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Abstract B chromosomes (Bs) are dispensable compo-
nents of the genome exhibiting non-Mendelian inheritance
and have been widely reported on over several thousand
eukaryotes, but still remain an evolutionary mystery ever
since their first discovery over a century ago [1]. Recent
advances in genome analysis have significantly improved
our knowledge on the origin and composition of Bs in the
last few years. In contrast to the prevalent view that Bs
do not harbor genes, recent analysis revealed that Bs of
sequenced species are rich in gene-derived sequences. We
summarize the latest findings on supernumerary chromo-
somes with a special focus on the origin, DNA composi-
tion, and the non-Mendelian accumulation mechanism of
Bs.
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Introduction

The vast majority of a eukaryotic genome do not code for
proteins and are composed of so-called ‘non-coding” DNA.
Why evolution would maintain large amounts of ‘useless’
DNA remained a mystery for many years. However, results
from the ENCODE project show that most of the presum-
edly useless DNA is functional and involved in complex
regulatory networks. In addition, widespread transcription
from non-coding DNA potentially acts as a reservoir for
the creation of new functional molecules [2]. It is becom-
ing clear that the genome is much more complex, and gene
activity is influenced by multiple stretches of regulatory
DNA located both near and far from the gene itself, as well
as by RNA molecules that are not translated into proteins:
so-called non-coding RNA. Many studies have revealed
that much of the so-called junk DNA is active in regulation,
thus questioning our gene-centric view of the genome.

B chromosomes (Bs) represent an extraordinary example
of extra, apparently inert, DNA. Bs are chromosomes that
are additional to the normal set of chromosomes (called A
chromosomes or As) (Fig. 1). Bs exhibit non-Mendelian
inheritance and have been widely reported in several thou-
sands of animal, plant, and fungi species, but they have
remained evolutionary mysteries ever since their first dis-
covery over a century ago. Bs are found in some but not
all individuals within a population and can vary in num-
ber between (and within) individuals (e.g., Picea glauca,
2n = 24 As + 0-6 Bs; Vulpes vulpes, 2n = 34 As + 0-8 Bs;
Rattus rattus, 2n = 42 4+ 0-5 Bs). In many species, different
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S. cereale

Fig.1 Examples of plant and animal species possessing B chro-
mosomes. a The Bs in rye (Secale cereale). Arrowed Bs showing
cross-hybridization with the B-specific repeat ScCl11 (red), Sc36c82
(green), and D1100 (yellow). (Picture provided by A. Marques, Gater-
sleben, Germany.) b The micro and standard Bs (arrowed) in Brachy-
come dichromosomatica. Metaphase chromosomes showing cross-
hybridization with 45S rDNA (green). ¢ The Bs (arrowed) in Crepis
capillaris. Metaphase chromosomes showing cross-hybridization
with 45S rDNA (red) and Arabidopsis-type telomere probes (green)
probe obtained from microdissected Bs. d The Bs in Korean field
mouse (Apodemus peninsulae): two-color FISH of microdissected
DNA probes derived from centromeric C-positive region of auto-
some (red) and from C-negative region of the arm of one of the Bs

morphological types of Bs exist within a single species. In
some species, they can even exceed the number of As (e.g.
Zea mays, 2n = 20 As 4+ 0-34 Bs). Some of the so-called
small human supernumerary marker chromosomes, which
are found in addition to the normal chromosome comple-
ment in some patients with a weak medical phenotype, show
similarities to B chromosomes [3]. Initially, Bs were consid-
ered non-functional and without any essential genes, as they
are dispensable for normal growth. As a result, Bs follow
their own species-specific evolutionary pathways. Because
most Bs do not confer any advantages on the organisms
that harbor them, they may be thought of as parasitic, self-
ish elements that persist in populations by making use of the
cellular machinery required for the inheritance and mainte-
nance of A chromosomes. When present in low numbers,
Bs generally have little or no impact on the hosts. However,
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B. dichromosomatic

C. capillaris

S. cereale

(green) with metaphase chromosomes of specimens containing 18 Bs.
Arrows indicate the dot-like Bs; sex chromosomes are marked with
X and Y. (Picture provided by N.B. Rubtsov, Novosibirsk, Russia.) e
The Bs in migratory locust (Locusta migratoria). Mitotic metaphase
from a female embryo showing cross-hybridization with a DNA probe
obtained from microdissected Bs. Note the intense painting of the B
chromosomes (arrowed) and the pericentromeric regions of several of
the 24 A chromosomes. (Picture provided by J.P.M. Camacho, Gra-
nada, Spain.) f The Bs in rye (Secale cereale). Arrowed Bs showing
cross-hybridization with mitochondrial DNA (blue), plastid DNA
(green) and the B-specific D1100 repeat (yellow). Insets show Bs
after hybridization with (f') plastid DNA (green) or (f) mitochondrial
DNA (blue). Note that only 12 of 14 A chromosomes are shown

increased numbers of Bs cause phenotypic differences and
may reduce fertility (reviewed in [4-8]).

In most species which carry Bs, the mitotic transmission
of Bs during growth and development is normal and hence
all cells carry the same number of Bs within the individual.
However, there are some exceptions in which the Bs show
mitotic instability and therefore they are present in variable
numbers, sometimes characterizing specific tissues and/
or organs. For example, in the grasses Aegilops speltoides
and Ae. mutica, Bs exist in aerial organs but not in roots
[9, 10]. In grasshoppers, variation in Bs has been observed
to occur specifically among follicles of the testis [11]. The
mechanism underlying this latter variation was shown to be
nondisjunction of the B chromosome sister chromatids dur-
ing anaphase of mitosis leading to an absence of Bs in one
daughter cell and accumulation in the other.
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Frequent B polymorphisms are expected among popula-
tions due to the nonessential nature of this type of chromo-
some. Indeed, besides the characteristic B numerical poly-
morphisms, several cases of B structural polymorphisms
have been reported in plants, e.g., Brachycome dichromo-
somatica [12], Scilla autumnalis [13], Allium schoenopra-
sum [14], and Ae. speltoides [15], and in animals including
the grasshopper Eyprepocnemis plorans [16]. However, in
other species, including geographically distinct popula-
tions of cultivated and weedy rye, Bs have maintained a
similar molecular and cytological structure at the level of
subspecies. The conserved chromosome structure suggests
that, after a period of rapid B development, the process of
chromosome modification has slowed during more recent
evolution. On the other hand, rye is a young species and
the separation of the different genotypes analyzed evolved
rather recently in evolutionary terms [17].

Despite the wide taxonomic distribution of Bs, our
knowledge of the origin, composition, regulation, and
accumulation mechanisms of B chromosomes was limited
until very recently. Triggered by technological advances
in sequencing and genome analysis [18, 19], our knowl-
edge of the biology of B chromosomes has improved sig-
nificantly in the last few years. The aim of this review is
to summarize the latest findings on supernumerary chromo-
somes with a special focus on the Bs of plants.

How does a B chromosome evolve?

As selfish entities, and because they do not participate in
meiotic recombination with the As, Bs take a distinct evo-
lutionary path, and their sequence composition may dif-
fer from that of the As. Because Bs are under little or no
selection pressure, mobile elements and other DNA spe-
cies may insert, spread, and amplify, as in Bs of maize
[20], Brachycome dichromosomatica [21], and Plantago
lagopus [22].

One of the best models for a parasitic chromosome is the
B of rye [23]. Bs in this species are found in both culti-
vated rye (Secale cereale ssp. cereale) and in weedy rye (S.
cereale ssp. segetale) from diverse countries [24]. Based on
similar morphology and meiotic pairing of Bs derived from
weedy and cultivated rye lines of different origins in F,
hybrids, it has been concluded that the rye B has a mono-
phyletic origin [17, 25]. Recent comparative sequence
analysis of the A and B chromosomes of rye challenged our
view on the biology of supernumerary chromosomes [26].
The most unexpected observation in this study is that rye
Bs are rich in gene fragments that are derived from multiple
A chromosome fragments. A multi-chromosomal origin of
B-chromosome sequences is further supported by the many
short sequences that are similar to other regions of the rye

A chromosomes [26]. Similarly, analysis of evolutionar-
ily conserved chromosome segments in wild canid species
identified several regions of domestic dog sequences that
share sequence similarity with canid B chromosomes [27].
But, how did these diverse A chromosome relicts enter the
B chromosome? Did gene trafficking occur during double-
strand break repair or via hitchhiking of genomic fragments
with transposable elements, as demonstrated for non-col-
linear genes of Triticeae [28]? Or, as postulated by Becker
et al. [27], could Bs represent an evolutionary mechanism
to sequester additional copies of genes that are generated
at the chromosome breakpoints associated with speciation?
In addition to this basic A-derived architecture, rye Bs were
found to have accumulated large amounts of B-specific
repeats and insertions of cytoplasmic organellar DNA. It
seems that the B acts like a “genomic sponge” which col-
lects and maintains sequences of diverse origin [26].

Analysis of the composition and distribution of rye
B-located high-copy sequences revealed that Bs contain a
similar proportion of repeats to A chromosomes, but differ
substantially in repeat composition [29]. The most abun-
dant mobile elements (Gypsy, Copia) in the genome of rye
are similarly distributed along As and Bs, while the ancient
retroelement Sabrina [30], is less abundant on Bs than on
As. In contrast, the active element Revolver [31], as well as
the predicted Copia retrotransposon Sc36c¢82, are dispro-
portionately abundant on the B. A B-specific accumulation
of Gypsy retrotransposons or other repeated sequences has
also been reported in the fish Alburnus alburnus [32] and
the fungus Nectria haematococca [33]. The accumulation
of active elements might have its cause in relaxed selec-
tion pressure on Bs, where the integration of a mobile ele-
ment does not interrupt essential gene functions. Reduced
crossing-over might facilitate retroelement accumulation
as proposed for Y chromosomes [34]. A less likely option
could be an advantageous transposition to the B, although
targeted transposition has been shown for yeast [35] and
Arabidopsis lyrata [36]. To explain depletion of an element,
a possible scenario might involve transposition of elements
predominantly in plants without B. The element could still
transpose in OB individuals, thus allowing accumulation on
As exclusively. Such a behavior has been proposed for the
Y chromosome-depleted Ogre-element in Silene latifolia
[37].

A model that explains depletion and accumulation
of B-located retrotransposons on the rye B in particular
is based on different transposition activity of these ele-
ments [29]. In the Triticeae ancestor, Sabrina transposed
and spread over the entire genome. After inactivation of
Sabrina [30] before or during speciation of rye, the B
was formed from the A chromosomes with Sabrina still
present. The newly evolving elements such as Revolver
then became active and transposed throughout the rye
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genome. The dispensable nature of the B and the lack
of selection pressure allowed for stronger accumulation
of Revolver on the B, diluting even further the remnants
of inactive elements which can no longer increase copy
numbers.

In maize [20, 38, 39] and rye [29, 40], the majority of
B-enriched tandem repeats map to regions important for
the accumulation mechanisms of the Bs. Langdon et al.
[41] suggested that the rye B-enriched tandem repeat
sequences E3900 and D1100 evolved via amplification of
ancestral A-located sequences within the dynamic nondis-
junction control region on rye B. The B-enriched repeats
could have amplified via unequal crossing over [42]. The
presence of B-enriched sequences within evolutionarily
diverged species indicates that B-specific amplification
occurred after separation from the standard chromosome
complement.

We propose a multi-step model for the origin of B
chromosomes (Fig. 2). Initially, a proto-B chromosome
was formed by segmental or whole-genome duplication,
followed by reductive chromosome translocations, unbal-
anced segregation of a small translocation chromosome,
and subsequent sequence insertions. Recombination with
donor A chromosomes became restricted, probably due
to multiple rearrangements and illegitimate recombi-
nation involving different A chromosomes, which pre-
cluded extended pairing with the formerly homologous A
regions. This restriction of recombination may be consid-
ered as the starting point for the independent evolution
of B chromosomes. The presence of fast-evolving repeti-
tive sequences, along with reduced selective pressure on
gene integrity, would predispose a nascent B to accumu-
late the further rapid structural modifications required to

Fig. 2 Model of the evolution
of a B chromosome. / Trans-
location chromosome derived
from duplicated A chromosome
fragments results in 2 a decay
of meiotic A-B pairing and the
formation of a proto-B. 3 The
accumulation of organellar and
A chromosome-derived DNA
fragments, amplification of
B-specific repeats, erosion and
inactivation of A-derived genes
(Muller’s ratchet) and the gain
of chromosome drive forms a B
chromosome

(partial)duplication and
rearragements
of A chromosomes

A chromosomes
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establish a drive mechanism. Because any increased gene
dosage may affect gene expression, the expression of
paralogues on B chromosomes might be reprogrammed
(potentially through epigenetic mechanisms) early during
the evolution of the Bs. Thus, proto-B genes might first
be suppressed and then degenerate due to mutations and
the insertion of sequences derived from other A-chro-
mosomal regions and cytoplasmic organellar genomes.
Exceptions to this scenario could include those sequences
that provide meiotic drive and an advantage for the main-
tenance of B chromosomes in populations. This hypoth-
esis suggests that B chromosomes, due to their dispen-
sable nature, provide a kind of safe harbor for genes and
sequences without immediate selective benefit. In our
model, we expect B chromosomes to be found primarily
in taxa with elevated levels of chromosomal rearrange-
ment and phylogenetic groups with unstable chromosome
numbers.

Considering the similar age of the genus Secale (1.7
Mya) and the age of its B chromosomes (1.1-1.3 Mya),
it is tempting to speculate that B chromosomes originated
as a by-product of chromosome rearrangement events.
Especially considering that the rye genome, in contrast
to the otherwise pronounced genome colinearity in the
Triticeae, underwent a series of rearrangements since its
split from the wheat and barley lineages [43]. An analo-
gous association between chromosome rearrangements
and the formation of Bs has been demonstrated in Dros-
ophila. Analysis of B-linked sequences suggest that D.
albomicans Bs may have originated as a by-product from
centromeric/telomeric fragments created by a fusion of
the ancient third autosome and the ancestral sex chromo-
some [44].

ongoing

sequence
accumulation and
amplification, gain of
chromosome drive
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B-located organelle DNA

B chromosomes of rye have accumulated significantly
greater amounts of chloroplast- and mitochondrion-derived
sequences (NUPTs and NUMTS, respectively) than the A
chromosomes [26] (Fig. 1f). All parts of the chloroplast
and mitochondrial genomes are found on the Bs, indicating
that all sequences are transferable. The higher amount of
organelle-derived DNA inserts in B than in A chromosomes
and an increased mutation frequency of B-located organel-
lar DNA suggests a reduced selection against the insertion
of organellar DNA in supernumerary chromosomes. What
mechanism could account for the accumulation of organel-
lar DNA on the B chromosomes? The first possibility is that
insertion into B DNA has fewer deleterious genetic conse-
quences than their counterparts on As. Simply expressed,
this may reflect the generally inert B chromosome which
may tolerate essentially uncontrolled DNA insertions of
all sorts. In contrast, insertions into A chromosomal DNA
may disrupt gene expression with lethal consequences,
particularly when they become homozygous. Plastid DNA
fragments are clearly very numerous in some tissues such
as the developing pollen gametophyte [45] or after stress
[46], so uncontrolled insertion would be expected to result
in the accumulation of NUPTs and, by analogy, NUMTs.
Alternatively, the mechanisms that prevent nuclear genome
expansion may be impaired on the Bs, even though they are
normally amongst the smaller chromosomes in karyotypes.
Transfer of organellar DNA to the nucleus is very frequent
[47], but much of the ‘promiscuous’ DNA is also rapidly
lost again within one generation by a partially counterbal-
ancing, but little understood, removal process [48]. This
makes about 50 % of de novo NUPTs so unstable that par-
tial or total deletion may be observed by genetic and molec-
ular analyses. If this expulsion mechanism is impaired in B
chromosomes, the high turnover rates together with lower
degradation that prevent such sequences from accumulating
on the A chromosomes would allow for sequence decay.
Thus, the dynamic equilibrium between frequent integra-
tion and rapid elimination of organellar DNA could be
impaired for B chromosomes.

There is no doubt that endosymbiotic evolution, initiated
by NUPT (nuclear integrants of plastid DNA) and NUMT
(nuclear integrants of mitochondrial DNA) formation, has
been a major driver of genetic complexity, with past and
present mitochondrial and chloroplastic sequences contrib-
uting a large proportion of nuclear genes [47]. Therefore,
the presence of a disproportionately large amount of extant
organellar DNA on the rye B chromosome makes it tempt-
ing to suggest a long-term evolutionary role. Assuming
that the sequences of the majority of NORGs (nuclear inte-
grants of cytoplasmic organellar DNA) are not under any
selection pressure, they are free to undergo sequence decay

without constraint, providing the potential to produce novel
beneficial or deleterious genes or, most frequently, genomic
garbage. All that is then necessary to complete the birth of
a novel functional gene is transfer of B chromosome DNA
to the A chromosomes. While such transfers have not been
characterized, there is ample evidence of DNA transfer in
the other direction, from A to B chromosomes [4, 26], and
it would be surprising if B DNA did not rarely or even fre-
quently transfer to the As. This mechanism could apply to
all the sequences on the B, but the far-reaching and well-
characterized effects of endosymbiotic evolution certainly
provide a challenging area for future research. It is difficult
to address such transfers experimentally with current tech-
niques, but an unambiguous demonstration would suggest
a strong raison d’etre for the very common occurrence of
Bs in natural populations. Future analyses of other B-bear-
ing species will be needed to address the question whether
organelle-to-nucleus DNA transfer is an important mecha-
nism that drives the evolution of B chromosomes.

Gene content of B chromosomes

Although Bs are not essential, some phenotypic effects
have been reported to be associated with their presence.
These effects are usually cumulative, depending upon the
number and not the presence or absence of Bs (reviewed in
[8, 49-51]. For instance, under drought stress conditions,
seeds carrying Bs have an advantage concerning germina-
tion over OB seeds in Allium schoenoprasum [52]. In cich-
lid fishes [53] and in the frog Leiopelma hochstetteri, Bs
play a role in sex determination, and, in the fungus Nec-
tria haematococca, Bs account for antibiotic resistance
and pathogenicity [33]. In addition, Bs were reported to be
associated with their achene color in Haplopappus graci-
lis [54], meiotic pairing in Ae. mutica [55] and in hybrids
between common wheat and Ae. variabilis [56], leaf strip-
ing in maize [57], and crown rust resistance in Avena sativa
[58].

Considering the intra- or interspecific origin of Bs and
the above-listed B-associated effects, it has been of interest
for a long time to address whether Bs carry genes. Stud-
ies have led to different conclusions regarding the tran-
scriptional activity of Bs. For instance, weak or completely
lacking transcriptional activity was concluded for Bs using
labeled uridine in the grasshoppers Myrmeleotettix macula-
tus and Chorthippus parallelus [59], as well as the mouse
Apodemus peninsulae [60]. The B-located histone H3 and
H4 genes of the migratory locust are likely to be function-
ally inactive, as higher sequence variations were found
compared to their A-located sequences [61]. Inactive 18S
rDNA was described in telomeric and centromeric regions
of the Bs of the fish Haplochromis obliquidens [62]. Both
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B chromosome types of B. dichromosomatica contain
45S rDNA [63, 64]. But, using reverse transcriptase PCR
of the equivalent region within the 40S precursor rRNA,
suggested that the rDNA of the large B is not transcribed.
Although Bs with active NORs have also been observed
[65], and at least low level transcription seems likely given
the global transcription observed after RNA seq studies of
plants with and without Bs [66].

There are other examples of gene-possessing Bs. Indi-
rect evidence for transcription was revealed for the frog
Leiopelma hochstetteri [67] and the fly Simulium juxtacre-
nobium [68] based on lateral loops observed in lampbrush
chromosomes of Bs. A few B-specific cDNA fragments
were identified after comparison of gene expression pro-
files of the mouse Apodemus flavicollis with and without
Bs [69]. In the canids Vulpes vulpes and Nyctereutes pro-
cyonoides, the proto-oncogene C-KIT with intron—exon
boundaries has been mapped on their Bs [70, 71]. Although
the activity of the B-located C-KIT was not analyzed in
these studies, the presence of this gene in Bs of different
canids argues for its biological significance. In the asco-
mycete fungus Nectria haematococca, several functional
genes conferring resistance to an antimicrobial compound
produced by its host (garden pea Pisum sativum), were
mapped on a dispensable chromosome [72-78]. These find-
ings suggested the idea that some chromosomes compara-
ble to the bacterial plasmids can define the habits of their
carrier. In contrast to single or low copy genes which were
rarely found on Bs in early studies, rRNA genes have been
frequently identified on Bs of many species (for review,
see [8, 79]). This is most likely to be due to the fact that
their detection is rather easy by cytogenetic techniques in
contrast to unique genes. In the smooth hawksbeard Crepis
capillaris and the grasshopper Eyprepocnemis plorans,
weak transcription of B-located rRNA genes was demon-
strated [65, 80].

A comparative cDNA-AFLP analysis indicated that rye
Bs are able to modulate the transcription of correspond-
ing gene copies on A chromosomes [81] and, from these
studies, regulatory interactions between A- and B-located
coding sequences have been proposed. It is likely that Bs
may influence A-localized sequences through epigenetic
mechanisms, such as homology-dependent RNA interfer-
ence pathways [82] as has been proposed for the modula-
tion of gene-activity in newly formed hybrids and allopoly-
ploids [83]. The effects of Bs on the spatial organization
of As in interphase nuclei is another possible way that Bs
could exert control on As, and it has been suggested that
spatial positioning of genes and chromosomes can influ-
ence gene expression [84]. A similar effect was shown for
the essentially gene-deficient Y chromosome of Drosophila
melanogaster, which is able to regulate the activity of hun-
dreds of genes located on other chromosomes [85].
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Recent application of next generation sequencing-based
approaches revealed that Bs contain an unexpected high
number of genic sequences. Analysis of rye Bs resulted
in the identification of more than 4000 putative B-located
genic sequences [26]. These genic sequences showed ele-
vated sequence polymorphism compared to their A-located
counterparts indicating that they had undergone pseu-
dogenization [66]. Sequencing of Nectria haematococca
revealed that its supernumarary chromosomes are enriched
in unique and duplicated genes [33]. In another analysis
of this type, the genome of a male Drosophila albomicans
which contained a B and inbred female flies derived from
the same strain but without Bs were sequenced and com-
pared. Besides the fact that the B of this species was shown
to originate from As, the authors were able to detect one
actively transcribed unit on B [44].

Depending on the process involved in B chromosome
de novo origin and the ability of the host genome to com-
pensate for additional copies of A-derived genes, it is likely
that Bs of other species are rich in genic reads. What is the
evolutionary fate of B-located genic sequences? As Bs are
dispensable it is expected that they are prone to accumu-
late mutations as they undergo pseudogenization (Fig. 3).
Depending on the species, the half-life of an active dupli-
cated gene becoming mutated or lost was estimated to be
2-7 million years [86]. Considering this finding, depend-
ent on the age of a B, it is possible that not all B-located
genes are inactive. If Bs share many almost identical genic
sequences with As, why is the presence of Bs not associated
with more severe phenotypes, particularly assuming that
some sequence variants may still have a biological effect?
Bearing in mind that the relative dosage of a chromosome
is critical for normal development (addition of a single
human A chromosome to the genome nearly always results
in detrimental effects), it is striking that organisms with an
additional B are little affected. During early evolution of a
proto B, A-derived genes are likely to be downregulated by
dosage compensation. The role of micro-RNAs in affecting
gene dosage balance is unknown, but it is potentially impor-
tant in terms of modulating the expression of transcription
factors, because micro- RNA is known to operate in a dos-
age-sensitive manner [87]. While the mechanisms of dosage
compensation differ markedly between taxa, each well-stud-
ied case involves the recruitment of a chromatin regulatory
complex to modulate gene expression (reviewed in [88]).

Besides the activity of coding sequences, transcription
of B-enriched repetitive sequences has been demonstrated.
In maize, portions of a retrotransposon-derived high-copy
element were shown to be transcriptionally active [20]. In
rye, several B-repeats are active in a tissue-dependent man-
ner [29, 89].

What could be the consequence of B-derived transcripts?
Transcripts coming from a B in combination with their
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Fig. 3 Model of the evolution
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related A-located genes provide additional complexity to
the transcriptome of their host and this may explain in part
the phenotypes and effects associated with the presence of
Bs. The transcriptional activity of Bs could form regula-
tory transcripts such as siRNAs which have the potential to
modulate the level of A-derived transcripts or to change the
chromatin status of a target region by DNA or chromatin
modification [90, 91]. Also, transcripts from Bs similar to
pseudogenes may dictate their effects indirectly by compet-
ing with A-derived transcripts for regulatory factors such as
miRNAs [92]. If truncated proteins or higher representation
of functional proteins are produced in the presence of Bs,
it could cause overloading of the proteasome machinery
for processing these unfolded, misfolded, aggregated, and/
or uncomplexed proteins, thus causing an energetic bur-
den for the host [93]. But Bs may also produce functional
proteins which may have some role in maintenance of B
chromosomes.

How does a nonessential chromosome survive over
time?

The maintenance of Bs in natural populations is possible
by their transmission at higher than Mendelian frequencies,
and this enables the maintenance of Bs in populations [94].
The variety of mechanisms, including segregation failure,
by which B chromosomes gain heritable advantage in trans-
mission, are known as accumulation or drive mechanisms.
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Depending on the species, B chromosome drive can be pre-
meiotic, meiotic, or post meiotic. Drive is the key to under-
standing B chromosomes and it occurs in many ways, but
the molecular mechanisms remain far from clear [95, 96].

In animals, where the gametic nuclei do not replicate,
the accumulation mechanism effectively acts either before
or during meiosis. Premeiotic drive mechanisms in ani-
mals occur in the spermatogonial mitosis in the testes
[96]. Post-meiotic drive is frequent in flowering plants
during gametophyte maturation. The drive mechanisms
of maize and rye Bs are well-studied examples that result
in B chromosome accumulation in the next generation. In
maize, at least three properties allow the Bs to increase in
numbers: nondisjunction at the second pollen grain mito-
sis, preferential fertilisation of the egg by sperm contain-
ing B chromosomes [97-99], and suppression of meiotic
loss when the Bs are unpaired [100]. One A-located factor
seems to codetermine maize B accumulation by prefer-
ential fertilization while another factor(s) determines the
meiotic loss of Bs [101]. Sperm nuclei containing dele-
tion derivatives of B-9 (translocation lines involving the
B and chromosome 9), which lack the centric heterochro-
matin and possibly some adjacent euchromatin of the B
chromosome, no longer have the capacity for preferential
fertilization [102].

The behavior of rye Bs during pollen mitosis was first
studied by Hasegawa [103], who described how the two
chromatids of the B chromosome do not separate at ana-
phase of first pollen grain mitosis and in most cases are
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included in the generative nucleus. In the second pollen
grain mitosis, the generative nucleus divides to produce
two sperm nuclei, each with an unreduced number of Bs.
A similar nondisjunction process may occur in the female
gametophytes as well [104].

Deficient Bs lacking the heterochromatic terminal region
of the long arm undergo normal disjunction at first pollen
anaphase. Therefore, it seems that the accumulation mecha-
nism of the B by nondisjunction requires factors located at
the end of its long arm [105-107]. This factor can act in
trans because, if a standard B [108] or the terminal region
of the long arm of the B [105] is present in the same cell
containing a deficient B, nondisjunction occurs for both the
standard and the deficient B. The nondisjunction control
region is enriched in B-specific repeats which are highly
transcriptionally active in anthers. In addition, the distal
heterochromatin is marked with the euchromatin-specific
histone modification mark H3K4me3 [89].

On the basis of a recent analysis on the cellular mecha-
nism of B chromosome drive in the male gametophyte of
rye, a model was proposed to explain how the accumula-
tion mechanism works for the B chromosome [109]. At
all mitotic stages of microgametogenesis, the centromeres
of As and Bs are active. However, sister chromatid cohe-
sion differs between As and Bs at first pollen mitosis. The
B-specific pericentromeric repeats are involved in the for-
mation of pericentric heterochromatin, which is known to
play a role in chromosome segregation [110]. In particular,
it has been suggested that heterochromatin is required in
sister chromatid cohesion. In fission yeast, repeats flanking
the kinetochore are essential for cohesion [111]. The failure
to resolve the pericentromeric cohesion is under the con-
trol of the B-specific nondisjunction control element. The
asymmetry of this division plays a critical role in the deter-
mination and subsequent fate of the two unequal mitotic
products: the vegetative and the generative cells [112]. Due
to unequal spindle formation, joined B chromatids become
preferentially located towards the generative pole. In the
second pollen mitosis, the generative nucleus divides to
produce two sperm nuclei, each with an unreduced num-
ber of Bs. Hence, a combination of nondisjunction and of
unequal spindle formation at first pollen mitosis results in
the directed accumulation of Bs to the generative nucleus,
which consequently ensures their transmission at a higher
than Mendelian rate to the next generation. Nondisjunction
works equally well when the rye B is introduced as an addi-
tion chromosome into hexaploid wheat [105, 113-115],
hypo-pentaploid Triticale [116], or Secale vavilovii [117].
Thus, the B controls the process of nondisjunction auton-
omously [118, 119]. Whether a comparable mechanism
exists in other species remains to be determined. However,
it seems that asymmetrical spindles are also a key compo-
nent of the premeiotic drive in, e.g., the Asteraceae Crepis
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capillaris [120] and of the meiotic drive of Bs in, e.g., the
grasshopper Myrmeleotettix maculatus [121]. Hence, the
asymmetry of the mitotic spindle seems to be a major com-
ponent of diverse B accumulation mechanisms.

The discovery that some of the nondisjunction control
region-specific repeats produce noncoding RNA predomi-
nantly in anthers of rye [89] suggests an intriguing possi-
bility, namely that the nondisjunction of Bs occurs because
the control region provides RNA that somehow maintains
cohesion in key regions of B-sister chromatids. One might
imagine that the failure in mitotic segregation reflects a
failure to properly resolve the pericentromeric hetero-
chromatin during first pollen mitosis. The cell cycle type-
specific segregation failure of Bs triggers the question: in
which aspect does the first pollen mitosis differ from other
mitotic events in other cell types? We argue that either a
haploid tissue-type specific expression of nondisjunction
controlling transcripts [89] and/or the formation of a con-
trasting chromatin composition during first pollen mitosis
[122] ensure cell type-specific accumulation.

As in rye, the accumulation mechanism in maize Bs
requires a factor located on the end of the long arm of the
B that can act in trans [123-125], and the B centromeric
heterochromatin, irrespective of centromere function, is
required for efficient nondisjunction [126, 127]. As the
Bs of rye and maize originated independently, compara-
ble drive mechanisms in both species evolved separately.
Although much of repetitive DNA evolution is governed
by neutral evolutionary processes [128], we propose that
some B-located repeats, like those located in the Abl0
maize chromosome involved in neocentromere meiotic
drive [129], the satellites involved in segregation distor-
tion of Drosophila melanogaster [130] or in centromere-
associated drive in female meiosis [131], are functionally
involved in the regulation of chromosome segregation to
ensure the maintenance of Bs in natural populations.

Outlook

Recent advances in sequencing and bioinformatics have
provided efficient tools for the analysis of extra chromo-
somes. Applying these methods will shed new light on Bs
and thus result in an improvement of our knowledge on
genome dynamics. These unique chromosomes will teach
us about the evolution of genomes and genes under vary-
ing amounts of selection pressure. Likely, because the Bs
of different organisms clearly arose in various ways, novel
mechanisms of B chromosome formation will be found.
A detailed analysis of centromere regulation will be a pre-
requisite for a better understanding of the drive mecha-
nisms, which are essential for the survival of a nonessential
chromosome. The application of RNA seq technology to
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analyze the effects of Bs on the transcriptome of their host
will be another interesting direction for B chromosome
research. Hence, uncovering and understanding B chromo-
some biology will break into uncharted territory and have
implications for genome evolution and gene regulation.
Further analysis of Bs will provide exciting results on gen-
eration of rapid genome changes in higher eukaryotes, with
particular relevance to selfish elements.
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