas S, Montaner D, Alonso S, Sirera R et al (2017) MicroRNA profiling associated with non-small cell lung cancer: next generation sequencing detection, experimental validation, and prognostic value. Oncotarget 8:56143

    Article  PubMed  PubMed Central  Google Scholar 

  97. Saito M, Schetter AJ, Mollerup S, Kohno T, Skaug V, Bowman ED et al (2011) The association of microRNA expression with prognosis and progression in early-stage, non-small cell lung adenocarcinoma: a retrospective analysis of three cohorts. Clin Cancer Res 17(7):1875–1882

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  98. Gao W, Lu X, Liu L, Xu J, Feng D, Shu Y (2012) MiRNA-21: a biomarker predictive for platinum-based adjuvant chemotherapy response in patients with non-small cell lung cancer. Cancer Biol Ther 13(5):330–340

    Article  PubMed  CAS  Google Scholar 

  99. Tian L, Shan W, Zhang Y, Lv X, Li X, Wei C (2016) Up-regulation of miR-21 expression predicate advanced clinicopathological features and poor prognosis in patients with non-small cell lung cancer. Pathol Oncol Res POR 22(1):161–167

    Article  PubMed  CAS  Google Scholar 

  100. Capodanno A, Boldrini L, Proietti A, Ali G, Pelliccioni S, Niccoli C et al (2013) Let-7g and miR-21 expression in non-small cell lung cancer: correlation with clinicopathological and molecular features. Int J Oncol 43(3):765–774

    Article  PubMed  CAS  Google Scholar 

  101. Li C, Yin Y, Liu X, Xi X, Xue W, Qu Y (2017) Non-small cell lung cancer associated microRNA expression signature: integrated bioinformatics analysis, validation and clinical significance. Oncotarget 8(15):24564–24578

    PubMed  PubMed Central  Google Scholar 

  102. Shen Y, Tang D, Yao R, Wang M, Wang Y, Yao Y et al (2013) microRNA expression profiles associated with survival, disease progression, and response to gefitinib in completely resected non-small-cell lung cancer with EGFR mutation. Med Oncol 30(4):750

    Article  PubMed  CAS  Google Scholar 

  103. Wang ZX, Bian HB, Wang JR, Cheng ZX, Wang KM, De W (2011) Prognostic significance of serum miRNA-21 expression in human non-small cell lung cancer. J Surg Oncol 104(7):847–851

    Article  PubMed  CAS  Google Scholar 

  104. Zhao W, Zhao JJ, Zhang L, Xu QF, Zhao YM, Shi XY et al (2015) Serum miR-21 level: a potential diagnostic and prognostic biomarker for non-small cell lung cancer. Int J Clin Exp Med 8(9):14759–14763

    PubMed  PubMed Central  CAS  Google Scholar 

  105. Stenvold H, Donnem T, Andersen S, Al-Saad S, Valkov A, Pedersen MI et al (2014) High tumor cell expression of microRNA-21 in node positive non-small cell lung cancer predicts a favorable clinical outcome. BMC Clin Pathol 14(1):9

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  106. Dejima H, Iinuma H, Kanaoka R, Matsutani N, Kawamura M (2017) Exosomal microRNA in plasma as a non-invasive biomarker for the recurrence of non-small cell lung cancer. Oncol Lett 13(3):1256–1263

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  107. Markou A, Sourvinou I, Vorkas PA, Yousef GM, Lianidou E (2013) Clinical evaluation of microRNA expression profiling in non small cell lung cancer. Lung Cancer 81(3):388–396

    Article  PubMed  CAS  Google Scholar 

  108. Liu XG, Zhu WY, Huang YY, Ma LN, Zhou SQ, Wang YK et al (2012) High expression of serum miR-21 and tumor miR-200c associated with poor prognosis in patients with lung cancer. Med Oncol 29(2):618–626

    Article  PubMed  CAS  Google Scholar 

  109. Zhu J, Qi Y, Wu J, Shi M, Feng J, Chen L (2016) Evaluation of plasma microRNA levels to predict insensitivity of patients with advanced lung adenocarcinomas to pemetrexed and platinum. Oncol Lett 12(6):4829–4837

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  110. Dong J, Zhang Z, Gu T, Xu SF, Dong LX, Li X et al (2017) The role of microRNA-21 in predicting brain metastases from non-small cell lung cancer. OncoTargets Ther 10:185–194

    Article  CAS  Google Scholar 

  111. Ponting CP, Oliver PL, Reik W (2009) Evolution and functions of long noncoding RNAs. Cell 136(4):629–641

    Article  PubMed  CAS  Google Scholar 

  112. Tuck AC, Tollervey D (2013) A transcriptome-wide atlas of RNP composition reveals diverse classes of mRNAs and lncRNAs. Cell 154(5):996–1009

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  113. Schmitt AM, Chang HY (2016) Long noncoding RNAs in cancer pathways. Cancer Cell 29(4):452–463

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  114. Martens-Uzunova ES, Bottcher R, Croce CM, Jenster G, Visakorpi T, Calin GA (2014) Long noncoding RNA in prostate, bladder, and kidney cancer. Eur Urol 65(6):1140–1151

    Article  PubMed  CAS  Google Scholar 

  115. Cao L, Chen J, Ou B, Liu C, Zou Y, Chen Q (2017) GAS5 knockdown reduces the chemo-sensitivity of non-small cell lung cancer (NSCLC) cell to cisplatin (DDP) through regulating miR-21/PTEN axis. Biomed Pharmacother 93:570–579

    Article  PubMed  CAS  Google Scholar 

  116. Zhou Y, Sheng B, Xia Q, Guan X, Zhang Y (2017) Association of long non-coding RNA H19 and microRNA-21 expression with the biological features and prognosis of non-small cell lung cancer. Cancer Gene Ther 24:317

    Article  PubMed  CAS  Google Scholar 

  117. Geretto M, Pulliero A, Rosano C, Zhabayeva D, Bersimbaev R, Izzotti A (2017) Resistance to cancer chemotherapeutic drugs is determined by pivotal microRNA regulators. Am J Cancer Res 7(6):1350–1371

    PubMed  PubMed Central  Google Scholar 

  118. Li B, Ren S, Li X, Wang Y, Garfield D, Zhou S et al (2014) MiR-21 overexpression is associated with acquired resistance of EGFR-TKI in non-small cell lung cancer. Lung Cancer (Amst, Neth) 83(2):146–153

    Article  Google Scholar 

  119. Ma Y, Xia H, Liu Y, Li M (2014) Silencing miR-21 sensitizes non-small cell lung cancer A549 cells to ionizing radiation through inhibition of PI3 K/Akt. Biomed Res Int 2014:617868

    PubMed  PubMed Central  Google Scholar 

  120. Jiang Y, Chen X, Tian W, Yin X, Wang J, Yang H (2014) The role of TGF-beta1-miR-21-ROS pathway in bystander responses induced by irradiated non-small-cell lung cancer cells. Br J Cancer 111(4):772–780

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  121. Pereira DM, Rodrigues PM, Borralho PM, Rodrigues CM (2013) Delivering the promise of miRNA cancer therapeutics. Drug Discovery Today 18(5–6):282–289

    Article  PubMed  CAS  Google Scholar 

  122. Castanotto D, Rossi JJ (2009) The promises and pitfalls of RNA-interference-based therapeutics. Nature 457(7228):426–433

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  123. Tomuleasa C, Braicu C, Irimie A, Craciun L, Berindan-Neagoe I (2014) Nanopharmacology in translational hematology and oncology. Int J Nanomed 9:3465–3479

    CAS  Google Scholar 

  124. Ananta JS, Paulmurugan R, Massoud TF (2016) Tailored nanoparticle codelivery of antimiR-21 and antimiR-10b augments glioblastoma cell kill by temozolomide: toward a “Personalized” anti-microRNA therapy. Mol Pharm 13(9):3164–3175

    Article  PubMed  CAS  Google Scholar 

  125. Song H, Oh B, Choi M, Oh J, Lee M (2015) Delivery of anti-microRNA-21 antisense-oligodeoxynucleotide using amphiphilic peptides for glioblastoma gene therapy. J Drug Target 23(4):360–370

    Article  PubMed  CAS  Google Scholar 

  126. Aldea MD, Petrushev B, Soritau O, Tomuleasa CI, Berindan-Neagoe I, Filip AG et al (2014) Metformin plus sorafenib highly impacts temozolomide resistant glioblastoma stem-like cells. J BUON 19(2):502–511

    PubMed  Google Scholar 

  127. Leone E, Morelli E, Di Martino MT, Amodio N, Foresta U, Gulla A et al (2013) Targeting miR-21 inhibits in vitro and in vivo multiple myeloma cell growth. Clin Cancer Res 19(8):2096–2106

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  128. Shu D, Li H, Shu Y, Xiong G, Carson WE 3rd, Haque F et al (2015) Systemic delivery of anti-miRNA for suppression of triple negative breast cancer utilizing RNA nanotechnology. ACS Nano 9(10):9731–9740

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  129. Dong H, Ding L, Yan F, Ji H, Ju H (2011) The use of polyethylenimine-grafted graphene nanoribbon for cellular delivery of locked nucleic acid modified molecular beacon for recognition of microRNA. Biomaterials 32(15):3875–3882

    Article  PubMed  CAS  Google Scholar 

  130. Zhi F, Dong H, Jia X, Guo W, Lu H, Yang Y et al (2013) Functionalized graphene oxide mediated adriamycin delivery and miR-21 gene silencing to overcome tumor multidrug resistance in vitro. PLoS One 8(3):e60034

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  131. Li Y, Chen Y, Li J, Zhang Z, Huang C, Lian G et al (2017) Co-delivery of microRNA-21 antisense oligonucleotides and gemcitabine using nanomedicine for pancreatic cancer therapy. Cancer Sci 108(7):1493–1503

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  132. Liu C, Wen J, Meng Y, Zhang K, Zhu J, Ren Y et al (2015) Efficient delivery of therapeutic miRNA nanocapsules for tumor suppression. Adv Mater 27(2):292–297

    Article  PubMed  CAS  Google Scholar 

  133. Lin Q, Ma L, Liu Z, Yang Z, Wang J, Liu J et al (2017) Targeting microRNAs: a new action mechanism of natural compounds. Oncotarget 8(9):15961–15970

    PubMed  Google Scholar 

  134. Sethi S, Li Y, Sarkar FH (2013) Regulating miRNA by natural agents as a new strategy for cancer treatment. Curr Drug Targets 14(10):1167–1174

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  135. Braicu C, Pilecki V, Balacescu O, Irimie A, Neagoe IB (2011) The relationships between biological activities and structure of flavan-3-ols. Int J Mol Sci 12(12):9342–9353

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  136. Cojocneanu Petric R, Braicu C, Raduly L, Zanoaga O, Dragos N, Monroig P et al (2015) Phytochemicals modulate carcinogenic signaling pathways in breast and hormone-related cancers. OncoTargets Ther 8:2053–2066

    Article  Google Scholar 

  137. Zhang J, Zhang C, Hu L, He Y, Shi Z, Tang S et al (2015) Abnormal expression of miR-21 and miR-95 in cancer stem-like cells is associated with radioresistance of lung cancer. Cancer Invest 33(5):165–171

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was granted by Competitiveness Operational Program, 2014–2020, entitled “Clinical and economical impact of personalized targeted anti-microRNA therapies in reconverting lung cancer chemoresistance”—CANTEMIR, no. 35/01.09.2016, MySMIS 103375 and PhD fellowship (PCD 2017) no. 1300/51/13.01.2017 entitled, “Next Generation sequencing (NGS) in personalized medicine”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ioana Berindan-Neagoe.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bica-Pop, C., Cojocneanu-Petric, R., Magdo, L. et al. Overview upon miR-21 in lung cancer: focus on NSCLC. Cell. Mol. Life Sci. 75, 3539–3551 (2018). https://doi.org/10.1007/s00018-018-2877-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-018-2877-x

Keywords

Navigation