Skip to main content

Advertisement

Log in

Regulation and function of IL-17A- and IL-22-producing γδ T cells

  • Multi-author review
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

The regulation of IL-17A and IL-22 production differs between human and murine γδ T cells. We find that human γδ T cells expressing Vγ2Vδ2 T cell receptors are peripherally polarized to produce IL-17A or IL-22, much like CD4 αβ Th17 T cells. This requires IL-6, IL-1β, and TGF-β, whereas expansion and maintenance requires IL-23, IL-1β, and TGF-β. In contrast, IL-17A and IL-22 production by murine γδ T cells is innately programmed during thymic ontogeny but requires IL-23 and IL-1β for maintenance. Murine γδ cells producing IL-17A and IL-22 play important roles in microbial, autoimmune, and inflammatory responses. However, the roles played by human IL-17A- and IL-22-producing γδ T cells are less clear but are also likely to be important. These observations highlight differences between humans and murine γδ T cells and underscore the importance of IL-17A- and IL-22-producing γδ T cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

APC:

Antigen-presenting cell

AHR:

Aryl hydrocarbon receptor

CIA:

Collagen-induced arthritis

DETC:

Dendritic epidermal T cells

EAE:

Experimental autoimmune encephalomyelitis

FICZ:

6-Formylindolo[3,2-b]carbazole

HMBPP:

(E)-4-Hydroxy-3-methyl-but-2-enyl pyrophosphate

IL:

Interleukin

IPP:

Isopentenyl pyrophosphate

MHC:

Major histocompatibility complex

MMP:

Matrix metalloproteinase

NKT:

Natural killer T

ROR:

Retinoid-related orphan receptor

STAT:

Signal transducer and activator of transcription

TCR:

T cell antigen receptor

TLR:

Toll-like receptor

References

  1. Brenner MB, McLean J, Dialynas DP, Strominger JL, Smith JA, Owen FL, Seidman JG, Ip S, Rosen F, Krangel MS (1986) Identification of a putative second T-cell receptor. Nature 322:145–149

    Article  PubMed  CAS  Google Scholar 

  2. Cerundolo V, Silk JD, Masri SH, Salio M (2009) Harnessing invariant NKT cells in vaccination strategies. Nat Rev Immunol 9:28–38

    Article  PubMed  CAS  Google Scholar 

  3. Kronenberg M, Engel I (2007) On the road: progress in finding the unique pathway of invariant NKT cell differentiation. Curr Opin Immunol 19:186–193

    Article  PubMed  CAS  Google Scholar 

  4. Cua DJ, Tato CM (2010) Innate IL-17-producing cells: the sentinels of the immune system. Nat Rev Immunol 10:479–489

    Article  PubMed  CAS  Google Scholar 

  5. Lockhart E, Green AM, Flynn JL (2006) IL-17 production is dominated by γδ T cells rather than CD4 T cells during Mycobacterium tuberculosis infection. J Immunol 177:4662–4669

    PubMed  CAS  Google Scholar 

  6. Sutton CE, Lalor SJ, Sweeney CM, Brereton CF, Lavelle EC, Mills KH (2009) Interleukin-1 and IL-23 induce innate IL-17 production from γδ T cells, amplifying Th17 responses and autoimmunity. Immunity 31:331–341

    Article  PubMed  CAS  Google Scholar 

  7. Martin B, Hirota K, Cua DJ, Stockinger B, Veldhoen M (2009) Interleukin-17-producing γδ T cells selectively expand in response to pathogen products and environmental signals. Immunity 31:321–330

    Article  PubMed  CAS  Google Scholar 

  8. Shibata K, Yamada H, Hara H, Kishihara K, Yoshikai Y (2007) Resident Vδ1+ γδ T cells control early infiltration of neutrophils after Escherichia coli infection via IL-17 production. J Immunol 178:4466–4472

    PubMed  CAS  Google Scholar 

  9. Ness-Schwickerath KJ, Jin C, Morita CT (2010) Cytokine requirements for the differentiation and expansion of IL-17A- and IL-22-producing human Vγ2Vδ2 T cells. J Immunol 184:7268–7280

    Article  PubMed  CAS  Google Scholar 

  10. Fossiez F, Djossou O, Chomarat P, Flores-Romo L, Ait-Yahia S, Maat C, Pin JJ, Garrone P, Garcia E, Saeland S, Blanchard D, Gaillard C, Das Mahapatra B, Rouvier E, Golstein P, Banchereau J, Lebecque S (1996) T cell interleukin-17 induces stromal cells to produce proinflammatory and hematopoietic cytokines. J Exp Med 183:2593–2603

    Article  PubMed  CAS  Google Scholar 

  11. Yao Z, Painter SL, Fanslow WC, Ulrich D, Macduff BM, Spriggs MK, Armitage RJ (1995) Human IL-17: a novel cytokine derived from T cells. J Immunol 155:5483–5486

    PubMed  CAS  Google Scholar 

  12. Park H, Li Z, Yang XO, Chang SH, Nurieva R, Wang YH, Wang Y, Hood L, Zhu Z, Tian Q, Dong C (2005) A distinct lineage of CD4 T cells regulates tissue inflammation by producing interleukin 17. Nat Immunol 6:1133–1141

    Article  PubMed  CAS  Google Scholar 

  13. Shen F, Gaffen SL (2008) Structure-function relationships in the IL-17 receptor: implications for signal transduction and therapy. Cytokine 41:92–104

    Article  PubMed  CAS  Google Scholar 

  14. Kao C-Y, Huang F, Chen Y, Thai P, Wachi S, Kim C, Tam L, Wu R (2005) Up-regulation of CC chemokine ligand 20 expression in human airway epithelium by IL-17 through a JAK-independent but MEK/NF-κB-dependent signaling pathway. J Immunol 175:6676–6685

    PubMed  CAS  Google Scholar 

  15. Chabaud M, Garnero P, Dayer J-M, Guerne P-A, Fossiez F, Miossec P (2000) Contribution of interleukin 17 to synovium matrix destruction in rheumatoid arthritis. Cytokine 12:1092–1099

    Article  PubMed  CAS  Google Scholar 

  16. Bamba S, Andoh A, Yasui H, Araki Y, Bamba T, Fujiyama Y (2003) Matrix metalloproteinase-3 secretion from human colonic subepithelial myofibroblasts: role of interleukin-17. J Gastroenterol 38:548–554

    PubMed  CAS  Google Scholar 

  17. Sylvester J, Liacini A, Li WQ, Zafarullah M (2004) Interleukin-17 signal transduction pathways implicated in inducing matrix metalloproteinase-3, -13 and aggrecanase-1 genes in articular chondrocytes. Cell Signal 16:469–476

    Article  PubMed  CAS  Google Scholar 

  18. Jovanovic DV, Martel-Pelletier J, Di Battista JA, Mineau F, Jolicoeur FC, Benderdour M, Pelletier JP (2000) Stimulation of 92-kd gelatinase (matrix metalloproteinase 9) production by interleukin-17 in human monocyte/macrophages: a possible role in rheumatoid arthritis. Arthritis Rheum 43:1134–1144

    Article  PubMed  CAS  Google Scholar 

  19. Rifas L, Arackal S (2003) T cells regulate the expression of matrix metalloproteinase in human osteoblasts via a dual mitogen-activated protein kinase mechanism. Arthritis Rheum 48:993–1001

    Article  PubMed  CAS  Google Scholar 

  20. Kotake S, Udagawa N, Takahashi N, Matsuzaki K, Itoh K, Ishiyama S, Saito S, Inoue K, Kamatani N, Gillespie MT, Martin TJ, Suda T (1999) IL-17 in synovial fluids from patients with rheumatoid arthritis is a potent stimulator of osteoclastogenesis. J Clin Invest 103:1345–1352

    Article  PubMed  CAS  Google Scholar 

  21. Roussel L, Houle F, Chan C, Yao Y, Bérubé J, Olivenstein R, Martin JG, Huot J, Hamid Q, Ferri L, Rousseau S (2010) IL-17 promotes p38 MAPK-dependent endothelial activation enhancing neutrophil recruitment to sites of inflammation. J Immunol 184:4531–4537

    Article  PubMed  CAS  Google Scholar 

  22. Kao C-Y, Chen Y, Thai P, Wachi S, Huang F, Kim C, Harper RW, Wu R (2004) IL-17 markedly up-regulates β-defensin-2 expression in human airway epithelium via JAK and NF-κB signaling pathways. J Immunol 173:3482–3491

    PubMed  CAS  Google Scholar 

  23. Fujisawa T, Velichko S, Thai P, Hung LY, Huang F, Wu R (2009) Regulation of airway MUC5AC expression by IL-1β and IL-17A; the NF-κB paradigm. J Immunol 183:6236–6243

    Article  PubMed  CAS  Google Scholar 

  24. Patel DN, King CA, Bailey SR, Holt JW, Venkatachalam K, Agrawal A, Valente AJ, Chandrasekar B (2007) Interleukin-17 stimulates C-reactive protein expression in hepatocytes and smooth muscle cells via p38 MAPK and ERK1/2-dependent NF-κB and C/EBPβ activation. J Biol Chem 282:27229–27238

    Article  PubMed  CAS  Google Scholar 

  25. Hartupee J, Liu C, Novotny M, Li X, Hamilton T (2007) IL-17 enhances chemokine gene expression through mRNA stabilization. J Immunol 179:4135–4141

    PubMed  CAS  Google Scholar 

  26. Andoh A, Shimada M, Bamba S, Okuno T, Araki Y, Fujiyama Y, Bamba T (2002) Extracellular signal-regulated kinases 1 and 2 participate in interleukin-17 plus tumor necrosis factor-α-induced stabilization of interleukin-6 mRNA in human pancreatic myofibroblasts. Biochim Biophys Acta 1591:69–74

    Article  PubMed  CAS  Google Scholar 

  27. Hata K, Andoh A, Shimada M, Fujino S, Bamba S, Araki Y, Okuno T, Fujiyama Y, Bamba T (2002) IL-17 stimulates inflammatory responses via NF-κB and MAP kinase pathways in human colonic myofibroblasts. Am J Physiol Gastrointest Liver Physiol 282:G1035–G1044

    PubMed  CAS  Google Scholar 

  28. van den Berg A, Kuiper M, Snoek M, Timens W, Postma DS, Jansen HM, Lutter R (2005) Interleukin-17 induces hyperresponsive interleukin-8 and interleukin-6 production to tumor necrosis factor-α in structural lung cells. Am J Respir Cell Mol Biol 33:97–104

    Article  PubMed  CAS  Google Scholar 

  29. Cai X-Y, Gommoll CP Jr, Justice L, Narula SK, Fine JS (1998) Regulation of granulocyte colony-stimulating factor gene expression by interleukin-17. Immunol Lett 62:51–58

    Article  PubMed  CAS  Google Scholar 

  30. Nograles KE, Zaba LC, Guttman-Yassky E, Fuentes-Duculan J, Suárez-Fariñas M, Cardinale I, Khatcherian A, Gonzalez J, Pierson KC, White TR, Pensabene C, Coats I, Novitskaya I, Lowes MA, Krueger JG (2008) Th17 cytokines interleukin (IL)-17 and IL-22 modulate distinct inflammatory and keratinocyte-response pathways. Br J Dermatol 159:1092–1102

    PubMed  CAS  Google Scholar 

  31. Li W, Danilenko DM, Bunting S, Ganesan R, Sa S, Ferrando R, Wu TD, Kolumam GA, Ouyang W, Kirchhofer D (2009) The serine protease marapsin is expressed in stratified squamous epithelia and is up-regulated in the hyperproliferative epidermis of psoriasis and regenerating wounds. J Biol Chem 284:218–228

    Article  PubMed  CAS  Google Scholar 

  32. Wolk K, Witte E, Wallace E, Döcke WD, Kunz S, Asadullah K, Volk H-D, Sterry W, Sabat R (2006) IL-22 regulates the expression of genes responsible for antimicrobial defense, cellular differentiation, and mobility in keratinocytes: a potential role in psoriasis. Eur J Immunol 36:1309–1323

    Article  PubMed  CAS  Google Scholar 

  33. Korn T, Bettelli E, Oukka M, Kuchroo VK (2009) IL-17 and Th17 cells. Annu Rev Immunol 27:485–517

    Article  PubMed  CAS  Google Scholar 

  34. Zhou L, Chong MM, Littman DR (2009) Plasticity of CD4+ T cell lineage differentiation. Immunity 30:646–655

    Article  PubMed  CAS  Google Scholar 

  35. Yang XO, Pappu BP, Nurieva R, Akimzhanov A, Kang HS, Chung Y, Ma L, Shah B, Panopoulos AD, Schluns KS, Watowich SS, Tian Q, Jetten AM, Dong C (2008) T helper 17 lineage differentiation is programmed by orphan nuclear receptors RORα and RORγ. Immunity 28:29–39

    Article  PubMed  CAS  Google Scholar 

  36. Chen Z, Laurence A, Kanno Y, Pacher-Zavisin M, Zhu BM, Tato C, Yoshimura A, Hennighausen L, O’Shea JJ (2006) Selective regulatory function of Socs3 in the formation of IL-17-secreting T cells. Proc Natl Acad Sci U S A 103:8137–8142

    Article  PubMed  CAS  Google Scholar 

  37. Brustle A, Heink S, Huber M, Rosenplanter C, Stadelmann C, Yu P, Arpaia E, Mak TW, Kamradt T, Lohoff M (2007) The development of inflammatory T(H)-17 cells requires interferon-regulatory factor 4. Nat Immunol 8:958–966

    Article  PubMed  CAS  Google Scholar 

  38. Huber M, Brustle A, Reinhard K, Guralnik A, Walter G, Mahiny A, von Low E, Lohoff M (2008) IRF4 is essential for IL-21-mediated induction, amplification, and stabilization of the Th17 phenotype. Proc Natl Acad Sci U S A 105:20846–20851

    Article  PubMed  CAS  Google Scholar 

  39. Zhang F, Meng G, Strober W (2008) Interactions among the transcription factors Runx1, RORγt and Foxp3 regulate the differentiation of interleukin 17-producing T cells. Nat Immunol 9:1297–1306

    Article  PubMed  CAS  Google Scholar 

  40. Yang XO, Panopoulos AD, Nurieva R, Chang SH, Wang D, Watowich SS, Dong C (2007) STAT3 regulates cytokine-mediated generation of inflammatory helper T cells. J Biol Chem 282:9358–9363

    Article  PubMed  CAS  Google Scholar 

  41. McGeachy MJ, Chen Y, Tato CM, Laurence A, Joyce-Shaikh B, Blumenschein WM, McClanahan TK, O’Shea JJ, Cua DJ (2009) The interleukin 23 receptor is essential for the terminal differentiation of interleukin 17-producing effector T helper cells in vivo. Nat Immunol 10:314–324

    Article  PubMed  CAS  Google Scholar 

  42. Veldhoen M, Hocking RJ, Atkins CJ, Locksley RM, Stockinger B (2006) TGFβ in the context of an inflammatory cytokine milieu supports de novo differentiation of IL-17-producing T cells. Immunity 24:179–189

    Article  PubMed  CAS  Google Scholar 

  43. Das J, Ren G, Zhang L, Roberts AI, Zhao X, Bothwell AL, Van Kaer L, Shi Y, Das G (2009) Transforming growth factor β is dispensable for the molecular orchestration of Th17 cell differentiation. J Exp Med 206:2407–2416

    Article  PubMed  CAS  Google Scholar 

  44. Volpe E, Servant N, Zollinger R, Bogiatzi SI, Hupé P, Barillot E, Soumelis V (2008) A critical function for transforming growth factor-β, interleukin 23 and proinflammatory cytokines in driving and modulating human T(H)-17 responses. Nat Immunol 9:650–657

    Article  PubMed  CAS  Google Scholar 

  45. Manel N, Unutmaz D, Littman DR (2008) The differentiation of human T(H)-17 cells requires transforming growth factor-β and induction of the nuclear receptor RORγt. Nat Immunol 9:641–649

    Article  PubMed  CAS  Google Scholar 

  46. Yang L, Anderson DE, Baecher-Allan C, Hastings WD, Bettelli E, Oukka M, Kuchroo VK, Hafler DA (2008) IL-21 and TGF-β are required for differentiation of human T(H)17 cells. Nature 454:350–352

    Article  PubMed  CAS  Google Scholar 

  47. Santarlasci V, Maggi L, Capone M, Frosali F, Querci V, De Palma R, Liotta F, Cosmi L, Maggi E, Romagnani S, Annunziato F (2009) TGF-β indirectly favors the development of human Th17 cells by inhibiting Th1 cells. Eur J Immunol 39:207–215

    Article  PubMed  CAS  Google Scholar 

  48. Delfau M-H, Hance AJ, Lecossier D, Vilmer E, Grandchamp B (1992) Restricted diversity of Vγ9-JP rearrangements in unstimulated human γ/δ T lymphocytes. Eur J Immunol 22:2437–2443

    Article  PubMed  CAS  Google Scholar 

  49. McVay LD, Jaswal SS, Kennedy C, Hayday A, Carding SR (1998) The generation of human γδ T cell repertoires during fetal development. J Immunol 160:5851–5860

    PubMed  CAS  Google Scholar 

  50. Krangel MS, Yssel H, Brocklehurst C, Spits H (1990) A distinct wave of human T cell receptor γ/δ lymphocytes in the early fetal thymus: evidence for controlled gene rearrangement and cytokine production. J Exp Med 172:847–859

    Article  PubMed  CAS  Google Scholar 

  51. Morita CT, Verma S, Aparicio P, Martinez AC, Spits H, Brenner MB (1991) Functionally distinct subsets of human γ/δ T cells. Eur J Immunol 21:2999–3007

    Article  PubMed  CAS  Google Scholar 

  52. Morita CT, Parker CM, Brenner MB, Band H (1994) T cell receptor usage and functional capabilities of human γδ T cells at birth. J Immunol 153:3979–3988

    PubMed  CAS  Google Scholar 

  53. Parker CM, Groh V, Band H, Porcelli SA, Morita C, Fabbi M, Glass D, Strominger JL, Brenner MB (1990) Evidence for extrathymic changes in the T cell receptor γ/δ repertoire. J Exp Med 171:1597–1612

    Article  PubMed  CAS  Google Scholar 

  54. De Rosa SC, Andrus JP, Perfetto SP, Mantovani JJ, Herzenberg LA, Roederer M (2004) Ontogeny of γδ T cells in humans. J Immunol 172:1637–1645

    PubMed  Google Scholar 

  55. Hintz M, Reichenberg A, Altincicek B, Bahr U, Gschwind RM, Kollas A-K, Beck E, Wiesner J, Eberl M, Jomaa H (2001) Identification of (E)-4-hydroxy-3-methyl-but-2-enyl pyrophosphate as a major activator for human γδ T cells in Escherichia coli. FEBS Lett 509:317–322

    Article  PubMed  CAS  Google Scholar 

  56. Puan K-J, Jin C, Wang H, Sarikonda G, Raker AM, Lee HK, Samuelson MI, Märker-Hermann E, Pasa-Tolic L, Nieves E, Giner J-L, Kuzuyama T, Morita CT (2007) Preferential recognition of a microbial metabolite by human Vγ2Vδ2 T cells. Int Immunol 19:657–673

    Article  PubMed  CAS  Google Scholar 

  57. Tanaka Y, Morita CT, Tanaka Y, Nieves E, Brenner MB, Bloom BR (1995) Natural and synthetic non-peptide antigens recognized by human γδ T cells. Nature 375:155–158

    Article  PubMed  CAS  Google Scholar 

  58. Kunzmann V, Bauer E, Wilhelm M (1999) γ/δ T-cell stimulation by pamidronate. N Engl J Med 340:737–738

    Article  PubMed  CAS  Google Scholar 

  59. Bukowski JF, Morita CT, Brenner MB (1999) Human γδ T cells recognize alkylamines derived from microbes, edible plants, and tea: implications for innate immunity. Immunity 11:57–65

    Article  PubMed  CAS  Google Scholar 

  60. Deusch K, Luling F, Reich K, Classen M, Wagner H, Pfeffer K (1991) A major fraction of human intraepithelial lymphocytes simultaneously expresses the γ/δ T cell receptor, the CD8 accessory molecule and preferentially uses the Vδ1 gene segment. Eur J Immunol 21:1053–1059

    Article  PubMed  CAS  Google Scholar 

  61. Groh V, Porcelli S, Fabbi M, Lanier LL, Picker LJ, Anderson T, Warnke RA, Bhan AK, Strominger JL, Brenner MB (1989) Human lymphocytes bearing T cell receptor γ/δ are phenotypically diverse and evenly distributed throughout the lymphoid system. J Exp Med 169:1277–1294

    Article  PubMed  CAS  Google Scholar 

  62. Ebert LM, Meuter S, Moser B (2006) Homing and function of human skin γδ T cells and NK cells: relevance for tumor surveillance. J Immunol 176:4331–4336

    PubMed  CAS  Google Scholar 

  63. Porcelli S, Brenner MB, Greenstein JL, Balk SP, Terhorst C, Bleicher PA (1989) Recognition of cluster of differentiation 1 antigens by human CD4−CD8− cytolytic T lymphocytes. Nature 341:447–450

    Article  PubMed  CAS  Google Scholar 

  64. Faure F, Jitsukawa S, Miossec C, Hercend T (1990) CD1c as a target recognition structure for human T lymphocytes: analysis with peripheral blood γ/δ cells. Eur J Immunol 20:703–706

    Article  PubMed  CAS  Google Scholar 

  65. Spada FM, Grant EP, Peters PJ, Sugita M, Melián A, Leslie DS, Lee HK, van Donselaar E, Hanson DA, Krensky AM, Majdic O, Porcelli SA, Morita CT, Brenner MB (2000) Self recognition of CD1 by γ/δ T cells: implications for innate immunity. J Exp Med 191:937–948

    Article  PubMed  CAS  Google Scholar 

  66. Russano AM, Bassotti G, Agea E, Bistoni O, Mazzocchi A, Morelli A, Porcelli SA, Spinozzi F (2007) CD1-restricted recognition of exogenous and self-lipid antigens by duodenal γδ+ T lymphocytes. J Immunol 178:3620–3626

    PubMed  CAS  Google Scholar 

  67. Russano AM, Agea E, Corazzi L, Postle AD, De Libero G, Porcelli S, de Benedictis FM, Spinozzi F (2006) Recognition of pollen-derived phosphatidyl-ethanolamine by human CD1d-restricted γδ T cells. J Allergy Clin Immunol 117:1178–1184

    Article  PubMed  CAS  Google Scholar 

  68. Cui Y, Kang L, Cui L, He W (2009) Human γδ T cell recognition of lipid A is predominately presented by CD1b or CD1c on dendritic cells. Biol Direct 4:47

    Article  PubMed  CAS  Google Scholar 

  69. Groh V, Steinle A, Bauer S, Spies T (1998) Recognition of stress-induced MHC molecules by intestinal epithelial γδ T cells. Science 279:1737–1740

    Article  PubMed  CAS  Google Scholar 

  70. Groh V, Rhinehart R, Secrist H, Bauer S, Grabstein KH, Spies T (1999) Broad tumor-associated expression and recognition by tumor-derived γδ T cells of MICA and MICB. Proc Natl Acad Sci U S A 96:6879–6884

    Article  PubMed  CAS  Google Scholar 

  71. Wu J, Groh V, Spies T (2002) T cell antigen receptor engagement and specificity in the recognition of stress-inducible MHC class I-related chains by human epithelial γδ T cells. J Immunol 169:1236–1240

    PubMed  CAS  Google Scholar 

  72. Zhao J, Huang J, Chen H, Cui L, He W (2006) Vδ1 T cell receptor binds specifically to MHC I chain related A: molecular and biochemical evidences. Biochem Biophys Res Commun 339:232–240

    Article  PubMed  CAS  Google Scholar 

  73. Das H, Groh V, Kuijl C, Sugita M, Morita CT, Spies T, Bukowski JF (2001) MICA engagement by human Vγ2Vδ2 T cells enhances their antigen-dependent effector function. Immunity 15:83–93

    Article  PubMed  CAS  Google Scholar 

  74. Vermijlen D, Brouwer M, Donner C, Liesnard C, Tackoen M, Van Rysselberge M, Twite N, Goldman M, Marchant A, Willems F (2010) Human cytomegalovirus elicits fetal γδ T cell responses in utero. J Exp Med 207:807–821

    Article  PubMed  CAS  Google Scholar 

  75. Pitard V, Roumanes D, Lafarge X, Couzi L, Garrigue I, Lafon M-E, Merville P, Moreau J-F, Déchanet-Merville J (2008) Long-term expansion of effector/memory Vδ2− γδ T cells is a specific blood signature of CMV infection. Blood 112:1317–1324

    Article  PubMed  CAS  Google Scholar 

  76. Déchanet J, Merville P, Lim A, Retière C, Pitard V, Lafarge X, Michelson S, Méric C, Hallet MM, Kourilsky P, Potaux L, Bonneville M, Moreau J-F (1999) Implication of γδ T cells in the human immune response to cytomegalovirus. J Clin Invest 103:1437–1449

    Article  PubMed  Google Scholar 

  77. Lafarge X, Merville P, Cazin M-C, Bergé F, Potaux L, Moreau J-F, Déchanet-Merville J (2001) Cytomegalovirus infection in transplant recipients resolves when circulating γδ T lymphocytes expand, suggesting a protective antiviral role. J Infect Dis 184:533–541

    Article  PubMed  CAS  Google Scholar 

  78. Halary F, Pitard V, Dlubek D, Krzysiek R, de la Salle H, Merville P, Dromer C, Emilie D, Moreau J-F, Déchanet-Merville J (2005) Shared reactivity of Vδ2neg γδ T cells against cytomegalovirus-infected cells and tumor intestinal epithelial cells. J Exp Med 201:1567–1578

    Article  PubMed  CAS  Google Scholar 

  79. Annunziato F, Cosmi L, Santarlasci V, Maggi L, Liotta F, Mazzinghi B, Parente E, Filì L, Ferri S, Frosali F, Giudici F, Romagnani P, Parronchi P, Tonelli F, Maggi E, Romagnani S (2007) Phenotypic and functional features of human Th17 cells. J Exp Med 204:1849–1861

    Article  PubMed  CAS  Google Scholar 

  80. Yen H-R, Harris TJ, Wada S, Grosso JF, Getnet D, Goldberg MV, Liang K-L, Bruno TC, Pyle KJ, Chan S-L, Anders RA, Trimble CL, Adler AJ, Lin T-Y, Pardoll DM, Huang C-T, Drake CG (2009) Tc17 CD8 T cells: functional plasticity and subset diversity. J Immunol 183:7161–7168

    Article  PubMed  CAS  Google Scholar 

  81. Kondo T, Takata H, Matsuki F, Takiguchi M (2009) Phenotypic characterization and differentiation of human CD8+ T cells producing IL-17. J Immunol 182:1794–1798

    Article  PubMed  CAS  Google Scholar 

  82. Acosta-Rodriguez EV, Rivino L, Geginat J, Jarrossay D, Gattorno M, Lanzavecchia A, Sallusto F, Napolitani G (2007) Surface phenotype and antigenic specificity of human interleukin 17-producing T helper memory cells. Nat Immunol 8:639–646

    Article  PubMed  CAS  Google Scholar 

  83. Boniface K, Blumenschein WM, Brovont-Porth K, McGeachy MJ, Basham B, Desai B, Pierce R, McClanahan TK, Sadekova S, de Waal Malefyt R (2010) Human Th17 cells comprise heterogeneous subsets including IFN-γ-producing cells with distinct properties from the Th1 lineage. J Immunol 185:679–687

    Article  PubMed  CAS  Google Scholar 

  84. Duhen T, Geiger R, Jarrossay D, Lanzavecchia A, Sallusto F (2009) Production of interleukin 22 but not interleukin 17 by a subset of human skin-homing memory T cells. Nat Immunol 10:857–863

    Article  PubMed  CAS  Google Scholar 

  85. Veldhoen M, Hirota K, Christensen J, O’Garra A, Stockinger B (2009) Natural agonists for aryl hydrocarbon receptor in culture medium are essential for optimal differentiation of Th17 T cells. J Exp Med 206:43–49

    Article  PubMed  CAS  Google Scholar 

  86. Wang H, Fang Z, Morita CT (2010) Vγ2Vδ2 T cell receptor recognition of prenyl pyrophosphates is dependent on all CDRs. J Immunol 184:6209–6222

    Article  PubMed  CAS  Google Scholar 

  87. Evans PS, Enders PJ, Yin C, Ruckwardt TJ, Malkovsky M, Pauza CD (2001) In vitro stimulation with a non-peptidic alkylphosphate expands cells expressing Vγ2-Jγ1.2/Vδ2 T-cell receptors. Immunology 104:19–27

    Article  PubMed  CAS  Google Scholar 

  88. Davodeau F, Peyrat M-A, Hallet M-M, Gaschet J, Houde I, Vivien R, Vie H, Bonneville M (1993) Close correlation between Daudi and mycobacterial antigen recognition by human γδ T cells and expression of V9JPC1γ/V2DJCδ-encoded T cell receptors. J Immunol 151:1214–1223

    PubMed  CAS  Google Scholar 

  89. Yamashita S, Tanaka Y, Harazaki M, Mikami B, Minato N (2003) Recognition mechanism of non-peptide antigens by human γδ T cells. Int Immunol 15:1301–1307

    Article  PubMed  CAS  Google Scholar 

  90. Davodeau F, Peyrat MA, Hallet MM, Houde I, Vie H, Bonneville M (1993) Peripheral selection of antigen receptor junctional features in a major human γδ subset. Eur J Immunol 23:804–808

    Article  PubMed  CAS  Google Scholar 

  91. Tanaka Y, Sano S, Nieves E, De Libero G, Roca D, Modlin RL, Brenner MB, Bloom BR, Morita CT (1994) Nonpeptide ligands for human γδ T cells. Proc Natl Acad Sci U S A 91:8175–8179

    Article  PubMed  CAS  Google Scholar 

  92. De Libero G, Casorati G, Giachino C, Carbonara C, Migone N, Matzinger P, Lanzavecchia A (1991) Selection by two powerful antigens may account for the presence of the major population of human peripheral γ/δ T cells. J Exp Med 173:1311–1322

    Article  PubMed  Google Scholar 

  93. Moon JJ, Chu HH, Pepper M, McSorley SJ, Jameson SC, Kedl RM, Jenkins MK (2007) Naive CD4+ T cell frequency varies for different epitopes and predicts repertoire diversity and response magnitude. Immunity 27:203–213

    Article  PubMed  CAS  Google Scholar 

  94. Obar JJ, Khanna KM, Lefrancois L (2008) Endogenous naive CD8+ T cell precursor frequency regulates primary and memory responses to infection. Immunity 28:859–869

    Article  PubMed  CAS  Google Scholar 

  95. Peng MY, Wang ZH, Yao CY, Jiang LN, Jin QL, Wang J, Li BQ (2008) Interleukin 17-producing γδ T cells increased in patients with active pulmonary tuberculosis. Cell Mol Immunol 5:203–208

    Article  PubMed  Google Scholar 

  96. Yao S, Huang D, Chen CY, Halliday L, Zeng G, Wang RC, Chen ZW (2010) Differentiation, distribution and γδ T cell-driven regulation of IL-22-producing T cells in tuberculosis. PLoS Pathog 6:e1000789

    Article  PubMed  CAS  Google Scholar 

  97. Fenoglio D, Poggi A, Catellani S, Battaglia F, Ferrera A, Setti M, Murdaca G, Zocchi MR (2009) Vδ1 T lymphocytes producing IFN-γ and IL-17 are expanded in HIV-1 infected patients and respond to Candida albicans. Blood 113:6611–6618

    Article  PubMed  CAS  Google Scholar 

  98. Huang W, Na L, Fidel PL, Schwarzenberger P (2004) Requirement of interleukin-17A for systemic anti-Candida albicans host defense in mice. J Infect Dis 190:624–631

    Article  PubMed  CAS  Google Scholar 

  99. Smeekens SP, van de Veerdonk FL, van der Meer JW, Kullberg BJ, Joosten LA, Netea MG (2010) The Candida Th17 response is dependent on mannan- and β-glucan-induced prostaglandin E2. Int Immunol 22:889–895

    Article  PubMed  CAS  Google Scholar 

  100. Boniface K, Bak-Jensen KS, Li Y, Blumenschein WM, McGeachy MJ, McClanahan TK, McKenzie BS, Kastelein RA, Cua DJ, de Waal Malefyt R (2009) Prostaglandin E2 regulates Th17 cell differentiation and function through cyclic AMP and EP2/EP4 receptor signaling. J Exp Med 206:535–548

    Article  PubMed  CAS  Google Scholar 

  101. Napolitani G, Acosta-Rodriguez EV, Lanzavecchia A, Sallusto F (2009) Prostaglandin E2 enhances Th17 responses via modulation of IL-17 and IFN-γ production by memory CD4+ T cells. Eur J Immunol 39:1301–1312

    Article  PubMed  CAS  Google Scholar 

  102. van de Veerdonk FL, Teirlinck AC, Kleinnijenhuis J, Kullberg BJ, van Crevel R, van der Meer JWM, Joosten LAB, Netea MG (2010) Mycobacterium tuberculosis induces IL-17A responses through TLR4 and dectin-1 and is critically dependent on endogenous IL-1. J Leukoc Biol 88:227–232

    Article  PubMed  CAS  Google Scholar 

  103. Velilla PA, Rugeles MT, Chougnet CA (2006) Defective antigen-presenting cell function in human neonates. Clin Immunol 121:251–259

    Article  PubMed  CAS  Google Scholar 

  104. Ramsburg E, Tigelaar R, Craft J, Hayday A (2003) Age-dependent requirement for γδ T cells in the primary but not secondary protective immune response against an intestinal parasite. J Exp Med 198:1403–1414

    Article  PubMed  CAS  Google Scholar 

  105. Garcia AM, Fadel SA, Cao S, Sarzotti M (2000) T cell immunity in neonates. Immunol Res 22:177–190

    Article  PubMed  CAS  Google Scholar 

  106. Holt PG, Jones CA (2000) The development of the immune system during pregnancy and early life. Allergy 55:688–697

    Article  PubMed  CAS  Google Scholar 

  107. Arulanandam BP, Van Cleave VH, Metzger DW (1999) IL-12 is a potent neonatal vaccine adjuvant. Eur J Immunol 29:256–264

    Article  PubMed  CAS  Google Scholar 

  108. Kollmann TR, Crabtree J, Rein-Weston A, Blimkie D, Thommai F, Wang XY, Lavoie PM, Furlong J, Fortuno ES 3rd, Hajjar AM, Hawkins NR, Self SG, Wilson CB (2009) Neonatal innate TLR-mediated responses are distinct from those of adults. J Immunol 183:7150–7160

    Article  PubMed  CAS  Google Scholar 

  109. Gibbons DL, Haque SFY, Silberzahn T, Hamilton K, Langford C, Ellis P, Carr R, Hayday AC (2009) Neonates harbour highly active γδ T cells with selective impairments in preterm infants. Eur J Immunol 39:1794–1806

    Article  PubMed  CAS  Google Scholar 

  110. Pollinger B, Junt T, Metzler B, Walker UA, Tyndall A, Allard C, Bay S, Keller R, Raulf F, Di Padova F, O’Reilly T, Horwood NJ, Patel DD, Littlewood-Evans A (2011) Th17 cells, not IL-17+ γδ T cells, drive arthritic bone destruction in mice and humans. J Immunol 186:2602–2612

    Article  PubMed  CAS  Google Scholar 

  111. Allison JP, Havran WL (1991) The immunobiology of T cells with invariant γδ antigen receptors. Annu Rev Immunol 9:679–705

    Article  PubMed  CAS  Google Scholar 

  112. Heilig JS, Tonegawa S (1986) Diversity of murine gamma genes and expression in fetal and adult T lymphocytes. Nature 322:836–840

    Article  PubMed  CAS  Google Scholar 

  113. Xiong N, Raulet DH (2007) Development and selection of γδ T cells. Immunol Rev 215:15–31

    Article  PubMed  CAS  Google Scholar 

  114. Shin S, El-Diwany R, Schaffert S, Adams EJ, Garcia KC, Pereira P, Chien Y-H (2005) Antigen recognition determinants of γδ T cell receptors. Science 308:252–255

    Article  PubMed  CAS  Google Scholar 

  115. Crowley MP, Faher AM, Baumgarth N, Hampl J, Gutgemann I, Teyton L, Chien Y-h (2000) A population of murine γδ T cells recognized an inducible MHC class Ib molecule. Science 287:314–316

    Article  PubMed  CAS  Google Scholar 

  116. Huber S, Sartini D, Exley M (2003) Role of CD1d in coxsackievirus B3-induced myocarditis. J Immunol 170:3147–3153

    PubMed  CAS  Google Scholar 

  117. Roark CL, French JD, Taylor MA, Bendele AM, Born WK, O’Brien RL (2007) Exacerbation of collagen-induced arthritis by oligoclonal, IL-17-producing γδ T cells. J Immunol 179:5576–5583

    PubMed  CAS  Google Scholar 

  118. Sciammas R, Johnson RM, Sperling AI, Brady W, Linsley PS, Spear PG, Fitch FW, Bluestone JA (1994) Unique antigen recognition by a herpesvirus-specific TCR-γδ cell. J Immunol 152:5392–5397

    PubMed  CAS  Google Scholar 

  119. Schild H, Mavaddat N, Litzenberger C, Ehrich EW, Davis MM, Bluestone JA, Matis L, Draper RK, Chien Y-h (1994) The nature of major histocompatibility complex recognition by γδ T cells. Cell 76:29–37

    Article  PubMed  CAS  Google Scholar 

  120. Ribot JC, deBarros A, Pang DJ, Neves JF, Peperzak V, Roberts SJ, Girardi M, Borst J, Hayday AC, Pennington DJ, Silva-Santos B (2009) CD27 is a thymic determinant of the balance between interferon-γ- and interleukin 17-producing γδ T cell subsets. Nat Immunol 10:427–436

    Article  PubMed  CAS  Google Scholar 

  121. Cho JS, Pietras EM, Garcia NC, Ramos RI, Farzam DM, Monroe HR, Magorien JE, Blauvelt A, Kolls JK, Cheung AL, Cheng G, Modlin RL, Miller LS (2010) IL-17 is essential for host defense against cutaneous Staphylococcus aureus infection in mice. J Clin Invest 120:1762–1773

    Article  PubMed  Google Scholar 

  122. Jensen KD, Su X, Shin S, Li L, Youssef S, Yamasaki S, Steinman L, Saito T, Locksley RM, Davis MM, Baumgarth N, Chien YH (2008) Thymic selection determines γδ T cell effector fate: antigen-naive cells make interleukin-17 and antigen-experienced cells make interferon γ. Immunity 29:90–100

    Article  PubMed  CAS  Google Scholar 

  123. Shibata K, Yamada H, Nakamura R, Sun X, Itsumi M, Yoshikai Y (2008) Identification of CD25+ γδ T cells as fetal thymus-derived naturally occurring IL-17 producers. J Immunol 181:5940–5947

    PubMed  CAS  Google Scholar 

  124. van Oosterwijk MF, Juwana H, Arens R, Tesselaar K, van Oers MH, Eldering E, van Lier RAW (2007) CD27–CD70 interactions sensitise naive CD4+ T cells for IL-12-induced Th1 cell development. Int Immunol 19:713–718

    Article  PubMed  CAS  Google Scholar 

  125. Haas JD, Gonzalez FH, Schmitz S, Chennupati V, Fohse L, Kremmer E, Forster R, Prinz I (2009) CCR6 and NK1.1 distinguish between IL-17A and IFN-γ-producing effector T cells. Eur J Immunol 39:3488–3497

    Article  PubMed  CAS  Google Scholar 

  126. Kisielow J, Kopf M, Karjalainen K (2008) SCART scavenger receptors identify a novel subset of adult γδ T cells. J Immunol 181:1710–1716

    PubMed  CAS  Google Scholar 

  127. Lochner M, Peduto L, Cherrier M, Sawa S, Langa F, Varona R, Riethmacher D, Si-Tahar M, Di Santo JP, Eberl G (2008) In vivo equilibrium of proinflammatory IL-17+ and regulatory IL-10+ Foxp3+ RORγt+ T cells. J Exp Med 205:1381–1393

    Article  PubMed  CAS  Google Scholar 

  128. Riol-Blanco L, Lazarevic V, Awasthi A, Mitsdoerffer M, Wilson BS, Croxford A, Waisman A, Kuchroo VK, Glimcher LH, Oukka M (2010) IL-23 receptor regulates unconventional IL-17-producing T cells that control bacterial infections. J Immunol 184:1710–1720

    Article  PubMed  CAS  Google Scholar 

  129. Do JS, Fink PJ, Li L, Spolski R, Robinson J, Leonard WJ, Letterio JJ, Min B (2010) Spontaneous development of IL-17-producing γδ T cells in the thymus occurs via a TGF-β1-dependent mechanism. J Immunol 184:1675–1679

    Article  PubMed  CAS  Google Scholar 

  130. Duan J, Chung H, Troy E, Kasper DL (2010) Microbial colonization drives expansion of IL-1 receptor 1-expressing and IL-17-producing γ/δ T cells. Cell Host Microbe 7:140–150

    Article  PubMed  CAS  Google Scholar 

  131. Nakamura R, Shibata K, Yamada H, Shimoda K, Nakayama K, Yoshikai Y (2008) Tyk2-signaling plays an important role in host defense against Escherichia coli through IL-23-induced IL-17 production by γδ T cells. J Immunol 181:2071–2075

    PubMed  CAS  Google Scholar 

  132. Shaw MH, Boyartchuk V, Wong S, Karaghiosoff M, Ragimbeau J, Pellegrini S, Muller M, Dietrich WF, Yap GS (2003) A natural mutation in the Tyk2 pseudokinase domain underlies altered susceptibility of B10.Q/J mice to infection and autoimmunity. Proc Natl Acad Sci U S A 100:11594–11599

    Article  PubMed  CAS  Google Scholar 

  133. Staschke KA, Dong S, Saha J, Zhao J, Brooks NA, Hepburn DL, Xia J, Gulen MF, Kang Z, Altuntas CZ, Tuohy VK, Gilmour R, Li X, Na S (2009) IRAK4 kinase activity is required for Th17 differentiation and Th17-mediated disease. J Immunol 183:568–577

    Article  PubMed  CAS  Google Scholar 

  134. Nguyen LP, Bradfield CA (2008) The search for endogenous activators of the aryl hydrocarbon receptor. Chem Res Toxicol 21:102–116

    Article  PubMed  CAS  Google Scholar 

  135. Kimura A, Naka T, Nohara K, Fujii-Kuriyama Y, Kishimoto T (2008) Aryl hydrocarbon receptor regulates Stat1 activation and participates in the development of Th17 cells. Proc Natl Acad Sci U S A 105:9721–9726

    Article  PubMed  CAS  Google Scholar 

  136. Apetoh L, Quintana FJ, Pot C, Joller N, Xiao S, Kumar D, Burns EJ, Sherr DH, Weiner HL, Kuchroo VK (2010) The aryl hydrocarbon receptor interacts with c-Maf to promote the differentiation of type 1 regulatory T cells induced by IL-27. Nat Immunol 11:854–861

    Article  PubMed  CAS  Google Scholar 

  137. Veldhoen M, Hirota K, Westendorf AM, Buer J, Dumoutier L, Renauld J-C, Stockinger B (2008) The aryl hydrocarbon receptor links TH17-cell-mediated autoimmunity to environmental toxins. Nature 453:106–109

    Article  PubMed  CAS  Google Scholar 

  138. Simonian PL, Wehrmann F, Roark CL, Born WK, O’Brien RL, Fontenot AP (2010) γδ T cells protect against lung fibrosis via IL-22. J Exp Med 207:2239–2253

    Article  PubMed  CAS  Google Scholar 

  139. Stark MA, Huo Y, Burcin TL, Morris MA, Olson TS, Ley K (2005) Phagocytosis of apoptotic neutrophils regulates granulopoiesis via IL-23 and IL-17. Immunity 22:285–294

    Article  PubMed  CAS  Google Scholar 

  140. Flierl MA, Rittirsch D, Gao H, Hoesel LM, Nadeau BA, Day DE, Zetoune FS, Sarma JV, Huber-Lang MS, Ferrara JLM, Ward PA (2008) Adverse functions of IL-17A in experimental sepsis. FASEB J 22:2198–2205

    Article  PubMed  CAS  Google Scholar 

  141. Ribot JC, Chaves-Ferreira M, d’Orey F, Wencker M, Gonçalves-Sousa N, Decalf J, Simas JP, Hayday AC, Silva-Santos B (2010) Cutting edge: adaptive versus innate receptor signals selectively control the pool sizes of murine IFN-γ- or IL-17-producing γδ T cells upon infection. J Immunol 185:6421–6425

    Article  PubMed  CAS  Google Scholar 

  142. Aydintug MK, Roark CL, Chain JL, Born WK, O’Brien RL (2008) Macrophages express multiple ligands for γδ TCRs. Mol Immunol 45:3253–3263

    Article  PubMed  CAS  Google Scholar 

  143. Aydintug MK, Roark CL, Yin X, Wands JM, Born WK, O’Brien RL (2004) Detection of cell surface ligands for the γδ TCR using soluble TCRs. J Immunol 172:4167–4175

    PubMed  CAS  Google Scholar 

  144. Hamada S, Umemura M, Shiono T, Hara H, Kishihara K, Tanaka K, Mayuzumi H, Ohta T, Matsuzaki G (2008) Importance of murine Vδ1+ γδ T cells expressing interferon-γ and interleukin-17A in innate protection against Listeria monocytogenes infection. Immunology 125:170–177

    Article  PubMed  CAS  Google Scholar 

  145. Hamada S, Umemura M, Shiono T, Tanaka K, Yahagi A, Begum MD, Oshiro K, Okamoto Y, Watanabe H, Kawakami K, Roark C, Born WK, O’Brien R, Ikuta K, Ishikawa H, Nakae S, Iwakura Y, Ohta T, Matsuzaki G (2008) IL-17A produced by γδ T cells plays a critical role in innate immunity against Listeria monocytogenes infection in the liver. J Immunol 181:3456–3463

    PubMed  CAS  Google Scholar 

  146. Mombaerts P, Arnoldi J, Russ F, Tonegawa S, Kaufmann SHE (1993) Different roles of αβ and γδ T cells in immunity against an intracellular bacterial pathogen. Nature 365:53–56

    Article  PubMed  CAS  Google Scholar 

  147. Fu Y-X, Roark CE, Kelly K, Drevets D, Campbell P, O’Brien R, Born W (1994) Immune protection and control of inflammatory tissue necrosis by γδ T cells. J Immunol 153:3101–3115

    PubMed  CAS  Google Scholar 

  148. Meeks KD, Sieve AN, Kolls JK, Ghilardi N, Berg RE (2009) IL-23 is required for protection against systemic infection with Listeria monocytogenes. J Immunol 183:8026–8034

    Article  PubMed  CAS  Google Scholar 

  149. Okamoto Yoshida Y, Umemura M, Yahagi A, O’Brien RL, Ikuta K, Kishihara K, Hara H, Nakae S, Iwakura Y, Matsuzaki G (2010) Essential role of IL-17A in the formation of a mycobacterial infection-induced granuloma in the lung. J Immunol 184:4414–4422

    Article  PubMed  CAS  Google Scholar 

  150. Umemura M, Yahagi A, Hamada S, Begum MD, Watanabe H, Kawakami K, Suda T, Sudo K, Nakae S, Iwakura Y, Matsuzaki G (2007) IL-17-mediated regulation of innate and acquired immune response against pulmonary Mycobacterium bovis bacille Calmette-Guerin infection. J Immunol 178:3786–3796

    PubMed  CAS  Google Scholar 

  151. Khader SA, Bell GK, Pearl JE, Fountain JJ, Rangel-Moreno J, Cilley GE, Shen F, Eaton SM, Gaffen SL, Swain SL, Locksley RM, Haynes L, Randall TD, Cooper AM (2007) IL-23 and IL-17 in the establishment of protective pulmonary CD4+ T cell responses after vaccination and during Mycobacterium tuberculosis challenge. Nat Immunol 8:369–377

    Article  PubMed  CAS  Google Scholar 

  152. Liang SC, Tan XY, Luxenberg DP, Karim R, Dunussi-Joannopoulos K, Collins M, Fouser LA (2006) Interleukin (IL)-22 and IL-17 are coexpressed by Th17 cells and cooperatively enhance expression of antimicrobial peptides. J Exp Med 203:2271–2279

    Article  PubMed  CAS  Google Scholar 

  153. Löffek S, Schilling O, Franzke C-W (2010) Biological role of matrix metalloproteinases: a critical balance. Eur Respir J (in press). doi:10.1183/09031936.00029109

  154. Bullard KM, Lund L, Mudgett JS, Mellin TN, Hunt TK, Murphy B, Ronan J, Werb Z, Banda MJ (1999) Impaired wound contraction in stromelysin-1-deficient mice. Ann Surg 230:260–265

    Article  PubMed  CAS  Google Scholar 

  155. Ito Y, Usui T, Kobayashi S, Iguchi-Hashimoto M, Ito H, Yoshitomi H, Nakamura T, Shimizu M, Kawabata D, Yukawa N, Hashimoto M, Sakaguchi N, Sakaguchi S, Yoshifuji H, Nojima T, Ohmura K, Fujii T, Mimori T (2009) Gamma/delta T cells are the predominant source of interleukin-17 in affected joints in collagen-induced arthritis, but not in rheumatoid arthritis. Arthritis Rheum 60:2294–2303

    Article  PubMed  CAS  Google Scholar 

  156. Cornelissen F, Mus AM, Asmawidjaja PS, van Hamburg JP, Tocker J, Lubberts E (2009) Interleukin-23 is critical for full-blown expression of a non-autoimmune destructive arthritis and regulates interleukin-17A and RORγt in γδ T cells. Arthritis Res Ther 11:R194

    Article  PubMed  CAS  Google Scholar 

  157. Chabaud M, Lubberts E, Joosten L, van Den Berg W, Miossec P (2001) IL-17 derived from juxta-articular bone and synovium contributes to joint degradation in rheumatoid arthritis. Arthritis Res 3:168–177

    Article  PubMed  CAS  Google Scholar 

  158. van Bezooijen RL, van der Wee-Pals L, Papapoulos SE, Löwik CW (2002) Interleukin 17 synergises with tumour necrosis factor α to induce cartilage destruction in vitro. Ann Rheum Dis 61:870–876

    Article  PubMed  Google Scholar 

  159. Moran EM, Mullan R, McCormick J, Connolly M, Sullivan O, Fitzgerald O, Bresnihan B, Veale DJ, Fearon U (2009) Human rheumatoid arthritis tissue production of IL-17A drives matrix and cartilage degradation: synergy with tumour necrosis factor-α, Oncostatin M and response to biologic therapies. Arthritis Res Ther 11:R113

    Article  PubMed  CAS  Google Scholar 

  160. Wohler JE, Smith SS, Zinn KR, Bullard DC, Barnum SR (2009) γδ T cells in EAE: early trafficking events and cytokine requirements. Eur J Immunol 39:1516–1526

    Article  PubMed  CAS  Google Scholar 

  161. Petermann F, Rothhammer V, Claussen MC, Haas JD, Blanco LR, Heink S, Prinz I, Hemmer B, Kuchroo VK, Oukka M, Korn T (2010) γδ T cells enhance autoimmunity by restraining regulatory T cell responses via an interleukin-23-dependent mechanism. Immunity 33:351–363

    Article  PubMed  CAS  Google Scholar 

  162. Shichita T, Sugiyama Y, Ooboshi H, Sugimori H, Nakagawa R, Takada I, Iwaki T, Okada Y, Iida M, Cua DJ, Iwakura Y, Yoshimura A (2009) Pivotal role of cerebral interleukin-17-producing γδ T cells in the delayed phase of ischemic brain injury. Nat Med 15:946–950

    Article  PubMed  CAS  Google Scholar 

  163. Kebir H, Kreymborg K, Ifergan I, Dodelet-Devillers A, Cayrol R, Bernard M, Giuliani F, Arbour N, Becher B, Prat A (2007) Human TH17 lymphocytes promote blood-brain barrier disruption and central nervous system inflammation. Nat Med 13:1173–1175

    Article  PubMed  CAS  Google Scholar 

  164. Huppert J, Closhen D, Croxford A, White R, Kulig P, Pietrowski E, Bechmann I, Becher B, Luhmann HJ, Waisman A, Kuhlmann CR (2010) Cellular mechanisms of IL-17-induced blood-brain barrier disruption. FASEB J 24:1023–1034

    Article  PubMed  CAS  Google Scholar 

  165. Simonian PL, Roark CL, Wehrmann F, Lanham AM, Born WK, O’Brien RL, Fontenot AP (2009) IL-17A-expressing T cells are essential for bacterial clearance in a murine model of hypersensitivity pneumonitis. J Immunol 182:6540–6549

    Article  PubMed  CAS  Google Scholar 

  166. Simonian PL, Roark CL, Diaz del Valle F, Palmer BE, Douglas IS, Ikuta K, Born WK, O’Brien RL, Fontenot AP (2006) Regulatory role of γδ T cells in the recruitment of CD4+ and CD8+ T cells to lung and subsequent pulmonary fibrosis. J Immunol 177:4436–4443

    PubMed  CAS  Google Scholar 

  167. Braun RK, Ferrick C, Neubauer P, Sjoding M, Sterner-Kock A, Kock M, Putney L, Ferrick DA, Hyde DM, Love RB (2008) IL-17 producing γδ T cells are required for a controlled inflammatory response after bleomycin-induced lung injury. Inflammation 31:167–179

    Article  PubMed  CAS  Google Scholar 

  168. Lo Re S, Dumoutier L, Couillin I, Van Vyve C, Yakoub Y, Uwambayinema F, Marien B, van den Brûle S, Van Snick J, Uyttenhove C, Ryffel B, Renauld J-C, Lison D, Huaux F (2010) IL-17A-producing γδ T and Th17 lymphocytes mediate lung inflammation but not fibrosis in experimental silicosis. J Immunol 184:6367–6377

    Article  PubMed  CAS  Google Scholar 

  169. Simonian PL, Roark CL, Wehrmann F, Lanham AK, Diaz del Valle F, Born WK, O’Brien RL, Fontenot AP (2009) Th17-polarized immune response in a murine model of hypersensitivity pneumonitis and lung fibrosis. J Immunol 182:657–665

    Article  PubMed  CAS  Google Scholar 

  170. Huber SA, Graveline D, Newell MK, Born WK, O’Brien RL (2000) Vγ1+ T cells suppress and Vγ4+ T cells promote susceptibility to coxsackievirus B3-induced myocarditis in mice. J Immunol 165:4174–4181

    PubMed  CAS  Google Scholar 

  171. Fan Y, Weifeng W, Yuluan Y, Qing K, Yu P, Yanlan H (2011) Treatment with a neutralizing anti-murine interleukin-17 antibody after the onset of coxsackievirus B3-induced viral myocarditis reduces myocardium inflammation. Virol J 8:17

    Article  PubMed  CAS  Google Scholar 

  172. Huber SA (2005) Increased susceptibility of male BALB/c mice to coxsackievirus B3-induced myocarditis: role for CD1d. Med Microbiol Immunol 194:121–127

    Article  PubMed  CAS  Google Scholar 

  173. Huber SA, Born W, O’Brien R (2005) Dual functions of murine γδ cells in inflammation and autoimmunity in coxsackievirus B3-induced myocarditis: role of Vγ1+ and Vγ4+ cells. Microbes Infect 7:537–543

    Article  PubMed  CAS  Google Scholar 

  174. Huber SA, Graveline D, Born WK, O’Brien RL (2001) Cytokine production by Vγ+-T-cell subsets is an important factor determining CD4+-Th-cell phenotype and susceptibility of BALB/c mice to coxsackievirus B3-induced myocarditis. J Virol 75:5860–5869

    Article  PubMed  CAS  Google Scholar 

  175. Balbi B, Valle MT, Oddera S, Giunti D, Manca F, Rossi GA, Allegra L (1993) T-lymphocytes with γδ+ Vδ2+ antigen receptors are present in increased proportions in a fraction of patients with tuberculosis or with sarcoidosis. Am Rev Respir Dis 148:1685–1690

    PubMed  CAS  Google Scholar 

  176. Ito M, Kojiro N, Ikeda T, Ito T, Funada J, Kokubu T (1992) Increased proportions of peripheral blood γδ T cells in patients with pulmonary tuberculosis. Chest 102:195–197

    Article  PubMed  CAS  Google Scholar 

  177. Ueta C, Tsuyuguchi I, Kawasumi H, Takashima T, Toba H, Kishimoto S (1994) Increase of γ/δ T cells in hospital workers who are in close contact with tuberculosis patients. Infect Immun 62:5434–5441

    PubMed  CAS  Google Scholar 

  178. Dieli F, Sireci G, Di Sano C, Champagne E, Fournié J-J, Salerno JI (1999) Predominance of Vγ9/Vδ2 T lymphocytes in the cerebrospinal fluid of children with tuberculous meningitis: reversal after chemotherapy. Mol Med 5:301–312

    PubMed  CAS  Google Scholar 

  179. Modlin RL, Pirmez C, Hofman FM, Torigian V, Uyemura K, Rea TH, Bloom BR, Brenner MB (1989) Lymphocytes bearing antigen-specific γδ T-cell receptors accumulate in human infectious disease lesions. Nature 339:544–548

    Article  PubMed  CAS  Google Scholar 

  180. Sumida T, Maeda T, Takahashi H, Yoshida S, Yonaha F, Sakamoto A, Tomioka H, Koike T, Yoshida S (1992) Predominant expansion of Vγ9/Vδ2 T cells in a tularemia patient. Infect Immun 60:2554–2558

    PubMed  CAS  Google Scholar 

  181. Poquet Y, Kroca M, Halary F, Stenmark S, Peyrat M-A, Bonneville M, Fournié JJ, Sjöstedt A (1998) Expansion of Vγ9Vδ2 T cells is triggered by Francisella tularensis-derived phosphoantigens in tularemia but not after tularemia vaccination. Infect Immun 66:2107–2114

    PubMed  CAS  Google Scholar 

  182. Kroca M, Tärnvik A, Sjöstedt A (2000) The proportion of circulating γδ T cells increases after the first week of onset of tularemia and remains elevated for more than a year. Clin Exp Immunol 120:280–284

    Article  PubMed  CAS  Google Scholar 

  183. Hara T, Mizuno Y, Takaki K, Takada H, Akeda H, Aoki T, Nagata M, Ueda K, Matsuzaki G, Yoshikai Y, Nomoto K (1992) Predominant activation and expansion of Vγ9-bearing γδ T cells in vivo as well as in vitro in Salmonella infection. J Clin Invest 90:204–210

    Article  PubMed  CAS  Google Scholar 

  184. Kroca M, Johansson A, Sjöstedt A, Tärnvik A (2001) Vγ9Vδ2 T cells in human legionellosis. Clin Diagn Lab Immunol 8:949–954

    PubMed  CAS  Google Scholar 

  185. Bertotto A, Gerli R, Spinozzi F, Muscat C, Scalise F, Castellucci G, Sposito M, Candio F, Vaccaro R (1993) Lymphocytes bearing the γδ T cell receptor in acute Brucella melitensis infection. Eur J Immunol 23:1177–1180

    Article  PubMed  CAS  Google Scholar 

  186. Schneider T, Jahn HU, Liesenfeld O, Steinhoff D, Riecken EO, Zeitz M, Ullrich R (1997) The number and proportion of Vγ9/Vδ2 T cells rise significantly in the peripheral blood of patients after the onset of acute Coxiella burnetii infection. Clin Infect Dis 24:261–264

    Article  PubMed  CAS  Google Scholar 

  187. Caldwell CW, Everett ED, McDonald G, Yesus YW, Roland WE (1995) Lymphocytosis of γ/δ T cells in human ehrlichiosis. Am J Clin Pathol 103:761–766

    PubMed  CAS  Google Scholar 

  188. Raziuddin S, Mir NA, el-Awad M el-H, Telmesani AW, al-Janadi M (1994) γδ T lymphocytes and proinflammatory cytokines in bacterial meningitis. J Allergy Clin Immunol 93:793–798

    Article  PubMed  CAS  Google Scholar 

  189. Jouen-Beades F, Paris E, Dieulois C, Lemeland J-F, Barre-Dezelus V, Marret S, Humbert G, Leroy J, Tron F (1997) In vivo and in vitro activation and expansion of γδ T cells during Listeria monocytogenes infection in humans. Infect Immun 65:4267–4272

    PubMed  CAS  Google Scholar 

  190. Ho M, Webster HK, Tongtawe P, Pattanapanyasat K, Weidanz WP (1990) Increased γδ T cells in acute Plasmodium falciparum malaria. Immunol Lett 25:139–142

    Article  PubMed  CAS  Google Scholar 

  191. Roussilhon C, Agrapart M, Ballet J-J, Bensussan A (1990) T lymphocytes bearing the γδ T cell receptor in patients with acute Plasmodium falciparum malaria. J Infect Dis 162:283–285

    Article  PubMed  CAS  Google Scholar 

  192. Schwartz E, Shapiro R, Shina S, Bank I (1996) Delayed expansion of Vδ2+ and Vδ1+ γδ T cells after acute Plasmodium falciparum and Plasmodium vivax malaria. J Allergy Clin Immunol 97:1387–1392

    Article  PubMed  CAS  Google Scholar 

  193. Perera MK, Carter R, Goonewardene R, Mendis KN (1994) Transient increase in circulating γ/δ T cells during Plasmodium vivax malarial paroxysms. J Exp Med 179:311–315

    Article  PubMed  CAS  Google Scholar 

  194. Scalise F, Gerli R, Castellucci G, Spinozzi F, Fabietti GM, Crupi S, Sensi L, Britta R, Vaccaro R, Bertotto A (1992) Lymphocytes bearing the γδ T-cell receptor in acute toxoplasmosis. Immunology 76:668–670

    PubMed  CAS  Google Scholar 

  195. Raziuddin S, Telmasani AW, El-Awad ME, Al-Amari O, Al-Janadi M (1992) γδ T cells and the immune response in visceral leishmaniasis. Eur J Immunol 22:1143–1148

    Article  PubMed  CAS  Google Scholar 

  196. Russo DM, Armitage RJ, Barral NM, Barral A, Grabstein KH, Reed SG (1993) Antigen-reactive γδ T cells in human leishmaniasis. J Immunol 151:3712–3718

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Drs. Hong Wang and Grefachew Workalemahu for critical reading of the manuscript. This work was supported by grants to C.T.M. from the National Institute of Arthritis and Musculoskeletal and Skin Disease (AR045504) and the Bill & Melinda Gates Foundation (Exploration OPP1006946). Kristin Ness-Schwickerath was supported by the National Institute of Allergy and Infectious Diseases (T32 AI007511).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Craig T. Morita.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ness-Schwickerath, K.J., Morita, C.T. Regulation and function of IL-17A- and IL-22-producing γδ T cells. Cell. Mol. Life Sci. 68, 2371–2390 (2011). https://doi.org/10.1007/s00018-011-0700-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-011-0700-z

Keywords

Navigation