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Introduction

The most common underlying cause of cardiovascular 
diseases, such as myocardial infarction or stroke, is ath-
erosclerosis [1, 2]. Atherosclerosis is a slowly progressing 
disease in which lesions (plaques) are formed in large and 
mid-sized arteries. Risk factors are hypertension, diabe-
tes, smoking, and excessive food intake, but also previous 
infections (influenza, oral pathogens) or underlying (auto)
immune diseases like lupus, Wegener’s granulomatosis or 
rheumatoid arthritis [3–6]. Although plaques can grow to 
a sufficiently large size to compromise blood flow, most of 
its clinical complications are attributable to arterial occlu-
sion due to plaque erosion or rupture [7]. Plaques form at 
predisposed regions characterized by disturbed blood flow 
dynamics, such as curvatures and branch points [7]. In the 
past two to three decades, experimental and patient studies 
have fueled the notion that atherosclerosis is a lipid-driven 
chronic inflammatory disease of the arterial wall in which 
several components of both the innate and adaptive immune 
system play a pivotal role.

The development of atherosclerosis is initiated by activa-
tion, dysfunction and structural alterations of the endothelium 
leading to subendothelial retention of lipid components from 
the plasma, such as low-density lipoprotein (LDL). Here, 
lipids are susceptible to modification by oxygen radicals (like 
reactive oxygen species) and enzymes (such as myeloperoxi-
dase and lipoxygenases) initiating the inflammatory process. 
The endothelium becomes activated, secretes chemokines 
such as CCL2, and starts expressing adhesion molecules, 
such as E-selectin and VCAM-1, thereby promoting the 
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adhesion of leukocytes and activated platelets to the endothe-
lium. Activated platelets secrete additional chemokines (like 
CCL5 and CXCL4) and undergo interactions with leukocytes 
to further boost immune cell infiltration [8]. Monocytes, T 
cells and dendritic cells (DCs) are the first cell types present 
in the lesions. In the intima, monocytes differentiate into 
macrophages (or DCs). Subsequently, these phagocytes start 
to ingest (modified) lipids and become ‘foam cells’. T cells 
are recruited in parallel with macrophages and also produce 
atherogenic mediators. DCs are already present in normal 
arteries but are actively recruited during atherosclerosis [9].

Most of our recent insights are derived from experiments 
performed in atherosclerotic mouse models, i.e. the ApoE−/− 
mouse and the LDLr−/− mouse, which have slightly differ-
ent characteristics. ApoE−/− mice have a spontaneously 
hyperlipidemic profile, and develop atherosclerosis without 
dietary intervention, whereas LDLr−/− mice only develop 
atherosclerosis when fed a high fat diet. By varying the 
amount of cholesterol and fat in the diet, atherosclerotic 
plaque progression in both mouse models can be modulated, 
and atherosclerotic plaque burden, activation of the immune 
system and lipid levels are thus dependent on the setting and 
model in which the experiment has been performed [10]. 
These factors can potentially influence the outcome of the 
results. Therefore, the findings listed in this review should 
be interpreted with some caution. Moreover, atherosclerosis 
is not a homogeneous disease, but can differ in its progres-
sion in the different sites of the arterial tree. Data obtained 
from one site are therefore not necessarily true for the other 
sites, although in most cases, the effects of an intervention 
are similar at different sites [10–12].

In this review, we discuss the newest insights on the role of 
the individual immune cell types and their interactions during 
innate and the adaptive immune responses in atherosclerosis.  
The review is based on data that are obtained from, and  
confirmed by multiple experiments performed by different 
laboratories in humans and mouse models of atherosclerosis.

Innate immune cells in atherosclerosis (Fig. 1)

The innate or non-specific immune system is the first line of 
defense in the body and includes anatomical (e.g., the skin) 
and humoral barriers (e.g., complement), as well as cellular 
components (e.g., phagocytes). In contrast to the adaptive 
immune system, the innate immune system has no memory, 
but recognizes, responds to, and combats pathogenic sub-
stances fast and in a non-specific manner.

Monocytes and macrophages

Monocytes are short-lived mononuclear phagocytes of mye-
loid origin that represent about 3–8 % of total leukocytes in 

the blood [13]. In mice, two monocyte subsets have been 
identified [14]: The inflammatory monocyte, which is pref-
erentially recruited to inflamed tissues and has a Ly6Chigh-

CX3CR1lowCCR2+ profile, and the resident or patrolling 
monocyte, which is characterized by CX3CR1-dependent 
homing to non-inflamed tissues and has a Ly6ClowCX-
3CR1highCCR2- profile [13–16]. Both subsets can differen-
tiate into macrophages and dendritic cells, and Ly6C+ cells 
are able to convert to Ly6C- cells in vivo [13, 15]. In humans, 
three major monocyte subsets exist [17, 18]. The “classical” 
CD14++CD16- subset resembles the mouse Ly6Chigh inflam-
matory subset and also highly expresses CCR2, whereas the 
“non-classical” CD14+CD16++ monocytes are a possible 
counterpart of mouse Ly6C− cells, expressing high levels of 
CX3CR1 and CCR5 but low levels of CCR2 [19]. Addition-
ally, an “intermediate” CD14++CD16+CCR2+ subset can 
be distinguished [20].

Monocyte recruitment and adhesion to atherosclerotic 
plaques

Hypercholesterolemia induces monocytosis in ApoE−/− mice 
and especially increases inflammatory Ly6Chigh monocyte 
counts [21], which are more prone to enter the atheroscle-
rotic plaque [21, 22]. The increase in monocytes is due to an 
increase in hematopoietic stem and progenitor cells (HSPCs) 
in the bone marrow, which are outsourced to the spleen and 
exert extra-medullary hematopoiesis, thereby generating a 
splenic reservoir of monocytes that are also able to ‘feed’ 
the atherosclerotic plaque [23, 24]. Interestingly, proteins 
involved in cholesterol efflux pathways tightly regulate pro-
liferation and migration of HSPCs. The ATP binding cas-
sette transporters A1 and G1, as well as apolipoprotein E, are 
strong inhibitors of myelopoiesis in the bone marrow, and 
their inhibition induces increased proliferation and mobiliza-
tion of HSPCs, resulting in monocytosis and neutrophilia, 
and increased atherosclerosis [25, 26].

Besides a rise in monocyte numbers, chemokine-depend-
ent monocyte recruitment and survival is also increased in 
atherosclerosis [16, 22, 27]. Tracking of blood monocytes 
in mice indicates their continuous recruitment to plaques, 
which increases proportionally with lesion size [28]. 
Chemokines and their receptors direct cells towards sites 
of inflammation via interactions with glycosaminoglycans 
(GAGs) [29]. Blocking CCR2, CX3CR1, or CCR5, or defi-
ciency in their ligands CCL2, CX3CL1, or CCL5, invariably 
leads to a reduction of monocyte influx in the plaque (both 
Ly6Chigh and Ly6Clow) and an attenuation of atherosclerosis 
[27, 30–34]. Cheng et al. reported an increase in CX3CL1 
expression in advanced plaques. Other studies report only a 
minor effect of CCR2 blockade or bone marrow deficiency 
at later stages of atherosclerosis, suggesting that Ly6Chi are 
mainly important at earlier stages, whereas Ly6Clo or − are 
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Fig. 1  Role of monocytes and neutrophils in atherosclerosis. a Lipo-
proteins enter the intima, bind to proteoglycans, accumulate, become 
modified and activate the endothelium. b Platelets deposit C–C motif 
chemokine ligand 5 (CCL5) on the endothelium, promoting neutro-
phil recruitment to the vessel wall. Activated neutrophils secrete gran-
ule proteins such as myeloperoxidase, azurocidin, and proteinase-3 
that will enhance endothelial activation and dysfunction by inducing 
adhesion molecule expression, permeability changes and limiting the 
bioavailability of nitric oxide. Moreover, granule proteins secreted 
or deposited on the endothelium induce adhesion and recruitment of 
inflammatory monocytes, but can also modify chemokines, enhanc-
ing their ability to attract monocytes. c Activated endothelial cells 
release chemokines, such as MCP-1, that attract circulating mono-
cytes. Monocytes bind to P and E selectin on endothelial cells, roll 
and finally come to arrest by adherence of their adhesion molecules 
(VLA-4, LFA-1) to VCAM-1 and ICAM1 on the endothelium. Plate-
lets promote monocyte-endothelial interactions by expression of 
P-selectin, but can also form monocyte-platelet aggregates that fur-
ther promote recruitment. Eventually, monocytes enter the intima 

through trans-endothelial diapedesis. d Infiltrated monocytes differ-
entiate to macrophages, involving M-CSF, after which they polarize 
into various macrophage subsets (Ml, M2, M4 or MOX) that exert 
numerous effects and can become foams cells. Subset functions 
reviewed in Butcher et al. e Plaque neutrophils trap LDL in the ves-
sel wall by secretion of α-defensin that binds LDL. f Neutrophils pro-
mote Ml polarization of macrophages. g Neutrophil-derived MMPs 
and MPO-dependent oxidative stress induces apoptosis of endothelial 
cells and degradation of basement membrane, leading to endothelial 
desquamation. h Neutrophil MMPs can also degrade ECM com-
ponents affecting plaque stability. ECM extracellular matrix, MMP 
matrix metalloproteinase, MPO myeloperoxidase, LDL low-density 
lipoprotein, M-CSF macrophage colony stimulating factor, IFN inter-
feron, TNF tumor necrosis factor, OxPAPC oxidation products of 
l-palmitoyl-2-arachidonoyl-sn-glycerol-3-phosphatidylcholine, EC 
endothelial cell, HOCI hypochlorous acid, PSGL-1 P-selectin glyco-
protein ligand-1, VLA-4 very late antigen-4, VCAM-1 vascular cell 
adhesion molecule-1, LFA-1 leukocyte function-associated molecule 
1, ICAM-1 intercellular adhesion molecule, SMC smooth muscle cell
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particularly prominent at later stages of plaque development 
[35–37].

Following chemokinesis, monocytes adhere to and roll 
on endothelial cells through interaction with selectins (such 
as E- and P-selectin) [38, 39]. During rolling, monocytes 
upregulate integrins, like α4β1, leading to firm adhesion, 
arrest, and subsequent diapedesis. Within the intima, mono-
cytes secrete lipoprotein-binding proteoglycans resulting 
in increased accumulation of modified LDL, which sus-
tains inflammation [40, 41]. The endothelial cell itself also 
becomes activated and expresses chemokines and proteases, 
thereby perpetuating the inflammatory response [42–44].

Platelets can promote monocyte–endothelial cell interac-
tions by their expression of P-selectin [8]. Repeated injec-
tions of P-selectin-deficient platelets into ApoE−/− mice 
resulted in smaller lesions compared to mice injected with 
P-selectin-expressing platelets [8]. Platelet P-selectin is 
important in the formation of platelet–leukocyte aggregates, 
which promote the release of chemokines, such as CCL2, 
CCL5, and cytokines, like IL-1β, enhancing endothelial 
activation, leukocyte recruitment, rolling, and transmigra-
tion [45, 46]. In addition, platelets can deposit chemokines, 
like CCL5, on activated endothelium, which enhances 
monocyte recruitment and adhesion to the vascular wall [8].

An alternative route for inflammatory cells to enter the 
arterial wall is via the adventitia through the vasa vasorum 
[47, 48]. However, the relative contribution of this process 
to atherosclerotic plaque development and progression is 
still under debate.

Macrophages and atherosclerosis

Once in the intima, differentiation factors like macrophage 
colony-stimulating factor (M-CSF) differentiate monocytes 
into macrophages [39, 49]. Macrophages are phagocytic 
cells, but can also instruct other immune cells by producing 
various immune effector molecules and by acting as anti-
gen-presenting cells (APCs).

Osteopetrotic (op/op) mice, which are deficient in M-CSF 
and lack macrophages, are extremely resistant to athero-
sclerosis [50, 51]. CD11b-DTR mice, in which monocytes/
macrophages are selectively depleted by diphtheria toxin, 
show a profound reduction in early plaque development. 
However, when macrophages are depleted when established 
plaques have formed, the reduction in atherosclerosis is less 
clear, suggesting a more important role for macrophages in 
the initiation of atherosclerosis [52].

Foam cell formation and cholesterol efflux Once mac-
rophages start to ingest and process LDL, they acquire lipid 
droplets in their cytoplasm. When uptake exceeds efflux, 
or efflux is disturbed, lipids accumulate and macrophages 
become ‘foam cells’. Scavenger receptors SRA and CD36 

mediate LDL uptake, and gene-deletion or bone-marrow 
transplantation experiments emphasize their function in 
(ox)LDL uptake and atherosclerosis [53–56]. However, 
other studies indicate that SRA and CD36 deficiency do not 
completely abolish foam cell formation [57, 58], and there-
fore additional mechanisms, like macropinocytosis or other 
classes of scavenger receptors, may also play a role.

Once taken up, lipoproteins release entrapped choles-
terol, which downregulates the expression of LDL receptors 
and decreases endogenous cholesterol synthesis. Intracel-
lular free cholesterol undergoes re-esterification by ACAT 
(acyl-CoA cholesterol ester transferase) [39, 59], but can 
also traffic to the plasma membrane to become available 
for efflux [39, 60]. Impairment of efflux or ACAT function 
leads to cytotoxicity and macrophage death [60]. Removal 
of cholesterol from the cell occurs at the plasma membrane 
by passive diffusion or transfer to apolipoprotein A1 and 
HDL, a process involving ATP-binding cassette (ABC) 
transporters, in particular ABCA1 and ABCG1 [60]. Defi-
ciency of ABCA1 or both ABCA1 and ABCG1 in bone 
marrow-derived cells enhances atherosclerosis, and mice 
expressing the human ApoA-1 transgene, which increases 
HDL and cholesterol efflux, have reduced leukocytosis and 
atherosclerosis [60–62].
Macrophages mediate plaque inflammation Macrophages 
express a myriad of receptors including pattern recogni-
tion receptors (PRRs; e.g., TLRs, CLRs, NLRs, scavenger 
receptors) and cytokine receptors (e.g., TNFRs, interleukin  
receptors, growth factor receptors) through which they 
scan their environment for activation or polarization signals  
(e.g., PAMPs, pathogen-associated molecular patterns; 
DAMPS, danger-associated molecular patterns; cytokines; 
and growth factors) [63–66]. Upon activation, macrophages/
foam cells produce inflammatory cytokines and chemokines 
that enhance inflammation and further regulate monocyte/T 
cell infiltration [67–70]. Macrophages in the atherosclerotic 
plaque are capable of releasing a large repertoire of proin-
flammatory cytokines including IL-1, IL-6, IL-12, IL-15, 
IL-18, TNF family members (such as TNFα), and MIF, as 
well as anti-inflammatory cytokines like IL-10 and TGF-β 
family members (TGF-β1, BMPs, GDFs) [71, 72]. In par-
ticular, TLR 2 and 4 have been shown to be important stimu-
lators of macrophage cytokine production in an atheroscle-
rotic context [73–76].

Macrophage exposure to crystalline material, like cho-
lesterol crystals that form in the macrophage foam cell after 
massive uptake of (modified) lipids, but also increased oxi-
dative stress within plaques, can lead to the formation of 
an inflammasome complex affecting protein maturation and 
secretion [77]. Inflammasome formation leads to activation 
of caspase-1 that rapidly cleaves pro-IL1β and pro-IL18 into 
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their mature forms, which are both pathogenic inflammatory 
cytokines. Transplantation of Nlrp3, ASC and IL-1 (essen-
tial components of the inflammasome complex)-deficient 
bone marrow in LDLr−/− mice revealed a crucial involve-
ment of the inflammasome in atherosclerosis as both plaque 
size and serum IL-18 were significantly reduced [77].

Within the atherosclerotic plaque, sustained inflamma-
tion, growth factor deprivation, and oxidative stress accom-
panied by prolonged activation of endoplasmic reticulum 
(ER) stress pathways result in macrophage apoptosis and 
necrosis. The unfolded protein response (UPR) [78], with 
factors like C/EBP homologous protein, Ca2+/calmodulin-
dependent protein kinase II, STAT1, and NOX, plays a 
major role in this process [79–82]. Necrosis and apoptosis, 
and the subsequent defective efferocytosis of macrophage 
cell debris result in the formation of a necrotic lipid core 
within the plaque, and can induce a vulnerable plaque [83].

Besides producing inflammatory mediators, mac-
rophages, as well as SMCs and neutrophils, produce pro-
teases, such as matrixmetalloproteases, tPA, uPA, elastases, 
and cathepsins [84], capable of degrading extracellular 
matrix components. These proteases contribute signifi-
cantly to thinning of the fibrous cap, making atherosclerotic 
plaques more vulnerable to rupture.
Macrophage heterogeneity in plaques Macrophages are 
a heterogeneous population that can be divided into classi-
cally activated (M1) and alternatively activated (M2) mac-
rophages. M1 macrophages are induced by TLR ligands 
(such as LPS) or IFNγ [39]. They enhance and sustain 
inflammatory responses via production of TNFα, IL-6, 
IL-1β, and IL-12 [39], and produce killing agents like iNOS. 
Continuous M1 activation results in tissue damage and even-
tually impaired wound healing. M2 macrophages are stimu-
lated by cytokines such as IL-4 or IL-13, but also by immune 
complexes and parasitic antigens [39], and secrete IL-10 
and TGFβ. M2 macrophages promote tissue repair and heal-
ing, stimulate angiogenesis, scavenge debris, and dampen 
immune responses [85, 86]. M1/M2 macrophages can switch 
phenotype depending on their microenvironment [87].

The concept of M1 and M2 macrophages in atherosclero-
sis is not so clear-cut. Both M1 and M2 subsets are present 
in human atherosclerotic plaques [88] in all plaque stages 
[89], with M1 macrophages present at sites of plaque rup-
ture, and M2 macrophages far from the lipid core [90] and 
in the adventitia [92]. M2 macrophage foam cells contain 
smaller lipid droplets than M1 macrophages, suggesting 
less lipid uptake than M1 macrophages [90]. However, other 
reports show that ER stress promotes M2 polarization and 
that M2 macrophages contain a higher expression of SR-A 
and CD36 [91, 92]. In ApoE−/− mice, early plaques pre-
dominantly contained M2 (arginase I+) macrophages. With 
plaque progression, a phenotypic switch towards an M1 
(arginase II+) dominant profile was observed [93]. Upon 

plaque regression macrophages reduce the expression of M1 
markers (i.e. MCP-1, TNF) and exhibit more M2 markers 
(i.e. Arg I, MNR) [94]. These data indicate that the micro-
environment at later stages of atherosclerosis promotes M1 
polarization, and thus atherosclerotic plaque progression. 
Interestingly, when macrophages in ApoE−/− mice were 
polarized towards M2 by schistosoma infection, circulating 
cholesterol levels decreased and plaque size was reduced or 
not affected [95–97].

Kadl et al. [98] described a new macrophage subset, 
Mox, present in advanced murine atherosclerotic plaques. 
Mox are macrophages stimulated with oxidized phospho-
lipids and are characterized by an anti-oxidant response 
(through NRF2). They have low phagocytic and chemotac-
tic capacity, and typically express Heme oxygenase-1 (HO-
1). Whether Mox macrophages are atheroprotective needs 
further investigation. Gleissner et al. [99] introduced M4 
macrophages, being human macrophages differentiated by 
CXCL4. This subset is weakly phagocytic, and shows lower 
expression of scavenger receptors, but increased levels of 
cholesterol efflux transporters.

In conclusion, macrophages, as the most abundant cell 
type in atherosclerotic plaques, strongly affect plaque for-
mation and progression through a profound effect on intra-
plaque cholesterol homeostasis, inflammation, and necrotic 
core formation as well as extracellular matrix degradation. 
Affecting atherosclerosis on multiple levels makes mac-
rophages an interesting cell type for the development of 
therapeutic strategies.

Neutrophils

Neutrophils are among the first cell types to respond to 
invading micro-organisms or tissue damage by inducing 
rapid neutralization and clearance of pathogens via endocy-
tosis of foreign material and production of reactive oxygen 
species, myeloperoxidase (MPO), and proteolytic enzymes. 
In humans, an association between intra-plaque neutrophil 
numbers and features of unstable plaques (large lipid core, 
low collagen, and smooth muscle cell content) [100] has 
been reported. In ApoE−/− mice, neutrophils interact with 
endothelial cells and accumulate in regions of high inflam-
matory activity [101–103]. In early atherosclerotic mouse 
plaques, neutrophils localize in the sub-endothelial space, 
while in more advanced to rupture-prone plaques, they can 
be found in the shoulder region, fibrous cap, adventitia, and 
in areas of intra-plaque bleeding [101, 102, 104].

Neutrophil granule proteins and atherosclerosis

Much of the neutrophil proinflammatory activity can be 
attributed to the release of granule proteins. MPO, azuro-
cidin, LL-37, α-defensins, and NGAL have been identified 
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inside human atherosclerotic lesions [105–109] and are also 
secreted into the plasma upon neutrophil activation.

Recently, Soehnlein and colleagues [110] reported that 
Cramp−/− ApoE−/− mice had smaller plaques with reduced 
macrophage numbers compared to ApoE−/− mice. This 
effect was attributed to the lack of endothelial CRAMP 
deposition by neutrophils, resulting in reduced adhesion of 
classical monocytes and neutrophils. α-defensin, another 
granule protein, is able to trap LDL in the vessel wall, lead-
ing to the accumulation of LDL that will be oxidized and 
eventually contribute to local inflammation and plaque 
growth [111, 112].

Neutrophils also affect advanced atherosclerosis by secre-
tion and activation of different matrix metalloproteinases 
and elaborate MMP8 and a few cathepsins amongst others, 
which in turn degrade the basement membrane as well as 
components of the extracellular matrix, leading to plaque 
fragility and eventually erosion or rupture [113, 114].

In conclusion, various cell types of the innate immune 
system play important roles in both initiation and pro-
gression of atherosclerosis, either reducing or aggravating  
disease burden. However, as the local inflammation of the 
arterial wall sustains, many of the immunomodulatory 
agents secreted by innate immune cells have the capacity to 
tune or even activate adaptive immune responses, directly 
or by recruiting key players in adaptive immunity to inflam-
matory foci.

The adaptive immune system in atherosclerosis (Fig. 2)

The adaptive immune system comprises highly special-
ized cell types that respond to both microbial as well as 
non-microbial substances in a very specific way. Adap-
tive immune responses are slow, are initiated by the innate 
immune system and require antigen presentation by APCs. 
Adaptive immunity includes humoral as well as cell-medi-
ated mechanisms, which are executed by B and T lym-
phocytes respectively. Important features of the adaptive 
immune response are antigen recognition, clonal expansion 
and differentiation of lymphocytes to effector or memory 
cells. Upon exposure to a previously encountered antigen, 
the appropriate memory cells will generate faster, stronger 
and more efficient immune responses.

Dendritic cells

Dendritic cells (DCs) are professional APCs that play a 
critical role in innate, but also in regulation of adaptive, 
immune responses [9]. DCs originate from DC precursors, 
coming from the bone marrow, or from monocytes. They 
can be found in both lymphoid and non-lymphoid tissues 
throughout the body, where they form sophisticated and 

complex networks allowing them to interact with different 
lymphocyte populations. DCs provide an important link 
between innate and adaptive immune responses and play a 
critical role in host defense to pathogens and cancer, but also 
in tolerance to self and prevention of autoimmunity [9].

DC heterogeneity

The dendritic cell population is heterogeneous and can 
be divided into four major categories [115]: conventional 
DCs (cDCs), plasmacytoid DCs (pDCs), monocyte-derived 
DCs, and Langerhans cells. Conventional DCs predomi-
nate in a steady state and are specialized for antigen pro-
cessing and presentation. Two main classes of cDCs exist: 
migratory DCs (mDCs) and lymphoid tissue resident DCs 
(rDCs). mDCs are antigen sampling sentinels originating 
from early precursors in peripheral tissues, are restricted 
to lymph nodes, and cannot be found in the spleen. rDCs 
are found in lymph nodes, spleen, and thymus. They can be 
subdivided into CD4+DCs, CD8α+DCs, and CD4−CD8α− 
DCs. CD8α+ DCs are professional cross-presenting cells 
and play a major role in priming cytotoxic CD8+ T cell 
responses, whereas CD4+DCs and CD4− CD8α− DCs are 
more efficient at presenting MHC class II-associated anti-
gens to CD4+T cells. rDCs do not traffic from other tissues 
but develop from local lymphoid tissue precursor DCs.

During inflammation and in response to growth factors 
like GM-CSF or TLR4 ligands, monocytes fully differen-
tiate into monocyte-derived DCs. Similar to cDCs, these 
cells express CD11c, MHC II, CD24, and SIRPα, but also 
MAC3. Monocyte-derived DCs have an antigen-presenting 
capacity, including the ability to cross-present antigens.

Acting at the interface of innate and adaptive immu-
nity, pDCs have the unique ability to rapidly produce large 
amounts of type I interferons, but have only poor antigen-
presenting capacity. pDCs are broadly distributed over 
the body and, at least in mice, express SIGLEC-H, BST2, 
and CD45RA. Human pDCs are also CD45RA+, but also 
express BDCA-2 and LILRA4 (ILT7).
DCs and macrophages One of the major problems in stud-
ying the role of DCs in non-lymphoid tissues, and especially 
in the aorta, is that the distinction between macrophages and 
DCs is not so clear. There is little agreement about the util-
ity of specific markers for identifying distinct cell types in 
tissues. In a recent paper by Becker et al. [116], a proteomic 
approach was applied to find membrane markers specific 
for macrophages, M1 and M2 macrophages, and dendritic 
cells. Although unique membrane signatures for (M1 vs. 
M2) macrophages versus DCs could be detected, some 
frequently used markers disproved to be cell type-specific. 
One of those common markers to distinguish DCs in mice 
is CD11c [116]. In atherosclerosis, this problem is even 
more relevant, since macrophage foam cells in the plaque 
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Fig. 2  Dendritic cell functions in atherosclerosis. a Dendritic cells 
(DC) accumulate in the plaque through direct recruitment from the 
lumen, local proliferation and differentiation from either monocytes 
(preferentially Ly6Clow) or DC precursors. Recruitment of DCs from 
the plaque to the lumen is CX3CR1, CCR2 and VCAM-1 depend-
ent. b Plaque DCs take up (atherosclerosis-specific) antigens, become 
activated and mature. c DCs take up oxLDL and can become foam 
cells. OxLDL induces DC maturation, but can also trigger DC apop-
tosis that might contribute to necrotic core formation. d Mature DCs 
are professional antigen presenting cells, whether direct antigen pres-
entation occurs in the plaque is not known. e Dendritic cells can emi-
grate from the plaque into the lumen, a process that is inhibited by 
CCR7 deficiency and dyslipidemia. Dendritic cells can also emigrate 
from the plaque via lymphatics. f Emigrated DCs migrate towards 
secondary lymphoid organs (spleen and lymph nodes), where they 
present antigens to T and B lymphocytes. T cells become activated 
and clonally expand, after which they enter the blood stream and 
migrate to the plaque. After DC antigen presentation B cells divide 
and eventually differentiate into plasma cells. Plasma cells produce 

various types of immunoglobulin antibodies that affect immune 
responses. Stimulated T (and B cells) can enter the plaque where they 
exert different effector functions, either promoting or reducing ather-
osclerosis. g Dendritic cells inside the plaque can restimulate primed 
T cells entering the plaque, boosting immune responses. h Dendritic 
cells secrete several chemokines that influence leukocyte recruitment 
to the plaque. Most DC-derived chemokines, like CCL17 and CCL22, 
are involved in T cell recruitment. Dendritic cells also secrete various 
pro-inflammatory (e.g., TNFa, IFNy, IL-6, IL-12) and anti-inflamma-
tory (e.g., IL-10) cytokines that either stimulate or dampen immune 
responses. i DC antigen presentation and cytokine production directly 
activate various B and T cell subsets that all affect atherosclerosis 
in specific ways. j DCs also contribute to the formation of arterial 
tertiary lymphoid organs (ATLOs), that affect plaque development 
remotely. MMP matrix metalloproteinase, LDL low-density lipopro-
tein, EC endothelial cell, VCAM-1 vascular cell adhesion molecule-1, 
pre-DC DC precursor, Ig immunoglobulin, SMC smooth muscle cell, 
Mcj macrophage, MHC major histocompatibility, TGF transforming 
growth factor
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and lipid-filled DCs, both show an abundant expression of 
CD11c [117]. However, macrophages and DCs also have 
unique membrane expression profiles, morphological dif-
ferent features, and exert specific functions, and are there-
fore truly different cell types.

DCs in atherosclerosis

Although DCs were discovered in 1973 by Steinman and 
Cohn [118], it took until 1995 before DCs were described 
in the aorta [119]. Few DCs are present in the normal aorta 
of healthy mice, where they preferentially reside in the 
adventitia, apart from a few scattered intimal DCs [120]. 
DCs are mainly found at sites prone to develop atheroscle-
rosis, such as the lesser curvature and branch points of the 
aortic arch [121, 122]. CD11c+ DC numbers dramatically 
increase in both intima and adventitia during atheroscle-
rosis [123–125]. In advanced lesions, DCs cluster with T 
cells and localize in the plaque shoulder and rupture-prone 
regions of plaques [121, 126, 127]. In patients with angina 
pectoris or acute myocardial infarction, blood-derived DC 
precursors are reduced, while in CAD patients blood DC 
numbers are down, which might be explained by increased 
recruitment to plaques [128–130].

Dendritic cells are central to atherogenesis as they are 
directly implicated in both cholesterol homeostasis and the 
immune response. Selective ablation of DCs or extension of 
their lifespan were found to result in an increase or decrease 
in plasma cholesterol levels, respectively [131]. However, 
increasing DC lifespan did not affect atherosclerosis pro-
gression since the protective effects of cholesterol lowering 
were counterbalanced by enhanced Th1- and Th17-medi-
ated autoantibody responses. Transfer of DCs pulsed with 
atherosclerosis-specific antigens results in either protection 
or aggravation of atherosclerosis depending on environmen-
tal signals during DC pulsing and the animal model used 
[132, 133]. Moreover, vaccination strategies with oxLDL-
pulsed DCs before atherosclerosis induction showed a 
promising reduction in plaque size and overall amelioration 
of immune–inflammatory responses [134].

Two papers were published recently showing oppos-
ing roles for pDCs in atherosclerosis. Daissormont et al. 
[135] reported a protective role for pDCs, as depletion of 
these cells in LDLr−/− mice using an anti-PDCA-1 anti-
body resulted in enhanced T cell accumulation and CD4+ 
T cell activation and exacerbation of plaque development. 
In the ApoE−/− mouse, Döring [136] as well as Macritchie 
et al. [137] recently observed decreases in early plaque for-
mation upon treatment with an antibody against PDCA-1, 
an effect that was attributed to a TLR9-dependent IFNα 
release upon pDC activation by the neutrophil-derived 
DNA/CRAMP complexes [136]. These divergent findings 
might be explained by the different methodologies used, 

such as the kind of depletion antibodies and administration 
regimens.

DC accumulation in plaques DC accumulation in plaques 
can result from three different events: direct recruitment, 
local proliferation, and/or impaired egress. Different 
immune cells in the aorta can attract preDCs and mono-
cytes by expression and secretion of different receptors 
and cytokines. Absence of CX3CR1, CCR2, or VCAM-1 
reduces atherosclerosis not only by an effect on monocyte 
recruitment but also correlates with decreased DC accu-
mulation [27, 125, 138, 139]. Accumulation of DCs in the 
arterial wall can also be influenced by interactions with 
platelets, for example, through P-selectin for rolling and 
mac1 for firm adhesion [8]. DCs might predominantly dif-
ferentiate from Ly6Clow monocytes that act as precursors 
for inflammatory DCs [22]. Recruited or resident DCs can 
proliferate locally, as was recently demonstrated in the aorta 
and secondary lymphoid organs [140, 141], contributing to 
increased numbers of DCs. In early atherosclerotic lesions, 
monocyte-derived DCs can emigrate from lesions; however, 
in hyperlipidemic mice, the egress from developed plaques 
might be impaired [142, 143].

DCs and lipid uptake In addition to macrophages, DCs 
can accumulate lipids and contribute to disease initiation 
and progression [144]. After only a few days of high fat diet 
feeding, lipid-loaded CD11c+ DCs can be detected in the 
aorta of LDLr−/− mice. OxLDL promotes differentiation of 
macrophages into DCs [145]. Uptake of lipids induces DC 
maturation markers and enhances antigen presentation to 
NKT and T cells [146], but does not affect the antigen-pre-
senting capacity of monocyte-derived macrophages [142], 
and impairs CD40- or TLR-induced dendritic cell matura-
tion [147].

DCs and antigen presentation In atherosclerotic plaques, 
T cells are found in close proximity with DCs, implying 
DC–T cell interactions [127, 148]. Several studies have indi-
cated that oxLDL induces several changes that are charac-
teristic for DC maturation, including enhanced expression of 
co-stimulatory molecules and increased ability to stimulate 
T cells [146, 149]. Moreover, deficiency of co-stimulatory 
molecules involved in antigen loading, immunological syn-
apse formation, and T cell activation (CD80, CD86, CD40) 
all led to reduced atherosclerosis [150, 151]. Several stud-
ies using DC transfer, depletion, or modulation, have indi-
cated that DCs are capable of skewing immune responses 
in atherosclerosis either towards an athero-protective or 
-promoting profile [131–134]. It is likely that, under athero-
sclerotic conditions, DCs take up atherosclerosis-specific 
antigens [152], become locally activated, and migrate out 
of the plaque towards either local draining or distant lymph 
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nodes, where they induce T cell activation and prolifera-
tion. Indeed, DCs sorted from the aorta have the capacity 
to induce antigen-specific proliferation of T cells [122, 124, 
153]. Moreover, aortic DC were reported to take up injected 
OVA from the blood, cross-present it to CD8+ TCR trans-
genic OT-I T cells, and subsequently induce OT-I T cell pro-
liferation after isolation [122], while another study showed 
that OVA-loaded bone marrow-derived DCs induced OT-I 
T cell proliferation in the adventitia of OT-I Rag2−/− mice 
[123]. It is also possible that T cells, originally primed in 
secondary lymphoid organs, migrate into the plaque to be 
re-stimulated by DCs locally, which may be more important 
at later stages of atherosclerosis where DC egress is reduced 
[154]. Overall, these processes perpetuate local inflamma-
tion and increase plaque growth.

DCs and cytokine production Dendritic cells have the abil-
ity to produce various anti- and pro-inflammatory cytokines. 
TLR engagement, for example, can lead to the production 
of pro-inflammatory cytokines, including TNF, IL-6, and 
IL-12, all of which have been shown to be atherogenic [152, 
155–160], but TLR induction can also lead to IL-10 produc-
tion, which is atheroprotective [161]. IL12p40−/−ApoE−/− 
mice have smaller lesions [157], whereas recombinant IL-12 
injection increases lesion size [158]. IL-12 affects athero-
sclerosis by driving Th1 polarization and T cell recruitment 
[160]. Dendritic cells also produce many other cytokines, 
like IL-23 or IL-27, for which the role in atherosclero-
sis remains unclear [162]. pDCs typically produce high 
amounts of IFNα and β upon TLR9 activation, of which the 
latter has been shown to promote atherosclerosis by stimula-
tion of macrophage recruitment [163].

Some cytokines produced by DCs in an atheroscle-
rotic environment are chemokines that influence immune 
cell recruitment into the lesion. Most DC chemokines are 
involved in T cell recruitment. For example, CCL17 (TARC) 
and CCL22 (MDC) [164] are expressed in the plaque 
and attract T cells by interaction with the CCR4 receptor. 
Recently, Weber et al. [124] described CCL17-expressing 
cDCs in the aorta of ApoE−/− mice. These cells arev associ-
ated with T cell recruitment; however, Treg accumulation 
was decreased combined with restrained Treg homeostasis 
in lymph nodes, contributing to atherosclerosis. Secretion 
of CCL2 by DCs was shown to play a role in the recruit-
ment of monocytes, memory T cells, and DCs to the site of 
inflammation [165]. In addition, DCs also produce CCL4 
that attracts NK cells, monocytes, and some other immune 
cells [166].

DCs and tolerance

Under homeostatic conditions, DCs are known to have a 
tolerogenic effect [167]. In the normal artery wall, resident 

DCs are thought to promote tolerance to antigen by silenc-
ing T cells. However, the inflammatory atherosclerotic 
microenvionment can activate DCs to switch from tolerance 
to activation of the immune system [168, 169]. Interestingly, 
Hermansson et al. [133] recently showed that this switch 
can be reversed, as injection of DCs pulsed with ApoB100 
in the presence of the immunosuppressive cytokine IL-10 
conferred protection against atherosclerosis in ApoB100t-

gLDLr−/− mice. Therefore, inducing tolerance to athero-
sclerosis-specific antigens might be a promising therapeutic 
target for the treatment of atherosclerosis.

In conclusion, dendritic cells influence atherosclerosis 
by production of chemokines and cytokines, antigen pres-
entation, and lipid uptake either promoting inflammation 
or inducing tolerance. However, the exact role of dendritic 
cells in directing different T and B cell subsets during ath-
erosclerosis is not yet fully understood.

T cells

T cells are lymphocytes that are characterized by the pres-
ence of a T cell receptor (TCR) on their cell surface. They 
originate from hematopoietic stem cells in the bone marrow 
that give rise to progenitors which migrate to the thymus for 
further development, maturation, and selection to become 
T cells. After maturation, T cells are released from the thy-
mus and are present in the blood and lymph nodes, where 
they play a central role in adaptive immunity. However, sub-
sets of T cells, such as the CD4+ T cells, also exert innate 
immune cell functions by activating various innate immune 
cells and helping macrophages to kill intracellular patho-
gens [170]. When T cells encounter an antigen-presenting 
cell (APC) that presents a peptide specific for their TCR, an 
efficient T cell response can be initiated.

T cells were first detected in human plaques in 1985 
[171], followed by the observations that HLA/MHCII and 
T cell cytokines, such as IFNγ, were also present. The 
detection of antibodies and T cells specific for oxLDL, 
combined with the presence of oligoclonal T cell popula-
tions in lesions, confirmed a role for adaptive immunity 
in atherosclerosis [171–176]. Rag2−/−ApoE−/− mice that 
were fed a normal chow diet showed a decrease in athero-
sclerosis. However, when fed a high cholesterol diet, the 
effects were less clear [177]. Similar results were obtained 
in the LDLR−/− model. When fed a Western-type diet for 
a short period, Rag1−/−LDLR−/− mice showed a decrease 
in atherosclerosis. However, when the diet was prolonged 
for 12 or 16 weeks, the effects were negligible [178]. In a 
different study, where 2 strains of Rag2−/−LDLR−/− mice 
were fed a ‘milk fat’ or Western-type diet for 12 weeks, 
Rag2−/−LDLR−/− that were 93 or 96 % backcrossed to 
C57Bl6 mice showed a significant reduction in athero-
sclerosis in the aortic sinus. However, in the innominate 



3856 B. Legein et al.

1 3

artery, only the Rag2−/−LDLR−/− mice that were 93 % on a 
C57Bl6 background, showed a reduction in atherosclerosis 
[179]. These somewhat ambivalent data show that lack of T 
and B cells decreases atherosclerosis, but that this effect is 
dependent on diet (duration), the site of the arterial tree, and 
the genetic background.

T cells are recruited to the vessel wall in parallel with 
macrophages, but in less quantity. Mechanisms involved are 
similar to monocyte recruitment [180]. In the arterial wall, 
T cells become activated in response to antigens and start 
to produce pro-inflammatory mediators (e.g., IFNγ), which 
further amplify the inflammatory response, aggravating dis-
ease progression [180, 181]. Different T cell subsets exist 
that can influence atherosclerosis in various ways, both at 
early plaque stages as well as advanced lesions. CD4+ T 
cells and to a lesser extent CD8+ and γδ T cells are pre-
sent in plaques of atherosclerotic mice. Knockout depleting 
antibodies and cell transfer experiments suggest an overall 
pro-atherogenic role for CD4+ T cells starting early during 
atherosclerotic disease progression [182–184]. However, in 
one report, CD4−/−ApoE−/− females exhibited an increased 
load of atherosclerosis, predominantly at the lower aorta 
[11]. This increase could be due to the absence of CD4+ 
Tregs and a compensatory increase in CD8+ cells in this 
mouse model [11]. The role of CD8+ T cells in atherogen-
esis is still controversial [185, 186].

Classically, T cell responses are initiated by APCs (DCs, 
macrophages, and B cells), but can also be antigen-inde-
pendent. After antigen presentation, T cell activation occurs 
through simultaneous engagement of the TCR with peptide 
antigen on MHC class complexes and co-stimulatory mol-
ecules with their ligands. In atherosclerosis, the antigen that 
triggers the immune response and induces T cell prolifera-
tion and polarization is still not completely identified. How-
ever, recent evidence points towards atherosclerosis-specific 
antigens such as (the ApoB100 part of) LDL, and postulate 
that intimal DCs present these in draining or even distant 
lymph nodes [126, 187]. As the plaque itself contains classi-
cal as well as non-classical APCs (e.g., SMCs and endothe-
lial cells), effector T cells immigrating into the lesion can 
be (re)activated by antigen presentation inside lesions [171, 
172, 187]. In line with this, oligoclonal T cell populations 
have been identified inside the plaque [176, 188, 189].

CD4+ T cell subsets in atherosclerosis

Th1 response in atherosclerosis The majority of T cells 
in atherosclerosis are of the Th1 profile, characterized by 
the production of high levels of IFNγ. IFNγ promotes the 
recruitment of T cells and macrophages to the plaques con-
tributing to plaque growth, augments macrophage uptake 
of lipids leading to the formation of foam cells, increases 
the activation of APCs, enhances their MHC II expression, 

and enhances the secretion of Th1-promoting cytokines [67, 
190, 191]. These events lead to an expansion of atheroscle-
rotic plaque burden and perpetuation of the pathogenic Th1 
response. IFNγ also contributes to plaque vulnerability and 
rupture by inhibition of SMC infiltration, proliferation, and 
collagen production, but also by increasing the production 
of matrix metalloproteinases [67, 192–194]. Studies delet-
ing IFNγ or its receptors report reduced atherosclerosis, 
while injection of recombinant IFNγ leads to increased 
lesion size [195–198]. Besides their role in T cell activation 
by antigen presentation, DCs and macrophages are instru-
mental in Th1 differentiation through secretion of IL-12. 
IL-12 activates Th1 transcription factors (such as STAT4 
and T-bet) and upregulates IFNγ expression, while down-
regulating IL-4 and IL-5 in T cells. Patients with coronary 
artery disease (CAD) show increased STAT4 levels in CD4+ 
T lymphocytes [199]. Moreover, a study on cytokine expres-
sion in advanced human atherosclerotic plaques confirmed 
the dominance of pro-inflammatory Th1 cytokines [200]. In 
addition, Zhao et al. [201] reported Th1 and Th17 activation 
in patients with CAD. Intervention in IL-12 or IL-18 gene or 
receptor function was found to reduce plaque development 
in mice, while administration of these cytokines accelerated 
disease progression, suggesting atherosclerosis is affected 
by an imbalance in T cell subsets [157, 158, 202–206]. Col-
lectively, these data point towards a pro-atherogenic func-
tion of Th1 responses.

Th2 response in atherosclerosis Th2 cells secrete IL-4, 
IL-5, IL-10, and IL-13 and provide help for antibody pro-
duction by B cells [207]. Th2 cells are rare in atherosclerotic  
lesions, although their number is increased in hyperlipi-
demia. IL-4 drives Th2 cell differentiation by activation of 
the transcription factor GATA3 (through STAT6), leading 
to an increase in IL-4 and IL-5 production and a decrease 
in IFNγ [207]. Th2 cells were thought to be atheroprotec-
tive as they oppose the pro-atherogenic Th1 differentiation. 
However, the role of Th2 cells in atherosclerosis is still con-
troversial and depends on the site and stage of the lesions as 
well as on the experimental model used. Studies on IL-4, the 
prototypic Th2 cytokine, report either no (in ApoE−/− mice 
given angiotensin II) [208] or pro-atherogenic (in LDLR−/− 
mice) effects [209]. Possible pro-atherogenic effects of IL-4 
might include activation of mast cells. Administration of 
IL-13, another prominent Th2 cytokine favorably affects 
atherosclerotic plaque morphology by reducing plaque 
inflammation and inducing plaque fibrosis in LDLR−/− 
mice, and inducing a protective M2 macrophage phenotype 
[210]. Accordingly, IL13−/−LDLR−/− mice have acceler-
ated atherosclerosis [210]. IL-5 and IL-33 appear to exhibit 
overt anti-atherogenic properties [211, 212]. IL-5 protects 
against atherosclerosis by promoting B-1 cell development 
and, ensuing production of protective antibodies [213], 
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while IL-33 may at least in part exert its effect through 
induction of IL-5 [211].

Treg response in atherosclerosis Natural regulatory T cells 
(Tregs) are characterized by expression of CD4, CD25, and 
the transcription factor FoxP3. Tregs maintain self-toler-
ance and prevent autoimmunity by suppression of immune 
responses, such as Th1 and Th2 responses. Natural Tregs 
(Th3) develop in the thymus and recognize specific self-
antigens. However, Treg cells can also be generated in the 
periphery in the presence of TGFβ or IL-10, the so-called 
induced Tregs (iTregs, Tr3).

Regulatory T cells are present in plaques [214, 215], and 
depletion using anti-CD25 antibodies in atherosclerotic 
mice results in increased lesion size [216]. Furthermore, 
transfer of bone marrow cells from CD80−/−CD86−/− or 
CD28−/− mice (which do not contain T regs) in LDLr−/− 
mice resulted in increased lesion size, whereas transfer of 
Tr1 cells, regulatory T cells that produce high levels of IL-10 
and low levels of TGFβ, or natural CD4+CD25+ Tregs, sig-
nificantly reduced atherosclerosis [216, 217], showing a 
protective role for regulatory T cells in atherosclerosis.

Regulatory T cells are known to produce large amounts 
of TGFβ and IL-10. Although TGFβ has an atheroprotective 
role [216], it is not clear whether Tregs exert their protec-
tive function directly through secretion of TGFβ or through 
other immunosuppressive mechanisms [218, 219]. Inter-
estingly, DCs are able to induce Treg formation and play a 
role in the maintenance of Treg function through production 
of TGFβ [220, 221]. Production of IL-10 by regulatory T 
cells may also contribute to their athero-protective effects, 
as IL-10 has been shown to repress atherosclerotic develop-
ment [222, 223].

Regulatory T cells play an important role in the devel-
opment of atherosclerosis by repressing immune function 
and provide an interesting target for the modulation of the 
disease.
Th17 cells IL-17-producing helper T cells (Th17 cells) are 
protective against fungal and bacterial infections, but are 
also involved in the development of some autoimmune dis-
eases [224]. Th17 cells mainly produce IL-17A and IL-17F 
as well as IL-21 and IL-22. In mice, both TGFβ and IL-6 
are necessary for Th17 differentiation [225], whereas IL-21 
and IL-23 are, respectively, required for Th17 proliferation 
and maintenance.

Although Th17 cells are present in both murine and 
human atherosclerotic lesions [226–228], their role remains 
controversial, as both atherogenic as well as atheroprotec-
tive effects have been reported. Both Th17 cells and IL-17 
protein accumulate in lesions. Increased IL-17 expression 
in human lesions has been associated with lower mac-
rophage numbers, higher SMC content, and an overall more 

fibrotic phenotype, suggesting that IL-17 promotes plaque 
stability [229]. However, others report increased IL-17 
mRNA expression in symptomatic plaques compared to 
non-symptomatic ones, with a correlation between IL-17 
expression and complicated, unstable, and lipid-rich lesions 
[227]. Many studies have interfered with IL-17 signaling 
in atherosclerosis [226, 230–232]: transplantation of IL17 
receptor-deficient bone marrow into LDLr−/− mice, as well 
as antibody treatment against IL17A reduced plaque size 
[226, 231, 232]. IL17A−/−ApoE−/− mice show a profound 
reduction in atherosclerosis, and a decreased recruitment 
of immune cells in the aortic arch region, but not in the 
abdominal aorta, suggesting a site-specific effect [233]. In 
contrast, Taleb et al. [234] found a protective role for Th17 
cells in atherosclerosis by using T cell-specific SOCS3 dele-
tion in LDLr−/− mice. A suppressor of cytokine signaling 3 
(SOCS3) is a major negative feedback regulator of STAT3, 
a transcription factor crucial for Th17 differentiation. In 
this same study, administration of an anti-IL17A antibody 
accelerated atherosclerosis, indicating that Th17 cells may 
be protective [236].

The interplay and imbalances between the different T cell 
subsets are important in the pathogenesis of atherosclerosis. 
An imbalance in Th1/Th2 towards the Th1 response pro-
motes the progression of atherosclerosis, whereas promi-
nent Th2 and Treg responses are anti-inflammatory and 
result in a reduction of atherosclerosis and/or a more favora-
ble plaque morphology. How Th17 cells affect atherogen-
esis still needs to be determined.

CD8+ T cells in atherosclerosis

CD8+ T cells are important in cell-mediated immunity, 
capable of inducing death in infected or dysfunctional 
somatic cells. CD8+ T cells express T cell receptors that 
recognize specific antigens presented on MHC class I mol-
ecules, present on all nucleated cells. As MHCI molecules 
mainly present cytosolic peptides, this represents an effec-
tive mechanism for clearing viruses and other intracellular 
pathogens. Once activated, CD8+ T cells induce apoptosis 
in their target cells by releasing cytotoxins, like perforin, 
granzymes, and granulysin. However, CD8+ T cells also 
secrete cytokines such as IFNγ and TNFα.

CD8+ T cells are present in both murine and human 
plaques [235, 236]. Although CD8+ T cells are only pre-
sent in low numbers in early lesions, they appear to be the 
dominating T cell type in advanced human lesions [236]. 
While no effects on plaque size are observed in CD8+T cell-
deficient ApoE−/− mice, atherosclerosis is reduced in MHC 
class I-deficient C57Bl/6 mice on a high-fat diet. In addi-
tion, stimulation of CD8+ T cells responses with a CD137 
agonist resulted in increased lesion size accompanied by 
enhanced CD8+ T cell recruitment to the lesions, suggesting 



3858 B. Legein et al.

1 3

a proatherogenic role for this T cell subset [186]. Kolbus et al.  
[237] recently reported activation of CD8+ T cells after 
feeding ApoE−/− mice a high-fat diet. Interestingly, these 
cells were detected in plaque-draining lymph nodes and pre-
ceded CD4+ T cell activation, suggesting a role for CD8+ T 
cells in early atherogenesis.

NKT cells in atherosclerosis

Unlike conventional T cells, which recognize peptide anti-
gens presented by MHC molecules, NKT cells recognize a 
variety of (glyco)lipid antigens presented by a unique TCR 
on CD1d molecules APCs. Upon activation, NKT cells 
secrete both pro-inflammatory cytokines, such as IFN, and 
anti-inflammatory cytokines, like IL-4, IL-10, and IL-13 
[238]. Activated NKT cells can interact in a CD1d-dependent  
manner with other immune cells, promoting DC maturation 
and monocyte activation [238], and can induce tolerance by 
communicating with Tregs [239].

NKT cells are present in the shoulder region of human 
carotid artery plaques, and in abdominal aortic aneurysms 
[240]. Both CD1d−/− mice (lacking NKT cells) on a high-
fat diet or CD1d−/− mice on ApoE−/−background show 
decreased atherosclerosis [241–243]. Moreover, repeated 
exogenous activation of NKT cells by α-GalCer in ApoE−/− 
mice, or adoptive transfer of unstimulated NKT cells in 
Rag1−/−LDLR−/− mice, aggravate atherosclerosis [241–
244]. Other studies have shown that invariant V alpha 14 
NKT cells are responsible for increasing early plaque for-
mation [245], that the CD4+NKT cell subset is responsible 
for the pro-atherogenic activity of NKT cells [246], and that 
the contribution of NKT cells in atherosclerosis is restricted 
to early lesion development [247].

B cells

B cells originate from the bone marrow and play an impor-
tant role in humoral immune responses. They are character-
ized by the presence of a B cell receptor and are classically 
known for their ability to produce antibodies important for 
the clearance of antigens. B cells possess antigen-present-
ing capacities, activating both CD4+ and CD8+ T cells. In 
addition, they can also secrete a variety of cytokines (e.g., 
IFN-γ, IL-2, IL-12, IL-4, IL-6, and IL-10) and promote 
chemokine production (e.g., CXCL12, CXCL13, CCL19, 
and CCL21), key players in modulating chronic immune 
responses by promoting leukocyte recruitment and polariz-
ing T cells [248, 249].

According to their surface antigens, mature B cells can 
be categorized into B1, conventional B2, or marginal zone B 
cells [248]. B1 cells reside in serosal cavities and participate 
in innate immunity by T cell-independent production of the 
majority of natural IgM antibodies. Conventional B2 cells 

are present in bone marrow and lymphoid organs and are 
the B cells important in adaptive immunity by production of 
specific IgG antibodies to their cognate antigen. Marginal 
zone B cells can be found in the spleen, where they play a 
role in the first-line defense against blood-borne antigens. 
Upon antigen recognition, all mature B cells can differenti-
ate into plasma cells. However, only B2 cells have the abil-
ity to become memory B cells.

Although B cells are only occasionally detected in the 
atherosclerotic intima [250], early plaques contain large 
amounts of IgM and IgG [251]. Furthermore, both IgM and 
IgG antibodies have been described in plaques at all stages 
of lesion development [252].

Recent studies have evaluated the role of B cells in the 
immune response during atherosclerosis. Splenectomy in 
mice resulted in larger plaques, which could be prevented 
by adoptive transfer of unfractionated splenic B cells [253]. 
Furthermore, transfer of B cell-deficient bone marrow 
(μMT) into LDLr−/− mice resulted in increased lesion size 
in parallel with reduced antigen presentation and antibody 
and cytokine production in both early and late atherosclero-
sis [254]. These data indicate that atheroprotective immu-
nity develops during atherosclerosis progression with B 
cells playing a beneficial role. Paradoxically, some studies 
have also reported detrimental effects for B cells. CD20-
targeted B cell depletion in mouse models of atherosclerosis 
reduced lesion size [255, 256]. Furthermore, deficiency or 
adoptive transfer of B2 B cells revealed this B cell subtype 
to be pro-atherogenic [257]. These findings not only imply 
that B cells have both pro and anti-atherogenic roles in ath-
erosclerosis but also indicate that different B cell subtypes 
are involved in atherosclerosis immunity, complicating the 
role of B cells in the disease. However, these studies do not 
discriminate between cellular B cell functions and produc-
tion of antibodies.

OxLDL is highly immunogenic, and anti-oxLDL anti-
bodies can be detected in atherosclerotic plaques as well 
as in the circulation of mice and men [258, 259]. OxLDL-
specific antibody IgG titers correlate with atherosclerosis 
[260–262], while oxLDL-specific IgM titers are associ-
ated with atheroprotection [263, 264]. Accordingly, Binder 
et al. [265] showed that pneumococcal vaccination of 
LDLr−/− mice reduced atherosclerosis by expanding T15 
(anti-oxLDL) natural IgM antibodies. In addition, the same 
group indicated that the atheroprotective effect seen after 
immunization with MDA-LDL was due to increased T15 
antibody titers that resulted from IL-5 production by Th2 
T cells [212]. This was confirmed as a deficiency in bone 
marrow IL-5, a cytokine important in non-cognate matura-
tion and Ig secretion of B1 cells, which reduces oxLDL-
reactive IgM levels and accelerates atherosclerosis [212]. In 
addition, Lewis et al. [266] reported a dramatic increase in 
atherosclerosis in mice lacking IgM in their serum, again 
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supporting a protective role for IgM in atherosclerosis. 
Similar conclusions were drawn from some well-powered 
human clinical studies [260, 267, 268]. IgM antibodies are 
therefore considered anti-atherogenic, while antigen-driven 
IgG responses are considered to be pro-atherogenic.

As with T cells, the B cell population also contains B cell 
subsets capable of dampening immune responses. These 
regulatory B cells modulate the immune response through 
mechanisms similar to T cells, via secretion of IL-10 and 
TGFβ [269], or via their Ag-presentation ability or inter-
actions with other immune cells via their secretion of Abs 
[269]. This way, regulatory B cells might suppress both Th1 
and Th2 polarization and reduce antigen presentation and 
pro-inflammatory cytokine production by dendritic cells 
and macrophages. Regulatory B cells may act on athero-
sclerotic lesions either remotely (LNs or ATLOs) or within 
lesions. However, their functions and impact on atheroscle-
rosis remains to be investigated.

In conclusion, we can state that B cell subtypes, exerting 
both pro and anti-atherogenic effects, are important in ather-
osclerosis and provide some interesting therapeutic options. 
However, there is still much to learn about B cell subsets 
and their mechanisms influencing atherosclerosis.

Costimulatory/coinhibitory interactions

The interaction between the different immune cells, and the 
(consequent) secretion of immune-regulatory and activating 
cytokines and chemokines determines the progression of 
atherosclerosis.

Key players in modulating these complex immune inter-
actions and responses are the group of co-stimulatory and 
co-inhibitory molecules belonging to the CD28/B7 family 
and the tumor necrosis factor (TNF)/TNF-receptor family. 
Classically, co-stimulatory molecules provide the signal for 
proliferation and polarization of T cells and thereby also 
regulate the phenotype of the APC upon interaction of a T 
cell (TCR) with an antigen-presenting cell (MHCII/HLA). 
However, expression of co-stimulatory molecules is ubiqui-
tous, and we know now that most of them are not only pre-
sent on the majority of immune cells but also on platelets, 
endothelial cells, and vascular smooth muscle cells where 
they regulate inflammation [270].

In atherosclerosis, co-stimulatory molecules play a major, 
but diverse, role in atherosclerosis [270]. In the B7/CD28 
family, genetic deficiency or inhibition of B7-1, B7-2, ICOS, 
and PD-L1/2 affected atherosclerosis. Deficiency of B7-1 
and B7-2 in LDLR−/− mice has been shown to inhibit early 
atherosclerotic lesion development, and reduce the amount 
of MHCII expression in atherosclerotic plaques, and their 
CD4+ T cells produced less IFNγ [151]. However, different 
results were obtained when B7-1/B7-2−/− or CD28−/− bone 

marrow was given to irradiated LDLR−/− mice. These chi-
meric mice developed more atherosclerosis, and this was 
attributed to their impaired Treg development [271]. Simi-
lar contradictory results were obtained by studying inhibi-
tion of ICOS, a positive co-stimulatory molecule for CD4+ 
cells. Instead of the expected reduction in atherosclerosis, 
both immunization with ICOS and bone marrow transplan-
tation of ICOS−/− bone marrow into LDLR−/− mice showed 
an aggravation of atherosclerosis, which was also due to an 
impaired Treg function [272, 273]. Moreover, deficiency of 
PD-PD-L1/2 interactions, a co-inhibitory dyad, aggravated 
atherosclerosis, and induced a pro-inflammatory plaque 
phenotype [274]. These studies with sometimes opposing 
results illustrate the complexity of co-stimulatory and co-
inhibitory pathways which can influence functions of both 
pro-inflammatory effector T cells and Treg suppression.

For the TNF and TNF-R family members, the results are 
more consistent. Inhibition of Ox40-Ox40L signaling results 
in an impaired atherosclerosis development, while mice 
over-expressing Ox40L have accelerated atherosclerosis 
[275, 276]. The same is true for CD137-CD137L (4-1BB/4-
1BBL), where treatment with an agonistic CD137 antibody 
results in accelerated atherosclerosis and the development 
of an inflammatory, vulnerable plaque phenotype [186].

One of the most elaborately studied co-stimulatory mol-
ecules in atherosclerosis is the CD40L-CD40 dyad. Inhibi-
tion of CD40L not only decreased atherosclerotic plaque 
burden but also induced plaques with a beneficial plaque 
phenotype that were rich in collagen and only contained a 
limited amount of immune cells [277, 278]. Blocking of 
CD40L when atherosclerotic plaques had established was 
even capable of transforming vulnerable plaques with a high 
level of inflammation and a low level of collagen towards 
the inflammatory-poor beneficial plaque phenotype [279, 
280]. CD40L antagonists are therefore known as the most 
potent plaque reducers and plaque stabilizers in a laboratory 
setting. For CD40, the results are somewhat divergent. In 
one study, CD40−/−ApoE−/− mice, as well as the CD40−/− 
bone marrow chimeras, showed a clear decrease in athero-
sclerosis [281], while in another study, CD40−/−LDLr−/− 
mice showed no reduction in atherosclerosis [282].

The actions of CD40 and CD40L are rather cell type-
specific. Bone marrow transplantation of CD40−/−, but not 
CD40L−/− bone marrow results in a decrease in atheroscle-
rosis, suggesting that bone marrow-derived CD40, but not 
CD40L, is crucial in atherosclerosis [281, 283, 284]. Trans-
fer of CD40L−/− platelets prevented the platelet-induced 
increased in atherosclerosis, by impairing leukocyte–platelet 
interactions and inducing a transient increase in Tregs [285].

Interestingly, different cell type-specific CD40 signal 
transduction pathways tightly regulate atherosclerosis. 
CD40 does not have intrinsic signal capabilities, but needs 
adaptor molecules, the TNF-receptor associated factors 
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(TRAFs), to exert signaling. By using CD40−/− mice that 
carried chimeric human/murine CD40 transgenes with muta-
tions in the TRAF2/3/5 or TRAF6 binding domains or both 
under MHCII, we found that mice deficient in the CD40–
TRAF2/3/5 binding site develop normal atherosclerosis and 
have more CD4+ effector T cells, but also more regulatory 
T cells. Mice deficient in CD40–TRAF6 interactions hardly 
develop any atherosclerosis and their plaques contain only 
few inflammatory cells [281], which is also true for neoin-
tima formation [286]. Systemically, the different CD40-
TRAF interactions induce several immunological patterns 
in blood, spleen, and lymph nodes. A deficiency of CD40–
TRAF6 interactions results in low numbers of CD4+ effector 
T cells and pDCs, and a switch towards Ly6Clow monocytes 
and an M2 macrophage phenotype, whereas a deficiency of 
CD40–TRAF2/3/5 interactions induces increased Treg num-
bers and a change in DC phenotype [281].

The family of co-stimulatory molecules is very powerful 
in mediating immune cell interactions and immune cell phe-
notypes in atherosclerosis. However, most of the actions of 
co-stimulatory molecules are cell type-specific, and depend-
ent on a variety of signaling pathways. Although the first 
pathways of co-stimulation in atherosclerosis have been 
unraveled, many more of these pathways will be discovered 
in the upcoming years.

Conclusions

Over the past few years, new immune cell subsets, among 
which are several that have immune-modulating proper-
ties, have been discovered to play an important role in 
atherosclerosis.

Skewing the vascular immune response towards an anti-
inflammatory profile would be beneficial for patients suffer-
ing from atherosclerosis, and immune-based cell therapies 
are therefore of interest. Dendritic cells, as potent regula-
tors of immune responses, represent an important cell type 
in this view. Several studies using vaccination strategies in 
animals already show promising results for such techniques. 
M2 macrophages, regulatory T and B cells and B1 cells 
are other cell types with an immune regulatory function, 
which should be exploited as potential therapy options for 
atherosclerosis.

A major challenge is to tweak immune responses to avoid 
compromising the patient’s host defense. An interesting 
therapeutic option is therefore modulation of the immune 
system by co-stimulatory molecules.

However, the precise functions, and the interactions of 
these immune(modulatory) cells with other immune cells 
within the plaque, still need to be unraveled. Only then will 
we be successful in developing immunemodulatory strate-
gies to treat atherosclerosis safely and effectively.
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