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of the IGF axis is especially important in the establishment 
of function in tissues as diverse as mammary gland, CNS 
and muscle [7–9]. In addition to skeletal muscle function 
the IGF axis also plays an important role in the differen-
tiation and maintenance of the mineralised skeleton with 
a role in both osteogenesis and chondrogenesis [10, 11]. 
Although much of the recent literature has clearly identi-
fied an important role for the TGF–β/BMP (transforming 
growth factor beta–bone morphogenic protein) family dur-
ing embryonic osteogenic development [12, 13] and as 
local factors involved in adult bone differentiation and mor-
phogenesis, the IGF axis has also been revealed to play an 
increasingly important role in postnatal and adult skeletal 
tissue metabolism. Indeed, in some circumstances, the sys-
temic action of the IGF axis regulates the local action of 
BMP(s) and TGF-β. The IGF axis also plays an important 
role in the closely related process of odontogenesis (tooth 
formation), and this review is concerned with highlighting 
some of the recent findings in the areas of osteogenesis and 
odontogenesis. However, the IGF axis is a complex, mul-
ticomponent molecular axis, and it is appropriate that at 
this juncture we provide a brief description of the different 
proteins which comprise the axis along with some limited 
comments as to their general function.

IGF axis components

The main components of the IGF axis includes two polypep-
tide growth factors (IGF-1 and IGF-2), their respective cell 
membrane receptors [IGF-1 receptor (IGF-1R) and IGF-2 
receptor (IGF-2R)] together with six soluble IGF binding 
proteins (IGFBP1–6). IGF-1 is ubiquitously expressed in 
body tissues, although the majority of serum IGF-1 is derived 
from the liver and is under positive regulation by pituitary 
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Introduction

The insulin-like growth factor (IGF) axis plays an impor-
tant role in various aspects of cell physiology [1]. In this 
respect, various components of the axis have been shown 
to regulate cell mitogenesis [2], apoptosis [3], migration 
[4], adhesion [5] and differentiation [6]. This last property 
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growth hormone (GH) [14]. Conversely, IGF-1 feedback at 
the level of the pituitary somatotrophs regulates GH secretion 
[15]. Despite this classical feedback mechanism, the ubiquity 
of IGF-1 expression has established the view that this growth 
factor does not belong within the classic trophic hormone–
end organ target family. IGF-2 is also expressed by many tis-
sues, but is not regulated by GH and instead may be expressed 
in a tissue- and developmental stage-dependent manner [16]. 
The IGF-1R and IGF-2R are structurally divergent. IGF-IR is 
a heterotetrameric receptor comprised of two transmembrane 
α subunits and two cytosolic β subunits covalently bonded 
through disulphide bridges. As such, the IGF-1R bears a close 
structural and functional homology with the insulin receptor 
(IR), and both display receptor tyrosine kinase activity within 
their β subunits which is critical for signal transduction [17]. 
The IGF-2R is identical to the cation-independent mannose-
6-phosphate receptor and is a single pass transmembrane 
receptor [18]. The signalling mechanisms associated with 
IGF-2R remain largely unknown, although IGF-2 and IGF-
2R have the unusual distinction of being paternally and mater-
nally imprinted, respectively, in many mammalian genomes 
[19, 20]. The growth promoting effects of IGF-2 are believed 
to be largely mediated via the IGF-1R and, indeed, there is 
promiscuity displayed in the binding specificities of IGF-1 
and IGF-2, not only for their cognate receptors but also for 
the IR and for hybrid receptors which combine either isoform 
of IR (IR-A or IR-B) with IGF-IR [21, 22] (see Fig. 1). The 
six soluble IGFBPs, like IGFs, are ubiquitously expressed. 
They are under multi-factorial, tissue-specific control and, 
amongst their most important features, is an affinity for IGF-I 
and -2 which is higher than that displayed by cell surface 
receptors [23–25]. Intuitively, this leads to the conclusion 
that sequestration of IGFs by IGFBPs inhibits access of the 
growth factors to cell surface receptors and attenuates their 
activity. Such a model provides a rationale for the activity of 
a group of IGFBP proteases which act to hydrolyse IGFBPs 
and release IGFs into the immediate vicinity of cell surface 
receptors [26, 27]. However, IGFBPs also display IGF-inde-
pendent effects, including the stimulation of mitogenesis, dif-
ferentiation and cell migration [9, 28, 29], and may also act 
to enhance the activity of locally expressed IGFs. This latter 
property may be related to the ability of some IGFBPs to bind 
to extracellular matrix (ECM) structures [30]. Figure 1 shows 
a diagrammatic representation of components of the IGF axis 
outlining most of the features discussed above.

IGF axis and osteogenesis

GH and IGF

The importance of the growth hormone (GH) insulin-like 
growth factor (IGF) axis for the development and growth 

of bone tissue is well recognised. Early studies of rat tib-
iae in organ culture demonstrated an up-regulation of both 
alkaline phosphatase (AP, an odontogenic marker) and 
IGF-I secretion following growth hormone treatment [31], 
and subsequent studies with IGF neutralising antibodies 
strongly suggested GH had both IGF-dependant and -inde-
pendent effects on the growth of primary cultures of human 
osteoblasts and on the human osteogenic sarcoma cell line 
SaOS-2 [32]. GH and IGFs were subsequently reported to 
act synergistically in stimulating odontoblast proliferation, 
although effects on differentiation were not synergistic and 
were IGF-type-specific [33]. Further studies confirmed the 
expression and secretion of both IGF-I and IGFBPs from 
rodent cell lines and primary osteoblast cultures [34–36] 
and the presence of both IGF-I and IGF-2 receptors (IGF-
IR and IGF-2R) on mouse osteoblast cell membranes [37]. 
In addition, osteogenic agents [e.g. oestradiol and parathy-
roid hormone (PTH)] up-regulate IGF-1 expression [38], 
and co-transfection of osteogenic protein-1 with IGF-I 
results in synergistic effects on the differentiation of rat cal-
varia cells [39]. Earlier studies suggested that PKA activa-
tion was required for increased IGF-I and IGF-IR expres-
sion during osteogenesis, and more recently the importance 
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Fig. 1   The IGF axis comprises IGF-1 and -2 polypeptide growth fac-
tors (grey), six soluble high affinity IGF binding proteins (IGFBP1–6, 
yellow) together with the cell surface IGF-1 receptor (IGF-1R, blue) 
and IGF-2 receptor (IGF-2R, green). The insulin receptor (IR, red) 
and hybrid IR/IGF-1R are also able to bind IGFs although with lower 
affinity than cognate receptors. Similarly, insulin and IGF-2 are able 
to bind to IGF-1R but with lower affinity than IGF-1 itself. Most 
IGFBPs can associate with various extra-cellular matrix (ECM) struc-
tures (here, IGFBP-5 is shown), and can be hydrolysed by IGFBP 
proteases present in the interstitial fluid. Both these features are used 
to regulate the access of pericellular IGFs to cell surface receptors. 
Recent evidence also suggests that some IGFBPs (here, IGFBP-3 is 
shown) display IGF-independent effects by association with specific 
IGFBP receptors. In serum and other biological fluids, IGFBP-3 and 
-5 can associate with an acid labile subunit (ALS) which may also 
regulate the activity of these IGFBPs
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of transcription factors including oestrogen receptor α and 
C/EBP delta have been identified as trans acting factors at 
the IGF-1 promoter during osteogenesis [40]. An especially 
interesting study reports the IGF-1-induced phosphoryla-
tion and intracellular redistribution of forkhead transcrip-
tion factor 1, preventing its association and inhibition of the 
osteoblast-specific transcription factor Runx2. This allows 
access of Runx2 to its trans acting site at the osteocalcin-2 
promoter [41]. IGF-I was also demonstrated to be a potent 
chemotactic factor for osteoblasts and, through this route, 
may play a role in the recruitment of osteoblasts during 
bone accretion [42]. The differentiative effect of IGF-1 
may also be associated with an up-regulation of claudin-1 
in tight junctions through a MAP kinase-dependent mecha-
nism with associated decreases in paracellular permeabil-
ity [43], and more recent evidence also suggests a role for 
protein kinase D in the osteogenic differentiation signalling 
mechanism of IGF-I [44].

IGF receptors

Some elegant genetic studies have documented the impor-
tance of IGF-1R in odontogenic differentiation. A land-
mark study using Cre-mediated-specific knock-out of 
IGF-IR expression in mouse osteoblasts demonstrated 
that functioning IGF-1R was required for the biosynthesis 
and mineralisation of bone matrix [45]. A similar knock-
out strategy in primary mouse calvarial osteoblast cultures 
using adenoviral-expressed Cre recombinase against LoxP-
flanked Igf-1R alleles showed that IGF-1R expression was 
required for GH activation of the Stat-5 transcription factor. 
Re-expression of IGF-1R via an adenoviral vector restored 
responsiveness to GH, and the authors suggested the direct 
facilitation of GH activity following the formation of a GH-
IGF–1R-Stat5 complex [46]. Although some limited earlier 
studies indicated the presence of a functional IGF-2R in rat 
calvarial osteoblasts [47], a clear role for this receptor in 
the process of osteogenesis remains to be established, and, 
as in other tissues, many of the anabolic effects of IGF-2 
may be mediated via the IGF-1R.

IGFBPs

There is an extensive literature on IGFBP expression and 
function in osteogenic tissue describing the expression of 
all six IGFBPs in both developing and mature osteoblasts 
and in various osteoblast cell lines (see, e.g., [36, 48, 49]). 
Since then the literature has largely been dominated by 
studies describing the function of IGFBPs which associ-
ate with bone matrix ECM constituents (see Fig. 1) and the 
identification of an IGFBP proteolytic regulatory system 
which operates in bone tissue. In the former case, most of 
the focus has been on IGFBP-5, which, since it was first 

isolated and purified from cultures of mouse osteoblast-like 
cells, has been shown to exhibit pleiotropic functions in 
this tissue [50]. IGFBP-5 has been shown to enhance IGF-
1- and -2-stimulated mitogenesis and also to demonstrate 
an IGF-independent stimulatory activity [51, 52]. Further 
evidence suggested the presence of a specific IGFBP-5 
receptor on osteoblast surfaces which may be associ-
ated with the IGF-dependent or -independent effects of 
IGFBP-5 [53]. This putative receptor has not been further 
characterised, although the ability of IGFBP-5 to stimu-
late the expression of osteoblastic differentiation mark-
ers has been independently confirmed [54, 55]. Using an 
in vivo model of bone insufficiency (ovariectomized rats), 
IGFBP-5 as a daily subcutaneous injection stimulates bone 
accretion by increasing osteoblast proliferation and secre-
tory activity [56], providing further support for the role of 
IGFBP-5 as an anabolic agent. More recent studies have 
examined potential signalling mechanisms for IGFBP-5 
action in osteoblasts. siRNA knock-down experiments 
revealed that the proliferative action of IGFBP-5 on osteo-
blast-like cells may be mediated via a Ras association fam-
ily isoform C activation of Erk-1/2 phosphorylation [57]. 
This finding was subsequently confirmed, together with the 
observation that IGF-1 action in the presence of IGFBP-5 
is enhanced by ligand-occupied alphaVbeta3 integrin [58]. 
Finally, in the mouse osteoblast precursor cell line MC3T3-
E1, IGFBP-5 increases cell growth and the synthesis of 
the ECM proteins osteopontin and thrombospondin-1, and 
these findings together with those described above confirm 
a general consensus as to the osteogenic properties of this 
binding protein.

The other major area of interest in relation to IGFBP 
metabolism in bone tissue concerns the proteolysis of 
IGFBPs. Although proteolytic activity towards IGFBP-3 
and -5 has been described [49, 59], most interest has 
been focussed on an IGFBP-4 protease first described in 
conditioned medium of human osteoblast-like cells [60, 
61] and subsequently identified as pregnancy-associated 
plasma protein-A (PAPP-A) in MC3T3-E1 cell-condi-
tioned medium [62]. Proteolysis by PAPP-A at residues 
M135-K136 in IGFBP-4 has been reported, together with 
the demonstration that an engineered protease-resistant 
IGFBP-4 species was a more potent inhibitor of IGF 
actions in osteoblast cultures than wt IGFBP-4 [63]. This 
observation was given added physiological relevance by 
the finding that overexpression of IGFBP-4 from an oste-
ocalcin promoter in calvariae of transgenic mice caused a 
decrease in femur length and bone density in transgenic 
animals. In addition, transgenic animals showed impaired 
growth, and the inference was drawn that this was due to 
impaired IGF action in IGFBP-4 over-expressing bone tis-
sue. Note, however, that no data were provided on possible 
proteolysis of bone-derived IGFBP-4 [64]. These findings 
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suggest that IGFBP-4, in contrast to IGFBP-5, has inhibi-
tory effects on bone accretion in animal models.

Very little is known with respect to the molecular 
mechanisms of IGFBP action in osteogenic differentia-
tion. Recently, an inhibitory action of IGFBP-6 on differ-
entiation of MC3T3-E1 cells has been reported, and fur-
ther investigation by yeast two-hybrid screening identified 
LIM-mineralizing protein (LMP-1) as a binding partner 
for IGFBP-6, and that association of IGFBP-6 with LMP-1 
may abrogate its inhibitory action on mineralisation [65]. 
Limited investigations of the regulation of IGFBP-5 expres-
sion in osteoblast cultures and osteosarcoma cell lines iden-
tified the Nuclear Factor 1 family of transcription factors 
associating with a cis-acting element in the promoter region 
of IGFBP-5. Subsequent siRNA, EMSA and promoter 
mutational analysis identified this family of transcription 
factors as differential regulators of IGFBP-5 expression 
[66]. However, further details regarding the mechanisms 
involved in the action of these important proteins is lack-
ing, and this is an area worthy of further investigation.

Regulation of IGF axis in osteogenesis

Although ECM association and IGFBP proteolysis are 
the most intensively studied aspects of IGFBP biology in 
bone tissue, it is important to highlight some other sali-
ent features with respect to IGFBP expression and activ-
ity. In bone tissue, IGFBP (and IGF, see above) expression 
is influenced by agents which are traditionally viewed as 
permissive for bone accretion. Amongst these are tri-iodo-
thyronine (T3), PTH, GH, 1, 25-dihydroxycholecalciferol 
(VitD3) and IGF-1 itself [67–69]. In addition, although 
there has been much interest with respect to IGFBP-4 
physiology in bone tissue, the profile of IGFBP expres-
sion and function in differentiating osteogenic tissues is 
more complex. For example, early studies suggested that 
IGFBP-3 was the principal IGFBP secreted by osteoblast 
cultures, and that this binding protein inhibited IGF action 
in a rat-derived bone cell line and in the human osteosar-
coma cell line Saos-2 [70]. The mouse MC3T3-E1 cell 
line expresses IGF-I, IGF-II and IGFBP-2, -4, -5 and -6, 
and all these genes are co-ordinately down-regulated after 
treatment of cultures with bFGF [71]. IGF-I, IGFBP-2, -4 
and -5 expression are also decreased during differentia-
tion of the cell line. In some instances, biphasic patterns 
of expression of IGF axis genes have been reported during 
osteogenic differentiation. In MC3T3-E1 cells, IGFBP-5 
protein showed a biphasic profile with levels peaking in 
conditioned medium at 10–14 days of culture and decreas-
ing subsequently. The authors argued that the persistence 
of high levels of IGFBP-5 mRNA during this period sug-
gested a post-translational mechanism for regulation of 
IGFBP-5 protein [72], and a similar biphasic pattern of 

IGF-I expression was observed during differentiation of 
rat osteoblast cultures [73]. Although the physiological 
significance of such patterns of the IGF axis gene expres-
sion is not fully understood, these findings have obvious 
methodological relevance for design of in vitro studies 
examining IGF axis effects on osteogenesis. These conclu-
sions are also supported by an extremely detailed profiling 
of IGF axis expression in differentiating rat tibial osteo-
blasts. During the incubation periods 0–3  days, 4–6  days 
and 7–9 days, corresponding to, respectively, onset of ALP 
expression, peak of ALP expression and initiation of matrix 
mineral deposition, IGF-II expression was higher than 
IGF-I at all differentiation stages, although for both pep-
tides the highest concentrations were apparent by day 3. All 
IGFBPs (except IGFBP-1 and -6) were expressed, although 
in this instance IGFBP-2 was identified as the principal 
IGFBP species, and this binding protein potentiated IGF-II 
differentiation activity [74].

Although IGF-1 is often reported as the most important 
anabolic growth factor for bone accretion [75], as indicated 
above, the promiscuity displayed by IGF-1, IGF-2 and 
insulin, with respect to interaction with cognate cell surface 
receptors, ensures that all three polypeptides display ana-
bolic activity in bone tissues and that local concentrations 
of growth factors may determine the balance of activity 
amongst the three. Amongst other subtleties displayed by 
the IGF axis with respect to bone physiology are the obser-
vations of position-specific expression of IGF-I, IGF-II and 
IGF-IR in the developing osteophyte, and the suggestion 
that maintenance of this pattern is important for osteogenic 
differentiation [76]. As indicated above, the association of 
IGFBP-5 with ECM components derived from osteogenic 
tissue may have important physiological implications. This 
is a commonly observed property of this binding protein 
[30] and is associated with tissue-specific enhancement 
or inhibition of IGF activity. Intriguingly, the balance of 
IGFBP-5 activity may be influenced by the nature of the 
ECM constituents in the pericellular environment of the tis-
sue, suggesting that the ability of tissues to alter the profile 
of expressed proteoglycans and glycosaminoglycans which 
constitute this environment may influence growth factor 
action. A further level of sophistication is revealed by the 
observation that some IGFBPs will only associate with the 
ECM in the presence of IGFs. In human osteoblast cultures, 
IGFBP-2 association with ECM cultures was dependent on 
the presence of IGF-I, and the binding protein–growth fac-
tor complex was as effective as IGF-2 alone in stimulating 
thymidine and proline incorporation into cell cultures [77]. 
Such differential engagement of ECM by IGFBPs allows 
for an extra level of sophistication in the action of these 
bindings proteins whether bound or unbound to growth fac-
tors. Caution should be exercised when interpreting results 
of studies examining the role of IGF axis involvement in 
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cell and tissue differentiation. For example, a recent report 
discussing the osteoblastic differentiation of the NIH3T3 
fibroblast cell line using dexamethasone and VitD reported 
rather unusually the down-regulation of IGF-I but a 50-fold 
increase in IGFBP-5 expression [78]. However, treatment 
with dexamethasone alone also caused similar changes in 
expression of both genes in the absence of overt osteoblas-
tic differentiation. This indicates that alterations in IGF axis 
profiles during differentiation should be disassociated from 
changes resulting from simple hormonal challenge. Ques-
tions such as these address the significance of causality of 
IGF axis activity in pro-differentiative functions, and we 
have previously highlighted that such issues are of impor-
tance in mammary gland differentiation [9].

IGF axis activity in dental tissues

There is a limited literature describing the role of the IGF 
axis in the development and function of dental tissues. Early 
studies reported the stimulation of proliferation and extra-
cellular matrix secretion by dental pulp-derived fibroblasts 
following IGF-I treatment [79], leading these authors to 
suggest that IGF-I, together with other polypeptide growth 
factors (PDGF, EGF, bFGF), may play a role in differentia-
tion of these cells. These findings have been independently 
confirmed, although some variation in growth factor activ-
ity related to cell passage number has been reported [80]. 
An elegant study used in situ hybridisation to demonstrate 
developmental stage-dependent expression of IGF-I in the 
continually erupting rat incisor model [81] and, in related 
studies, GH and IGF-I acting independently were reported to 
increase expression of bone morphogenetic protein (BMP)-2 
and -4 by up to fivefold, suggesting that the osteogenic 
activities of both hormones may be mediated by these BMPs 
[82]. Onishi et  al. have shown that IGF-I and -2 increased 
ALP activity and proliferation in canine dental pulp-derived 
cells. Insulin was also effective but only at higher doses than 
IGFs [83], consistent with cross-reactivity but lower affinity 
at the IGF-1R (see above). Amongst other highly expressed 
genes of the IGF axis in dental pulp are IGF-2 [84] and IGF-
IR [85]. In an important study, high levels of IGF-2 secre-
tion were reported during the osteogenic differentiation of 
human dental pulp-derived fibroblasts [86], and the same 
study indicated an increase in IGF-IR and IGFBP-3 expres-
sion during osteogenic differentiation of these cells. Whether 
any of these changes in gene expression are causally associ-
ated with the process of dental pulp stem cell differentiation 
remains to be established. However, our preliminary data 
suggest an increase in IGF-1 and IGF-1R expression after 
3  weeks osteogenic differentiation of dental pulp-derived 
stromal cells (unpublished observations).

A subsequent detailed immunohistochemical examination 
of IGF axis components in other dental structures reported 

the presence of IGF-I and -2 together with all six IGFBPs in 
the extracellular matrix (ECM) of the periodontal ligament, 
and the presence of IGF-IR on the surface of periodontal lig-
ament-derived fibroblasts. These authors similarly concluded 
that the location of specific IGF axis members within dental 
structures may reflect distinct roles for each of these genes 
during processes of tooth development [87]. In a further 
extremely detailed in situ hybridisation/immunohistochemi-
cal analysis of IGF axis expression during the life cycle of 
differentiating ameloblasts, very strong reactivity for IGF-I, 
IGF-2, IGF-IR and IGF-2R was evident at the outer enamel 
epithelial layer towards the apical loop in the continuingly 
erupting rat incisor model. In pulp-facing ameloblasts, reac-
tivity towards these IGF axis genes was somewhat reduced. 
This indicates once again position-specific expression of IGF 
axis components, and suggests the importance of this axis in 
the development of dental tissues [88, 89]. IGFBP-5 is also 
up-regulated during osteogenic differentiation of dental pulp 
stem cells [90, 91]. We and others have suggested a role for 
this protein in the differentiation of other cell types [30], and 
the role of this IGF binding protein in the differentiation of 
dental pulp cells warrants further investigation. Finally, an 
interesting recent study using stem cells isolated from api-
cal papillae reported that IGF-I stimulated cell proliferation, 
ALP expression and mineralisation activity in these cells. 
Interestingly ,expression of odontogenic markers (dentin 
sialoprotein and dentin sialophosphoprotein) was down-reg-
ulated. This argues for a bias in IGF-I action towards bone 
tissue formation and away from chondrogenic structures in 
this particular tissue niche [92].

Concluding remarks

It is clear from the foregoing that the IGF axis plays an 
important role in the development and maintenance of min-
eralised tissue and in the function of different tissues within 
the oral cavity. It is expected that future research will fur-
ther elucidate the mechanisms by which this important 
growth factor axis operates in these tissues, and may assist 
with those strategies which aim to use stem cell technol-
ogy for the replacement and repair of structures which have 
been lost or damaged by trauma or disease.
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