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markers and expand the time period for time since death 
estimation.
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Introduction

In legal medicine, the accurate determination of the time of 
death is important due to its role in elucidating possible criminal  
acts and determining appropriate civil repercussions.

the determination of the postmortem interval can 
include estimates spanning 1 day to many years after death 
by using a multidisciplinary approach. the analysis of 
the postmortem interval is based on the different changes 
that a corpse suffers after death including: physical pro-
cesses (body cooling and hypostasis); metabolic processes 
(supravital reactions); autolysis (loss of selective mem-
brane permeability, diffusion); physicochemical processes 
(rigor mortis); bacterial processes (putrefaction) [1–5]; 
and the effect of insect activity [6, 7]. according to these 
processes, the methods of estimating the time since death 
can be quantitative, like the measurement of body cooling 
or potassium in vitreous humor [1], or qualitative, such as 
subjective descriptions of gastric contents [8, 9].

Numerous techniques have been proposed in the last 
60 years for the determination of the time since death by 
chemical means [10], leading to the emersion of a field 
called “thanatochemistry”. Within this field, all analyses 
included in the postmortem chemical changes can be quan-
tified, providing a mathematical description of the postmor-
tem alterations by taking into account influencing factors, 
such as temperature. Scientific efforts are now seeking 
to improve these measurements, finding those with the 
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precision and accuracy necessary for the calculation of the 
postmortem interval. these methods include the measure 
of volatile fatty acids in the soil solution, which may aid 
in determining a long time since death interval [11, 12], as 
well as the analysis of amino acids, neurotransmitters, and 
decompositional by-products [13].

In spite of past thanatochemistry studies, few reports 
have analyzed the expression of RNa in the body. after 
death, RNa is degraded by ribonucleases present in the 
cell and/or originating from bacteria or other environmental 
contamination [14]. the diverse studies of RNa postmor-
tem have shown that, depending on the tissue, RNa can be 
either more or less stabile, demonstrating rapid degradation 
in the pancreas and liver due to increase in ribonucleases 
[15], with the highest stability found in human and rat brain 
tissue [16–19]. While these studies found a correlation 
between RNa degradation and the postmortem interval, the 
majority of them were developed by means of using RNa 
as a possible diagnostic tool.

Decomposition begins ~4 min after death with a pro-
cess called autolysis. During decomposition, the cells will 
be progressively destroyed. as a consequence, there is a 
release and damage of cellular components and metabo-
lites. Few reports have analyzed changes associated with 
the time since death within the first hours of death [20–23].

the aim of this research was to study the early postmor-
tem interval, between 2 and 8 h, using the analysis of the 
mRNa expression of Fas Ligand (FasL) and phosphatase 
and tensin homologue deleted on chromosome 10 (PteN) 
by Quantitative-PCR, and to assess the reliability of this 
method for mRNa in specimens from dead bodies.

Materials and methods

animal protocol

Four adult male Wistar rats (250–300 g, aged 3 months) 
were housed individually in metabolism cages under stand-
ard lighting (light on 01:00–13:00 hours), temperature (22–
24 °C), and relative humidity (55–65 %) conditions. all 
rats were housed and handled daily under laboratory condi-
tions for at least 15 days before the study. Water and food 
(harlan 2014) were available ad libitum. the appropriate 
animal care and use committees approved all experimen-
tal protocols, and the guidelines of the International Public 
health Service Guide for the Care and Use of Laboratory 
animals were followed. the experiment was developed 
in the same conditions of light, temperature, and relative 
humidity described above. Rats were placed in supine posi-
tion in the bench and killed under anesthesia with intra-
peritoneal injection of Rompun R (Bayer, Leverkusen, 
Germany) and left at room temperature between 0 and 8 h 

postmortem. Immediately after death, as a time 0 or con-
trol, 20 mg of gastrocnemius muscle were biopsied from 
each rat. this tissue is mainly used in rigor mortis studies 
[24], and it is easy to access and take several samples from 
the body. From 2 until 8 h after death, 20 mg of this muscle 
were collected bi-hourly.

RNa isolation and quantification

the samples were homogenized and total RNa was 
extracted using the Genelute Mammalian total RNa Min-
iprep Kit (Sigma, St. Louis, MO, USa), according to the 
manufacturer’s protocol.

RNa quantification and quality was assessed using Nan-
oDrop 2000c (thermo Scientific, Wilmington, De, USa). 
the RNa levels were measured as a concentration (ng/μl).

cDNa synthesis

RNa was subjected to reverse transcription using the high-
Capacity cDNa reverse transcription Kit (applied Biosys-
tems, Foster City, Ca, USa), according to the manufacturer’s  
protocol. Briefly, 2× Rt master mix was prepared: 2 μl 
10× Rt buffer, 0.8 μl 25× dNtP mix (100 mM), 2 μl 
10× Rt Random Primers, 1 μl Multiscribe Reverse tran-
scriptase, and 4.2 μl RNase free water. Next, 10 μl of the 
RNa sample was added to the master mix. thermocycling 
conditions were as follows: 25 °C 10 min, 37 °C 120 min, 
85 °C 5 min.

Real-time PCR

Quantitative analysis of mRNa levels of FasL (implicated in 
cell death signaling and inflammation) and PteN (inhibitor 
of PI3K/akt pathway, which promotes cell proliferation) as 
well as housekeeper gene, GaPDh (glyceraldehide 3-phos-
phate dehydrogenase), were assessed by real-time PCR, 
performed in a ht7900 Real-time PCR system (applied 
Biosystems), using SYBRGreen PCR Core Reagents 
(applied Biosystems). thermocycling conditions were as 
follows: denaturation for 15 s at 95 °C and annealing/exten-
sion for 1 min at 60 °C, during 40 cycles. One additional 
step, a melting curve, was added to distinguish specific from 
nonspecific products and primer dimers. the melting curve 
was constructed by increasing the temperature from 60 to 
95 °C with a temperature transition rate of 0.2 °C/min. each 
sample was tested in triplicate, and analyses of relative gene 
expression data were done using the 2ΔCt method.

Statistical analysis

Plots of mRNa levels were performed using Sigma Plot 
software (Systat Software, San Jose, Ca, USa). Regression 
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analyses were developed using Microsoft excel 2011 for 
Mac (Microsoft, 2010).

Results

Recovery of total RNa

a total of 20 muscle samples were obtained in an 8-h 
period. RNa quantification showed variability not only 
between time periods but also even between subjects 
(table 1). the first time period, (0 or control), has the high-
est and most homogenized concentration amongst subjects, 
(12.1–5.1 ng/μl), as well as the last time period, (8 h), 
with concentrations between 14.3 and 3.4 ng/μl. the low-
est concentration was found in the samples collected 6 h 
after death (2.6–1.4 ng/μl). however, in the conversion to 
cDNa, we adjusted all the concentrations to 10 ng in order 
to have the same amount of starting RNa.

Real-time PCR for mRNa of cell death proteins: PteN 
and FasL

after the reverse transcription, real-time PCR was per-
formed to analyze the expression levels of PteN and FasL, 
using 0 h as control. In addition, we used the reference 
gene (GaPDh) to normalize possible variations during 
RNa isolation, retro-transcription, or Q-PCR efficiencies,  
as the expression levels of a reference gene remain  
consistent under experimental conditions or different 
tissues.

the results were similar in both genes. PteN showed a 
time-dependent increase in mRNa levels, starting 2 h after 
death. however, 8 h after death, mRNa levels suddenly 
decreased (Fig. 1a). We found the same pattern in mRNa 
levels of FasL: there was a time-dependent increase until 
6 h after death and a marked decrease at 8 h after death 
(Fig. 1b). this rapid decrease in the mRNa levels is likely 

due to degradation of RNa as a consequence of the pro-
gress of the autolysis process.

Correlation between mRNa levels of PteN and FasL 
and early time since death

the results of mRNa levels correlated with the early post-
mortem interval. however, because of the sudden decrease 
at 8 h, the correlations were performed only between 0 and 
6 h after death (Fig. 2).

mRNa levels of PteN showed a strong positive lin-
ear correlation with the early time since death (r = 0.98; 
p = 0.01; with the regression formula tSD = 0.04mRNa 
levels + 0.25). the same high positive linear correlation 
was found in mRNa levels of FasL (r = 0.94; p = 0.05; 
with the regression formula tSD = 0.01mRNa lev-
els + 1.02). these results verified our initial hypothesis, 
since FasL and PteN are implicated in cell death signaling 
pathways.

Discussion

the findings from this research provide a quantitative tool 
for estimating the early postmortem interval until 6 h after 
death. We used the analysis of the expression of two genes 

Table 1  RNa quantification extracted at different hours

the first and last time period showed the highest concentration of 
RNa. Samples collected at 6 h had the lowest amount of RNa. RNa 
concentration was measured in ng/μl

TSD time since death

tSD (h) Subjects

1 2 3 4

 0 5.1 9.4 10 12.1

 2 1 3.2 1.2 5.5

 4 11.6 2.4 5 3.3

 6 1.4 1.7 2.6 1.7

 8 3.4 7.2 14.3 8

Fig. 1  mRNa levels of PteN and FasL from 0 to 8 h after death. 
mRNa levels were measured by real-time PCR as folds of increase 
in PteN (a) and FasL (b). PteN and FasL showed a time-depend-
ent increase from 2 to 6 h. after 8 h, the expression of both genes 
decreases suddenly. TSD time since death
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implicated in living organisms on cell death and inflamma-
tion: PteN and FasL (Fig. 3).

PteN [25] was identified as a tumor-suppressor gene 
located in a critical region of chromosome 10, 10q23.3, and 
was found to be deleted in a wide variety of human cancers 
and cell lines, including glioblastomas, prostate, breast, and 
kidney cancer cell lines [26]. the amino acid sequence of 
PteN indicated that it resembles two different types of pro-
teins. the PteN genes encode the catalytic signature motif 
of proteins tyrosine phosphatases and functions as a dual-
specificity phosphatase, but it can also dephosphorylate the 
lipid signal transduction molecule (PIP3) (phosphatidylino-
sitol 3, 4, 5-trisphosphate) [26, 27]. the N-terminal domain 
of PteN also shows extensive homology to the cytoskel-
etal protein tensin, which plays a role in the maintenance of 
cellular structure and possibly signal transduction by bind-
ing to actin filaments [28]. all these functions have impli-
cated PteN in the regulation of several different cellular 
processes: cell growth, apoptosis (programmed cell death), 
interactions with the extracellular matrix, and cell migra-
tion and invasion [25].

the regulatory function of PteN in cell death was 
shown in this work by an increase in expression with the 
time after death. the regulatory pathway starts with the 
dephosphorylation of phosphatidylinositol 3,4,5 triphos-
phate (PtdIns(3,4,5)P3) and phosphatidylinositol 3,4 
biphosphate (PtdIns(3,4)P2), resulting in PtdIns(4,5)P 
and PtdIns(4)P. these phospholipids are the direct prod-
ucts of the phosphatidylinositol 3-Oh kinase (PI-3 kinase, 
PI3K), which counteracts PteN function (Fig. 3, left). 
PI3K is activated by growth factor stimulation, which is 
followed by phosphorylation of inositol substrates at posi-
tion 3, to produce phosphatidylinositol 3,4,5 triphosphate 
[PtdIns(3,4,5)P3], which in turn activates serine-threonine 
aKt and aKt kinases, like PDK1 (phosphonositide-
dependent kinase 1), which phosphorylates and activates 
aKt or PKB (protein kinase B). activated aKt promotes 
cell survival through multiple pathways [29]. One of the 
pathways implies the suppression of FasR/FasL-induced 
apoptosis, by aKt regulation of the activity of the Fork-
head transcription Factor, FKhRL1. In the presence of 
survival factors, aKt phosphorylates FKhRL1, which 
keeps it in the cytoplasm. PteN neutralizes the action of 
aKt, permitting FKhRL1 to go to the nucleus and trigger 
apoptotic signals by inducing the expression of cell death 
genes like FasL (Fig. 3, center) [30, 31].

these studies demonstrate the link between PteN 
and FasL, since PteN is implicated in the regulation of 
FasL and death signals. In the present study, we saw that 
the expression of both genes is parallel, having a time-
dependent increase until 6 h after death. at 8 h, we found 
a decrease in their expression. this could be due to a deg-
radation of RNa postmortem, although several studies 
have demonstrated that RNa could be stable several days 
after death depending on the tissue [14]. however, another 
explanation could be the process of death itself. the signal-
ing of FasL is activated by cytotoxic stress and DNa dam-
age (Fig. 3, right) [32]. Binding of FasL with its receptor, 
Fas triggers the formation of the death-inducing signaling 
complex (DISC) by recruiting an adaptor molecule FaDD 
(Fas-associating protein with death domain) to the cyto-
plasmic tail of Fas (C-terminal region). FaDD recruits pro-
caspase 8, which is immediately proteolytically processed 
to its active larger form. Caspase-8 activates Caspase-3, 
which is the effector caspase to activate the cell death sign-
aling in the nucleus. Sometimes, the Caspase-8 signal is not 
enough to induce cell death, and for that reason this protein 
activates Bid (a cytoplasmic protein) to activate the intrin-
sic-mitochondrial pathway of apoptosis with the release of 
cytochrome c, which is recruited to form the apoptosome 
with apaf and procaspase 9. activated Caspase-9 triggers 
the activation of Caspase-3, resulting in cell death [33]. 
Both cell death and the activation of mitochondrial path-
way of apoptosis increase the free radicals generated by the 

Fig. 2  Correlation between expression levels of PteN (a) and FasL 
(b) and time since death (TSD). Both mRNa expression levels of 
these proteins showed a strong positive linear correlation with the 
tSD from 2 to 6 h. the strength of correlation is marked by “r” and 
the regression plot: y tSD, x mRNa expression
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electron transport Chain, and this increase in the oxidative 
stress could lead to the inactivation through oxidation of 
PteN [34]. In our study, 8 h after death it is possible that 
the increase in free radicals induces a deactivation of PteN 
that in turn cannot activate FasL, leading to the autolysis 
process.

the course of decomposition is similar to the process 
induced when an organ suffers ischemic or anoxic altera-
tions. Several studies have addressed the implication of 
PteN and FasL in the ischemia process [34–39]. In fact, in 
ischemic/reperfused myocardium, the antagonist of PteN, 
aKt plays a protector role by reducing the myocardial 
infarction, PteN being the cause of the death of myocardial 
cells [34]. FasL were found unregulated in neuronal cells 
undergoing apoptosis after ischemia [35]. In contrast, and 
as a protective intrinsic mechanism, PteN was phosphoryl-
ated and therefore inactivated by brain ischemia [40, 41].

the role of PteN and FasL in cell death as well as their 
implication in ischemia makes them potential candidates to 
analyze the postmortem interval in the first hours of death. 

however, their decrease after 8 h, likely due to RNa degra-
dation and increase in free radicals, requires more research, 
not only in these genes but also within additional cell death 
markers to extend both the time period and accuracy of 
time since death estimation.
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