Skip to main content

Advertisement

Log in

A comparative analysis of the cell biology of senescence and aging

  • Review
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Various intracellular organelles, such as lysosomes, mitochondria, nuclei, and cytoskeletons, change during replicative senescence, but the utility of these changes as general markers of senescence and their significance with respect to functional alterations have not been comprehensively reviewed. Furthermore, the relevance of these alterations to cellular and functional changes in aging animals is poorly understood. In this paper, we review the studies that report these senescence-associated changes in various aging cells and their underlying mechanisms. Changes associated with lysosomes and mitochondria are found not only in cells undergoing replicative or induced senescence but also in postmitotic cells isolated from aged organisms. In contrast, other changes occur mainly in cells undergoing in vitro senescence. Comparison of age-related changes and their underlying mechanisms in in vitro senescent cells and aged postmitotic cells would reveal the relevance of replicative senescence to the physiological processes occurring in postmitotic cells as individuals age.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Campisi J, Kim SH, Lim CS, Rubio M (2001) Cellular senescence, cancer and aging: the telomere connection. Exp Gerontol 36:1619–1637

    Article  PubMed  CAS  Google Scholar 

  2. Muller M (2009) Cellular senescence: molecular mechanisms, in vivo significance, and redox considerations. Antioxid Redox Signal 11:59–98

    Article  PubMed  CAS  Google Scholar 

  3. Serrano M, Lin AW, McCurrach ME, Beach D, Lowe SW (1997) Oncogenic ras provokes premature cell senescence associated with accumulation of p53 and p16INK4a. Cell 88:593–602

    Article  PubMed  CAS  Google Scholar 

  4. Zhu J, Woods D, McMahon M, Bishop JM (1998) Senescence of human fibroblasts induced by oncogenic Raf. Genes Dev 12:2997–3007

    Article  PubMed  CAS  Google Scholar 

  5. Toussaint O, Medrano EE, von Zglinicki T (2000) Cellular and molecular mechanisms of stress-induced premature senescence (SIPS) of human diploid fibroblasts and melanocytes. Exp Gerontol 35:927–945

    Article  PubMed  CAS  Google Scholar 

  6. Mooi WJ, Peeper DS (2006) Oncogene-induced cell senescence—halting on the road to cancer. N Engl J Med 355:1037–1046

    Article  PubMed  CAS  Google Scholar 

  7. Krtolica A, Parrinello S, Lockett S, Desprez PY, Campisi J (2001) Senescent fibroblasts promote epithelial cell growth and tumorigenesis: a link between cancer and aging. Proc Natl Acad Sci USA 98:12072–12077

    Article  PubMed  CAS  Google Scholar 

  8. Severino J, Allen RG, Balin S, Balin A, Cristofalo VJ (2000) Is beta-galactosidase staining a marker of senescence in vitro and in vivo? Exp Cell Res 257:162–171

    Article  PubMed  CAS  Google Scholar 

  9. Mendez MV, Stanley A, Park HY, Shon K, Phillips T, Menzoian JO (1998) Fibroblasts cultured from venous ulcers display cellular characteristics of senescence. J Vasc Surg 28:876–883

    Article  PubMed  CAS  Google Scholar 

  10. Minamino T, Miyauchi H, Yoshida T, Ishida Y, Yoshida H, Komuro I (2002) Endothelial cell senescence in human atherosclerosis: role of telomere in endothelial dysfunction. Circulation 105:1541–1544

    Article  PubMed  CAS  Google Scholar 

  11. Price JS, Waters JG, Darrah C, Pennington C, Edwards DR, Donell ST, Clark IM (2002) The role of chondrocyte senescence in osteoarthritis. Aging Cell 1:57–65

    Article  PubMed  CAS  Google Scholar 

  12. Plisko A, Gilchrest BA (1983) Growth factor responsiveness of cultured human fibroblasts declines with age. J Gerontol 38:513–518

    PubMed  CAS  Google Scholar 

  13. Smith JR, Venable S, Roberts TW, Metter EJ, Monticone R, Schneider EL (2002) Relationship between in vivo age and in vitro aging: assessment of 669 cell cultures derived from members of the Baltimore Longitudinal Study of Aging. J Gerontol A Biol Sci Med Sci 57:B239–B246

    PubMed  Google Scholar 

  14. Cristofalo VJ, Allen RG, Pignolo RJ, Martin BG, Beck JC (1998) Relationship between donor age and the replicative lifespan of human cells in culture: a reevaluation. Proc Natl Acad Sci USA 95:10614–10619

    Article  PubMed  CAS  Google Scholar 

  15. Tesco G, Vergelli M, Grassilli E, Salomoni P, Bellesia E, Sikora E, Radziszewska E, Barbieri D, Latorraca S, Fagiolo U, Santacaterina S, Amaducci L, Tiozzo R, Franceschi C, Sorbi S (1998) Growth properties and growth factor responsiveness in skin fibroblasts from centenarians. Biochem Biophys Res Commun 244:912–916

    Article  PubMed  CAS  Google Scholar 

  16. Jeyapalan JC, Ferreira M, Sedivy JM, Herbig U (2007) Accumulation of senescent cells in mitotic tissue of aging primates. Mech Ageing Dev 128:36–44

    Article  PubMed  CAS  Google Scholar 

  17. Wang E, Gundersen D (1984) Increased organization of cytoskeleton accompanying the aging of human fibroblasts in vitro. Exp Cell Res 154:191–202

    Article  PubMed  CAS  Google Scholar 

  18. Cristofalo VJ, Kritchevsky D (1969) Cell size and nucleic acid content in the diploid human cell line WI-38 during aging. Med Exp Int J Exp Med 19:313–320

    PubMed  CAS  Google Scholar 

  19. Greenberg SB, Grove GL, Cristofalo VJ (1977) Cell size in aging monolayer cultures. In Vitro 13:297–300

    Article  PubMed  CAS  Google Scholar 

  20. Goodwin EC, Yang E, Lee CJ, Lee HW, DiMaio D, Hwang ES (2000) Rapid induction of senescence in human cervical carcinoma cells. Proc Natl Acad Sci USA 97:10978–10983

    Article  PubMed  CAS  Google Scholar 

  21. Chen QM, Tu VC, Catania J, Burton M, Toussaint O, Dilley T (2000) Involvement of Rb family proteins, focal adhesion proteins and protein synthesis in senescent morphogenesis induced by hydrogen peroxide. J Cell Sci 113:4087–4097

    PubMed  CAS  Google Scholar 

  22. Hutter E, Renner K, Pfister G, Stockl P, Jansen-Durr P, Gnaiger E (2004) Senescence-associated changes in respiration and oxidative phosphorylation in primary human fibroblasts. Biochem J 380:919–928

    Article  PubMed  CAS  Google Scholar 

  23. Martin-Ruiz C, Saretzki G, Petrie J, Ladhoff J, Jeyapalan J, Wei W, Sedivy J, von Zglinicki T (2004) Stochastic variation in telomere shortening rate causes heterogeneity of human fibroblast replicative life span. J Biol Chem 279:17826–17833

    Article  PubMed  CAS  Google Scholar 

  24. Zglinicki Tv, Petrie J, Kirkwood TBL (2003) Telomere-driven replicative senescence is a stress response. Nat Biotech 21:229–230

    Article  CAS  Google Scholar 

  25. Blagosklonny MV (2006) Cell senescence: hypertrophic arrest beyond the restriction point. J Cell Physiol 209:592–597

    Article  PubMed  CAS  Google Scholar 

  26. Mamane Y, Petroulakis E, LeBacquer O, Sonenberg N (2006) mTOR, translation initiation and cancer. Oncogene 25:6416–6422

    Article  PubMed  CAS  Google Scholar 

  27. Fingar DC, Salama S, Tsou C, Harlow E, Blenis J (2002) Mammalian cell size is controlled by mTOR and its downstream targets S6K1 and 4EBP1/eIF4E. Genes Dev 16:1472–1487

    Article  PubMed  CAS  Google Scholar 

  28. Tu VC, Bahl JJ, Chen QM (2002) Signals of oxidant-induced cardiomyocyte hypertrophy: key activation of p70 S6 kinase-1 and phosphoinositide 3-kinase. J Pharmacol Exp Ther 300:1101–1110

    Article  PubMed  CAS  Google Scholar 

  29. Wang Y, Meng A, Zhou D (2004) Inhibition of phosphatidylinostol 3-kinase uncouples H2O2-induced senescent phenotype and cell cycle arrest in normal human diploid fibroblasts. Exp Cell Res 298:188–196

    Article  PubMed  CAS  Google Scholar 

  30. Hayflick L (1980) Recent advances in the cell biology of aging. Mech Ageing Dev 14:59–79

    Article  PubMed  CAS  Google Scholar 

  31. Razin S, Pfendt EA, Matsumura T, Hayflick L (1977) Comparison by autoradiography of macromolecular biosynthesis in “young” and “old” human diploid fibroblast cultures. A brief note. Mech Ageing Dev 6:379–384

    Article  PubMed  CAS  Google Scholar 

  32. Park JS, Park WY, Cho KA, Kim DI, Jhun BH, Kim SR, Park SC (2001) Down-regulation of amphiphysin-1 is responsible for reduced receptor-mediated endocytosis in the senescent cells. FASEB J 15:1625–1627

    PubMed  CAS  Google Scholar 

  33. Wang E (1985) Are cross-bridging structures involved in the bundle formation of intermediate filaments and the decrease in locomotion that accompany cell aging? J Cell Biol 100:1466–1473

    Article  PubMed  CAS  Google Scholar 

  34. Knook D (1985) Aging liver cells. In: Cristofalo V (ed) Handbook of cell biology of aging. CRC Press, Boca Raton, pp 229–243

    Google Scholar 

  35. Rattan SI, Derventzi A, Clark BF (1992) Protein synthesis, posttranslational modifications, and aging. Ann N Y Acad Sci 663:48–62

    Article  PubMed  CAS  Google Scholar 

  36. Van Remmen H, Ward W, Sabia R, Richardson A (1995) Gene expression and protein degradation. In: Masoro E (ed) Handbook of physiology: aging. Oxford University Press, Oxford, pp 171–443

    Google Scholar 

  37. Ward W, Richardson A (1991) Effect of age on liver protein synthesis and degradation. Hepatology 14:935–948

    Article  PubMed  CAS  Google Scholar 

  38. Nishio K, Inoue A, Qiao S, Kondo H, Mimura A (2001) Senescence and cytoskeleton: overproduction of vimentin induces senescent-like morphology in human fibroblasts. Histochem Cell Biol 116:321–327

    Article  PubMed  CAS  Google Scholar 

  39. Eiden MV, MacArthur L, Okayama H (1991) Suppression of the chemically transformed phenotype of BHK cells by a human cDNA. Mol Cell Biol 11:5321–5329

    PubMed  CAS  Google Scholar 

  40. Tolstonog GV, Shoeman RL, Traub U, Traub P (2001) Role of the intermediate filament protein vimentin in delaying senescence and in the spontaneous immortalization of mouse embryo fibroblasts. DNA Cell Biol 20:509–529

    Article  PubMed  CAS  Google Scholar 

  41. Hendrix MJ, Seftor EA, Chu YW, Trevor KT, Seftor RE (1996) Role of intermediate filaments in migration, invasion and metastasis. Cancer Metastasis Rev 15:507–525

    Article  PubMed  CAS  Google Scholar 

  42. Lilienbaum A, Paulin D (1993) Activation of the human vimentin gene by the Tax human T-cell leukemia virus. I. Mechanisms of regulation by the NF-kappa B transcription factor. J Biol Chem 268:2180–2188

    PubMed  CAS  Google Scholar 

  43. Gosselin K, Abbadie C (2003) Involvement of Rel/NF-kappa B transcription factors in senescence. Exp Gerontol 38:1271–1283

    Article  PubMed  CAS  Google Scholar 

  44. de Miguel MP, Bethencourt FR, Arenas MI, Fraile B, Paniagua R (1997) Intermediate filaments in the Sertoli cells of the ageing human testis. Virchows Arch 431:131–138

    Article  PubMed  Google Scholar 

  45. Berciano MT, Andres MA, Calle E, Lafarga M (1995) Age-induced hypertrophy of astrocytes in rat supraoptic nucleus: a cytological, morphometric, and immunocytochemical study. Anat Rec 243:129–144

    Article  PubMed  CAS  Google Scholar 

  46. Bae YC, Park KP, Park MJ, Ihn HJ (1998) Development of vimentin filaments in the cells of the articular disc of the rat squamosomandibular joint with age. Arch Oral Biol 43:579–583

    Article  PubMed  CAS  Google Scholar 

  47. Kueper T, Grune T, Prahl S, Lenz H, Welge V, Biernoth T, Vogt Y, Muhr GM, Gaemlich A, Jung T, Boemke G, Elsasser HP, Wittern KP, Wenck H, Stab F, Blatt T (2007) Vimentin is the specific target in skin glycation. Structural prerequisites, functional consequences, and role in skin aging. J Biol Chem 282:23427–23436

    Article  PubMed  CAS  Google Scholar 

  48. Capetanaki Y, Smith S, Heath JP (1989) Overexpression of the vimentin gene in transgenic mice inhibits normal lens cell differentiation. J Cell Biol 109:1653–1664

    Article  PubMed  CAS  Google Scholar 

  49. Nishio K, Inoue A (2005) Senescence-associated alterations of cytoskeleton: extraordinary production of vimentin that anchors cytoplasmic p53 in senescent human fibroblasts. Histochem Cell Biol 123:263–273

    Article  PubMed  CAS  Google Scholar 

  50. Oender K, Trost A, Lanschuetzer C, Laimer M, Emberger M, Breitenbach M, Richter K, Hintner H, Bauer JW (2008) Cytokeratin-related loss of cellular integrity is not a major driving force of human intrinsic skin aging. Mech Ageing Dev 129:563–571

    Article  PubMed  CAS  Google Scholar 

  51. Arnesen SM, Lawson MA (2006) Age-related changes in focal adhesions lead to altered cell behavior in tendon fibroblasts. Mech Ageing Dev 127:726–732

    Article  PubMed  CAS  Google Scholar 

  52. Gromov P, Skovgaard GL, Palsdottir H, Gromova I, Ostergaard M, Celis JE (2003) Protein profiling of the human epidermis from the elderly reveals up-regulation of a signature of interferon-γ-induced polypeptides that includes manganese-superoxide dismutase and the p85β Subunit of phosphatidylinositol 3-kinase. Mol Cell Proteomics 2:70–84

    Article  PubMed  CAS  Google Scholar 

  53. Chen X, Li Z, Feng Z, Wang J, Ouyang C, Liu W, Fu B, Cai G, Wu C, Wei R, Wu D, Hong Q (2006) Integrin-linked kinase induces both senescence-associated alterations and extracellular fibronectin assembly in aging cardiac fibroblasts. J Gerontol A Biol Sci Med Sci 61:1232–1245

    PubMed  Google Scholar 

  54. Vartiainen MK (2008) Nuclear actin dynamics—from form to function. FEBS Lett 582:2033–2040

    Article  PubMed  CAS  Google Scholar 

  55. Venable ME, Blobe GC, Obeid LM (1994) Identification of a defect in the phospholipase D/diacylglycerol pathway in cellular senescence. J Biol Chem 269:26040–26044

    PubMed  CAS  Google Scholar 

  56. Rodriguez Fernandez JL, Geiger B, Salomon D, Ben-Ze’ev A (1992) Overexpression of vinculin suppresses cell motility in BALB/c 3T3 cells. Cell Motil Cytoskeleton 22:127–134

    Article  PubMed  CAS  Google Scholar 

  57. Rodriguez Fernandez JL, Geiger B, Salomon D, Ben-Ze’ev A (1993) Suppression of vinculin expression by antisense transfection confers changes in cell morphology, motility, and anchorage-dependent growth of 3T3 cells. J Cell Biol 122:1285–1294

    Article  PubMed  CAS  Google Scholar 

  58. Guan J-L (1997) Role of focal adhesion kinase in integrin signaling. Int J Biochem Cell Biol 29:1085–1096

    Article  PubMed  CAS  Google Scholar 

  59. Cho KA, Ryu SJ, Oh YS, Park JH, Lee JW, Kim H-P, Kim KT, Jang IS, Park SC (2004) Morphological adjustment of senescent cells by modulating caveolin-1 status. J Biol Chem 279:42270–42278

    Article  PubMed  CAS  Google Scholar 

  60. Wu C, Dedhar S (2001) Integrin-linked kinase (ILK) and its interactors: a new paradigm for the coupling of extracellular matrix to actin cytoskeleton and signaling complexes. J Cell Biol 155:505–510

    Article  PubMed  CAS  Google Scholar 

  61. Rice KM, Desai DH, Kinnard RS, Harris R, Wright GL, Blough ER (2007) Load-induced focal adhesion mechanotransduction is altered with aging in the Fischer 344/NNiaHSd x Brown Norway/BiNia rat aorta. Biogerontology 8:257–267

    Article  PubMed  CAS  Google Scholar 

  62. Kumazaki T, Wadhwa R, Kaul SC, Mitsui Y (1997) Expression of endothelin, fibronectin, and mortalin as aging and mortality markers. Exp Gerontol 32:95–103

    Article  PubMed  CAS  Google Scholar 

  63. Rasoamanantena P, Thweatt R, Labat-Robert J, Goldstein S (1994) Altered regulation of fibronectin gene expression in Werner syndrome fibroblasts. Exp Cell Res 213:121–127

    Article  PubMed  CAS  Google Scholar 

  64. Labat-Robert J, Marques MA, N’Doye S, Alperovitch A, Moulias R, Allard M, Robert L (2000) Plasma fibronectin in French centenarians. Arch Gerontol Geriatr 31:95–105

    Article  PubMed  CAS  Google Scholar 

  65. Comings DE, Okada TA (1970) Electron microscopy of human fibroblasts in tissue culture during logarithmic and confluent stages of growth. Exp Cell Res 61:295–301

    Article  PubMed  CAS  Google Scholar 

  66. Lipetz J, Cristofalo VJ (1972) Ultrastructural changes accompanying the aging of human diploid cells in culture. J Ultrastruct Res 39:43–56

    Article  PubMed  CAS  Google Scholar 

  67. Park JH, Yi HW, DiMaio D, Hwang ES (2007) Heterogeneous upregulation of lysosomal genes in human fibroblasts and cancer cells undergoing senescence. Korean J Genet 29:521–527

    CAS  Google Scholar 

  68. De Priester W, Van Manen R, Knook DL (1984) Lysosomal activity in the aging rat liver: II. Morphometry of acid phosphatase positive dense bodies. Mech Ageing Dev 26:205–216

    Article  PubMed  Google Scholar 

  69. Porta EA, Sablan HM, Joun NS, Chee G (1982) Effects of the type of dietary fat at two levels of vitamin E in Wistar male rats during development and aging. IV. Biochemical and morphometric parameters of the heart. Mech Ageing Dev 18:159–199

    Article  PubMed  CAS  Google Scholar 

  70. Schmucker DL, Sachs H (2002) Quantifying dense bodies and lipofuscin during aging: a morphologist’s perspective. Arch Gerontol Geriatr 34:249–261

    Article  PubMed  CAS  Google Scholar 

  71. Robbins E, Levine EM, Eagle H (1970) Morphologic changes accompanying senescence of cultured human diploid cells. J Exp Med 131:1211–1222

    Article  PubMed  CAS  Google Scholar 

  72. Terman A, Dalen H, Eaton JW, Neuzil J, Brunk UT (2003) Mitochondrial recycling and aging of cardiac myocytes: the role of autophagocytosis. Exp Gerontol 38:863–876

    Article  PubMed  CAS  Google Scholar 

  73. Kurz T, Terman A, Gustafsson B, Brunk UT (2008) Lysosomes and oxidative stress in aging and apoptosis. Biochimi Biophys Acta 1780:1291–1303

    CAS  Google Scholar 

  74. Lapointe J, Hekimi S (2008) Early mitochondrial dysfunction in long-lived Mclk1 +/− mice. J Biol Chem 283:26217–26227

    Article  PubMed  CAS  Google Scholar 

  75. Collins VP, Brunk UT (1976) Characterization of residual bodies formed in phase II cultivated human glia cells. Mech Ageing Dev 5:193–207

    Article  PubMed  CAS  Google Scholar 

  76. Knook DL, Sleyster EC (1976) Lysosomal enzyme activities in parenchymal and nonparenchymal liver cells isolated from young, adult and old rats. Mech Ageing Dev 5:389–398

    Article  PubMed  CAS  Google Scholar 

  77. Lee BY, Han JA, Im JS, Morrone A, Johung K, Goodwin EC, Kleijer WJ, DiMaio D, Hwang ES (2006) Senescence-associated β-galactosidase is lysosomal β-galactosidase. Aging Cell 5:187–195

    Article  PubMed  CAS  Google Scholar 

  78. Sanchez-Martin MM, Cabezas JA (1997) Evaluation of the activities of eight lysosomal hydrolases in sera of humans, rats and pigs of different ages. Mech Ageing Dev 99:95–107

    Article  PubMed  CAS  Google Scholar 

  79. Johung K, Goodwin EC, DiMaio D (2007) Human papillomavirus E7 repression in cervical carcinoma cells initiates a transcriptional cascade driven by the retinoblastoma family, resulting in senescence. J Virol 81:2102–2116

    Article  PubMed  CAS  Google Scholar 

  80. Sato Y, Suzuki Y, Ito E, Shimazaki S, Ishida M, Yamamoto T, Yamamoto H, Toda T, Suzuki M, Suzuki A, Endo T (2006) Identification and characterization of an increased glycoprotein in aging: age-associated translocation of cathepsin D. Mech Ageing Dev 127:771–778

    Article  PubMed  CAS  Google Scholar 

  81. Brunk UT, Neuzil J, Eaton JW (2001) Lysosomal involvement in apoptosis. Redox Rep 6:91–97

    Article  PubMed  CAS  Google Scholar 

  82. Tenopoulou M, Doulias P-T, Barbouti A, Brunk U, Galaris D (2005) Role of compartmentalized redox-active iron in hydrogen peroxide-induced DNA damage and apoptosis. Biochem J 387:703–710

    Article  PubMed  CAS  Google Scholar 

  83. Yu Z, Persson HL, Eaton JW, Brunk UT (2003) Intralysosomal iron: a major determinant of oxidant-induced cell death. Free Radic Biol Med 34:1243–1252

    Article  PubMed  CAS  Google Scholar 

  84. Dimri GP, Lee X, Basile G, Acosta M, Scott G, Roskelley C, Medrano EE, Linskens M, Rubelj I, Pereira-Smith O et al (1995) A biomarker that identifies senescent human cells in culture and in aging skin in vivo. Proc Natl Acad Sci USA 92:9363–9367

    Article  PubMed  CAS  Google Scholar 

  85. Melk A, Kittikowit W, Sandhu I, Halloran KM, Grimm P, Schmidt BMW, Halloran PF (2003) Cell senescence in rat kidneys in vivo increases with growth and age despite lack of telomere shortening. Kidney Int 63:2134–2143

    Article  PubMed  CAS  Google Scholar 

  86. Mishima K, Handa JT, Aotaki-Keen A, Lutty GA, Morse LS, Hjelmeland LM (1999) Senescence-associated beta-galactosidase histochemistry for the primate eye. Invest Ophthalmol Vis Sci 40:1590–1593

    PubMed  CAS  Google Scholar 

  87. Pendergrass WR, Lane MA, Bodkin NL, Hansen BC, Ingram DK, Roth GS, Yi L, Bin H, Wolf NS (1999) Cellular proliferation potential during aging and caloric restriction in rhesus monkeys {Macaca mulatta}. J Cell Physiol 180:123–130

    Article  PubMed  CAS  Google Scholar 

  88. Kishi S (2004) Functional aging and gradual senescence in zebrafish. Ann N Y Acad Sci 1019:521–526

    Article  PubMed  CAS  Google Scholar 

  89. Coates PJ (2002) Markers of senescence? J Pathol 196:371–373

    Article  PubMed  Google Scholar 

  90. Mouton RE, Venable ME (2000) Ceramide induces expression of the senescence histochemical marker, β-galactosidase, in human fibroblasts. Mech Ageing Dev 113:169–181

    Article  PubMed  CAS  Google Scholar 

  91. Cristofalo VJ (2005) SA β-Gal staining: biomarker or delusion. Exp Gerontol 40:836–838

    Article  PubMed  CAS  Google Scholar 

  92. Krishna DR, Sperker B, Fritz P, Klotz U (1999) Does pH 6 β-galactosidase activity indicate cell senescence? Mech Ageing Dev 109:113–123

    Article  PubMed  CAS  Google Scholar 

  93. Untergasser G, Gander R, Rumpold H, Heinrich E, Plas E, Berger P (2003) TGF-β cytokines increase senescence-associated beta-galactosidase activity in human prostate basal cells by supporting differentiation processes, but not cellular senescence. Exp Gerontol 38:1179–1188

    Article  PubMed  CAS  Google Scholar 

  94. Yang N-C, Hu M-L (2005) The limitations and validities of senescence associated-[beta]-galactosidase activity as an aging marker for human foreskin fibroblast Hs68 cells. Exp Gerontol 40:813–819

    Article  PubMed  CAS  Google Scholar 

  95. Yegorov YE, Akimov SS, Hass R, Zelenin AV, Prudovsky IA (1998) Endogenous β-galactosidase activity in continuously nonproliferating cells. Exp Cell Res 243:207–211

    Article  PubMed  CAS  Google Scholar 

  96. Gary RK, Kindell SM (2005) Quantitative assay of senescence-associated β-galactosidase activity in mammalian cell extracts. Anal Biochem 343:329–334

    Article  PubMed  CAS  Google Scholar 

  97. Gerland L-M, Peyrol S, Lallemand C, Branche R, Magaud J-P, Ffrench M (2003) Association of increased autophagic inclusions labeled for β-galactosidase with fibroblastic aging. Exp Gerontol 38:887–895

    Article  PubMed  CAS  Google Scholar 

  98. Kurz DJ, Decary S, Hong Y, Erusalimsky JD (2000) Senescence-associated β-galactosidase reflects an increase in lysosomal mass during replicative ageing of human endothelial cells. J Cell Sci 113:3613–3622

    PubMed  CAS  Google Scholar 

  99. Chang B-D, Broude EV, Dokmanovic M, Zhu H, Ruth A, Xuan Y, Kandel ES, Lausch E, Christov K, Roninson IB (1999) A senescence-like phenotype distinguishes tumor cells that undergo terminal proliferation arrest after exposure to anticancer agents. Cancer Res 59:3761–3767

    PubMed  CAS  Google Scholar 

  100. Seo YH, Jung HJ, Shin HT, Kim YM, Yim H, Chung HY, Lim IK, Yoon G (2008) Enhanced glycogenesis is involved in cellular senescence via GSK3/GS modulation. Aging Cell 7:894–907

    Article  PubMed  CAS  Google Scholar 

  101. Moore SA, Peterson RG, Felten DL, O’Connor BL (1981) Glycogen accumulation in tibial nerves of experimentally diabetic and aging control rats. J Neurol Sci 52:289–303

    Article  PubMed  CAS  Google Scholar 

  102. Gertz HJ, Cervos-Navarro J, Frydl V, Schultz F (1985) Glycogen accumulation of the aging human brain. Mech Ageing Dev 31:25–35

    Article  PubMed  CAS  Google Scholar 

  103. Ferkey DM, Kimelman D (2000) GSK-3: new thoughts on an old enzyme. Dev Biol 225:471–479

    Article  PubMed  CAS  Google Scholar 

  104. Klaus A, Birchmeier W (2008) Wnt signalling and its impact on development and cancer. Nat Rev Cancer 8:387–398

    Article  PubMed  CAS  Google Scholar 

  105. Damalas A, Kahan S, Shtutman M, Ben-Ze’ev A, Oren M (2001) Deregulated beta-catenin induces a p53- and ARF-dependent growth arrest and cooperates with Ras in transformation. EMBO J 20:4912–4922

    Article  PubMed  CAS  Google Scholar 

  106. Mao CD, Hoang P, DiCorleto PE (2001) Lithium inhibits cell cycle progression and induces stabilization of p53 in bovine aortic endothelial cells. J Biol Chem 276:26180–26188

    Article  PubMed  CAS  Google Scholar 

  107. Liu S, Fang X, Hall H, Yu S, Smith D, Lu Z, Fang D, Liu J, Stephens LC, Woodgett JR, Mills GB (2008) Homozygous deletion of glycogen synthase kinase 3β bypasses senescence allowing Ras transformation of primary murine fibroblasts. Proc Natl Acad Sci USA 105:5248–5253

    Article  PubMed  CAS  Google Scholar 

  108. Khandelwal RL, Enno TL, Narayanan N (1984) Effects of age on glycogen synthase and phosphorylase activities in rat liver. Mech Ageing Dev 28:13–22

    Article  PubMed  CAS  Google Scholar 

  109. Dall’Aglio E, Chang H, Reaven GM, Azhar S (1987) Age-related changes in rat muscle glycogen synthase activity. J Gerontol 42:168–172

    PubMed  Google Scholar 

  110. Mysliwski A, Kmiec Z (1992) Effect of aging on glycogen synthesis in liver of starved-refed rats. Arch Gerontol Geriatr 14:85–92

    Article  PubMed  CAS  Google Scholar 

  111. Zmijewski JW, Jope RS (2004) Nuclear accumulation of glycogen synthase kinase-3 during replicative senescence of human fibroblasts. Aging Cell 3:309–317

    Article  PubMed  CAS  Google Scholar 

  112. Ye X, Zerlanko B, Kennedy A, Banumathy G, Zhang R, Adams P (2007) Downregulation of Wnt signaling is a trigger for formation of facultative heterochromatin and onset of cell senescence in primary human cells. Mol Cell 27:183–196

    Article  PubMed  CAS  Google Scholar 

  113. Almeida M, Han L, Martin-Millan M, O’Brien CA, Manolagas SC (2007) Oxidative stress antagonizes Wnt signaling in osteoblast precursors by diverting beta-catenin from T cell factor- to forkhead box O-mediated transcription. J Biol Chem 282:27298–27305

    Article  PubMed  CAS  Google Scholar 

  114. Essers MAG, de Vries-Smits LMM, Barker N, Polderman PE, Burgering BMT, Korswagen HC (2005) Functional interaction between {beta}-catenin and FOXO in oxidative stress signaling. Science 308:1181–1184

    Article  PubMed  CAS  Google Scholar 

  115. Moon RT, Bowerman B, Boutros M, Perrimon N (2002) The promise and perils of Wnt signaling through beta-catenin. Science 296:1644–1646

    Article  PubMed  CAS  Google Scholar 

  116. Kops GJ, Dansen TB, Polderman PE, Saarloos I, Wirtz KW, Coffer PJ, Huang TT, Bos JL, Medema RH, Burgering BM (2002) Forkhead transcription factor FOXO3a protects quiescent cells from oxidative stress. Nature 419:316–321

    Article  PubMed  CAS  Google Scholar 

  117. Brunet A, Sweeney LB, Sturgill JF, Chua KF, Greer PL, Lin Y, Tran H, Ross SE, Mostoslavsky R, Cohen HY, Hu LS, Cheng HL, Jedrychowski MP, Gygi SP, Sinclair DA, Alt FW, Greenberg ME (2004) Stress-dependent regulation of FOXO transcription factors by the SIRT1 deacetylase. Science 303:2011–2015

    Article  PubMed  CAS  Google Scholar 

  118. Essers MA, Weijzen S, de Vries-Smits AM, Saarloos I, de Ruiter ND, Bos JL, Burgering BM (2004) FOXO transcription factor activation by oxidative stress mediated by the small GTPase Ral and JNK. EMBO J 23:4802–4812

    Article  PubMed  CAS  Google Scholar 

  119. Boffoli D, Scacco SC, Vergari R, Solarino G, Santacroce G, Papa S (1994) Decline with age of the respiratory chain activity in human skeletal muscle. Biochim Biophys Acta 1226:73–82

    PubMed  CAS  Google Scholar 

  120. Yen T-C, Chen Y-S, King K-L, Yeh S-H, Wei Y-H (1989) Liver mitochondrial respiratory functions decline with age. Biochem Biophys Res Commun 165:994–1003

    Article  Google Scholar 

  121. Lezza AMS, Boffoli D, Scacco S, Cantatore P, Gadaleta MN (1994) Correlation between mitochondrial DNA 4977-bp deletion and respiratory chain enzyme activities in aging human skeletal muscles. Biochem Biophys Res Commun 205:772–779

    Article  PubMed  CAS  Google Scholar 

  122. Trifunovic A, Wredenberg A, Falkenberg M, Spelbrink JN, Rovio AT, Bruder CE, Bohlooly-Y M, Gidlof S, Oldfors A, Wibom R, Tornell J, Jacobs HT, Larsson N-G (2004) Premature ageing in mice expressing defective mitochondrial DNA polymerase. Nature 429:417–423

    Article  PubMed  CAS  Google Scholar 

  123. Finkel T, Holbrook NJ (2000) Oxidants, oxidative stress and the biology of ageing. Nature 408:239–247

    Article  PubMed  CAS  Google Scholar 

  124. Liu L, Trimarchi JR, Smith PJ, Keefe DL (2002) Mitochondrial dysfunction leads to telomere attrition and genomic instability. Aging Cell 1:40–46

    Article  PubMed  CAS  Google Scholar 

  125. Saretzki G, Murphy MP, von Zglinicki T (2003) MitoQ counteracts telomere shortening and elongates lifespan of fibroblasts under mild oxidative stress. Aging Cell 2:141–143

    Article  PubMed  CAS  Google Scholar 

  126. Goldstein S, Moerman EJ, Porter K (1984) High-voltage electron microscopy of human diploid fibroblasts during ageing in vitro: morphometric analysis of mitochondria. Exp Cell Res 154:101–111

    Article  PubMed  CAS  Google Scholar 

  127. Lee HC, Yin PH, Chi CW, Wei YH (2002) Increase in mitochondrial mass in human fibroblasts under oxidative stress and during replicative cell senescence. J Biomed Sci 9:517–526

    Article  PubMed  CAS  Google Scholar 

  128. Passos JF, Saretzki G, Ahmed S, Nelson G, Richter T, Peters H, Wappler I, Birket MJ, Harold G, Schaeuble K, Birch-Machin MA, Kirkwood TBL, von Zglinicki T (2007) Mitochondrial dysfunction accounts for the stochastic heterogeneity in telomere-dependent senescence. PLoS Biol 5:e110

    Article  PubMed  CAS  Google Scholar 

  129. Lee HC, Lu CY, Fahn HJ, Wei YH (1998) Aging- and smoking-associated alteration in the relative content of mitochondrial DNA in human lung. FEBS Lett 441:292–296

    Article  PubMed  CAS  Google Scholar 

  130. Wei YH, Lee CF, Lee HC, Ma YS, Wang CW, Lu CY, Pang CY (2001) Increases of mitochondrial mass and mitochondrial genome in association with enhanced oxidative stress in human cells harboring 4, 977 BP-deleted mitochondrial DNA. Ann N Y Acad Sci 928:97–112

    Article  PubMed  CAS  Google Scholar 

  131. Suzuki H, Kumagai T, Goto A, Sugiura T (1998) Increase in intracellular hydrogen peroxide and upregulation of a nuclear respiratory gene evoked by impairment of mitochondrial electron transfer in human cells. Biochem Biophys Res Commun 249:542–545

    Article  PubMed  CAS  Google Scholar 

  132. Miranda S, Foncea R, Guerrero J, Leighton F (1999) Oxidative stress and upregulation of mitochondrial biogenesis genes in mitochondrial DNA-depleted HeLa cells. Biochem Biophys Res Commun 258:44–49

    Article  PubMed  CAS  Google Scholar 

  133. Lee HC, Yin PH, Lu CY, Chi CW, Wei YH (2000) Increase of mitochondria and mitochondrial DNA in response to oxidative stress in human cells. Biochem J 348:425–432

    Article  PubMed  CAS  Google Scholar 

  134. Fu X, Wan S, Lyu YL, Liu LF, Qi H (2008) Etoposide induces ATM-dependent mitochondrial biogenesis through AMPK activation. PLoS ONE 3:e2009

    Article  PubMed  CAS  Google Scholar 

  135. Lezza AMS, Pesce V, Cormio A, Fracasso F, Vecchiet J, Felzani G, Cantatore P, Gadaleta MN (2001) Increased expression of mitochondrial transcription factor A and nuclear respiratory factor-1 in skeletal muscle from aged human subjects. FEBS Lett 501:74–78

    Article  PubMed  CAS  Google Scholar 

  136. Bota DA, Davies KJA (2001) Protein degradation in mitochondria: implications for oxidative stress, aging and disease: a novel etiological classification of mitochondrial proteolytic disorders. Mitochondrion 1:33–49

    Article  PubMed  CAS  Google Scholar 

  137. Yoon YS, Yoon DS, Lim IK, Yoon SH, Chung HY, Rojo M, Malka F, Jou MJ, Martinou JC, Yoon G (2006) Formation of elongated giant mitochondria in DFO-induced cellular senescence: involvement of enhanced fusion process through modulation of Fis1. J Cell Physiol 209:468–480

    Article  PubMed  CAS  Google Scholar 

  138. Twig G, Elorza A, Molina AJ, Mohamed H, Wikstrom JD, Walzer G, Stiles L, Haigh SE, Katz S, Las G, Alroy J, Wu M, Py BF, Yuan J, Deeney JT, Corkey BE, Shirihai OS (2008) Fission and selective fusion govern mitochondrial segregation and elimination by autophagy. EMBO J 27:433–446

    Article  PubMed  CAS  Google Scholar 

  139. Miquel Vila DRCP (2008) Mitochondrial alterations in Parkinson’s disease: new clues. J Neurochem 107:317–328

    Article  PubMed  CAS  Google Scholar 

  140. Narendra D, Tanaka A, Suen D-F, Youle RJ (2008) Parkin is recruited selectively to impaired mitochondria and promotes their autophagy. J Cell Biol 183:795–803

    Article  PubMed  CAS  Google Scholar 

  141. Cuervo AM, Dice JF (2000) Age-related decline in chaperone-mediated autophagy. J Biol Chem 275:31505–31513

    Article  PubMed  CAS  Google Scholar 

  142. Bergamini E, Cavallini G, Donati A, Gori Z (2007) The role of autophagy in aging: its essential part in the anti-aging mechanism of caloric restriction. Ann N Y Acad Sci 1114:69–78

    Article  PubMed  CAS  Google Scholar 

  143. Yen WL, Klionsky DJ (2008) How to live long and prosper: autophagy, mitochondria, and aging. Physiology 23:248–262

    Article  PubMed  CAS  Google Scholar 

  144. Terman A (1995) The effect of age on formation and elimination of autophagic vacuoles in mouse hepatocytes. Gerontology 41:319–326

    Article  PubMed  Google Scholar 

  145. Patschan S, Chen J, Polotskaia A, Mendelev N, Cheng J, Patschan D, Goligorsky MS (2008) Lipid mediators of autophagy in stress-induced premature senescence of endothelial cells. Am J Physiol Heart Circ Physiol 294:H1119–H1129

    Article  PubMed  CAS  Google Scholar 

  146. Donati A, Taddei M, Cavallini G, Bergamini E (2006) Stimulation of macroautophagy can rescue older cells from 8-OHdG mtDNA accumulation: a safe and easy way to meet goals in the SENS agenda. Rejuvenation Res 9:408–412

    Article  PubMed  CAS  Google Scholar 

  147. Kang HT, Lee HI, Hwang ES (2006) Nicotinamide extends replicative lifespan of human cells. Aging Cell 5:423–436

    Article  PubMed  CAS  Google Scholar 

  148. Jendrach M, Pohl S, Vöth M, Kowald A, Hammerstein P, Bereiter-Hahn J (2005) Morpho-dynamic changes of mitochondria during ageing of human endothelial cells. Mech Ageing Dev 126:813–821

    Article  PubMed  CAS  Google Scholar 

  149. Balin AK, Fisher AJ, Anzelone M, Leong I, Allen RG (2002) Effects of establishing cell cultures and cell culture conditions on the proliferative life span of human fibroblasts isolated from different tissues and donors of different ages. Exp Cell Res 274:275–287

    Article  PubMed  CAS  Google Scholar 

  150. Betts D, Perrault S, King W (2008) Low oxygen delays fibroblast senescence despite shorter telomeres. Biogerontology 9:19–31

    Article  PubMed  CAS  Google Scholar 

  151. Richter T, Zglinicki T (2007) A continuous correlation between oxidative stress and telomere shortening in fibroblasts. Exp Gerontol 42:1039–1042

    Article  PubMed  CAS  Google Scholar 

  152. Bossy-Wetzel E, Barsoum MJ, Godzik A, Schwarzenbacher R, Lipton SA (2003) Mitochondrial fission in apoptosis, neurodegeneration and aging. Curr Opin Cell Biol 15:706–716

    Article  PubMed  CAS  Google Scholar 

  153. Taguchi N, Ishihara N, Jofuku A, Oka T, Mihara K (2007) Mitotic phosphorylation of dynamin-related GTPase Drp1 participates in mitochondrial fission. J Biol Chem 282:11521–11529

    Article  PubMed  CAS  Google Scholar 

  154. Nakada K, Inoue K, Ono T, Isobe K, Ogura A, Goto Y-I, Nonaka I, Hayashi J-I (2001) Inter-mitochondrial complementation: mitochondria-specific system preventing mice from expression of disease phenotypes by mutant mtDNA. Nat Med 7:934–940

    Article  PubMed  CAS  Google Scholar 

  155. Ono T, Isobe K, Nakada K, Hayashi J-I (2001) Human cells are protected from mitochondrial dysfunction by complementation of DNA products in fused mitochondria. Nat Genet 28:272–275

    Article  PubMed  CAS  Google Scholar 

  156. Sato A, Nakada K, Shitara H, Yonekawa H, Hayashi J-I (2004) In vivo interaction between mitochondria carrying mtDNAs from different mouse species. Genetics 167:1855–1861

    Article  PubMed  CAS  Google Scholar 

  157. Solmi R, Pallotti F, Rugolo M, Genova ML, Estornell E, Ghetti P, Pugnaloni A, Biagini G, Rizzoli C, Lenaz G (1994) Lack of major mitochondrial bioenergetic changes in cultured skin fibroblasts from aged individuals. Biochem Mol Biol Int 33:477–484

    PubMed  CAS  Google Scholar 

  158. Wilson PD, Franks LM (1975) The effect of age on mitochondrial ultrastructure. Gerontologia 21:81–94

    Article  PubMed  CAS  Google Scholar 

  159. Sato T, Tauchi H (1975) The formation of enlarged and giant mitochondria in the aging process of human hepatic cells. Acta Pathol Jpn 25:403–412

    PubMed  CAS  Google Scholar 

  160. Ozawa T (1997) Genetic and functional changes in mitochondria associated with aging. Physiol Rev 77:425–464

    PubMed  CAS  Google Scholar 

  161. Sachs HG, Colgan JA, Lazarus ML (1977) Ultrastructure of the aging myocardium: a morphometric approach. Am J Anat 150:63–71

    Article  PubMed  CAS  Google Scholar 

  162. Wallace DC, Shoffner JM, Trounce I, Brown MD, Ballinger SW, Corral-Debrinski M, Horton T, Jun AS, Lott MT (1995) Mitochondrial DNA mutations in human degenerative diseases and aging. Biochim Biophys Acta 1271:141–151

    PubMed  Google Scholar 

  163. Barrientos A, Casademont J, Cardellach F, Ardite E, Estivill X, Urbano-Márquez A, Fernández-Checa JC, Nunes V (1997) Qualitative and quantitative changes in skeletal muscle mtDNA and expression of mitochondrial-encoded genes in the human aging process. Biochem Mol Med 62:165–171

    Article  PubMed  CAS  Google Scholar 

  164. Fernandez-Silva P, Petruzzella V, Fracasso F, Gadaleta MN, Cantatore P (1991) Reduced synthesis of mtRNA in isolated mitochondria of senescent rat brain. Biochem Biophys Res Commun 176:645–653

    Article  PubMed  CAS  Google Scholar 

  165. Barrientos A, Casademont J, Cardellach F, Estivill X, Urbano-Marquez A, Nunes V (1997) Reduced steady-state levels of mitochondrial RNA and increased mitochondrial DNA amount in human brain with aging. Mol Brain Res 52:284–289

    Article  PubMed  CAS  Google Scholar 

  166. Lee H-C, Lu C-Y, Fahn H-J, Wei Y-H (1998) Aging- and smoking-associated alteration in the relative content of mitochondrial DNA in human lung. FEBS Lett 441:292–296

    Article  PubMed  CAS  Google Scholar 

  167. Brunk UT, Terman A (1999) The mitochondrial-lysosomal axis theory of cellular aging. In: Cadenas E, Packer L (eds) Understanding the basis of aging: the roles of mitochondria, free radicals, and antioxidants. Marcel Dekker, New York, pp 229–250

    Google Scholar 

  168. Brunk UT, Terman A (2002) The mitochondrial-lysosomal axis theory of aging: accumulation of damaged mitochondria as a result of imperfect autophagocytosis. Eur J Biochem 269:1996–2002

    Article  PubMed  CAS  Google Scholar 

  169. Greco M, Villani G, Mazzucchelli F, Bresolin N, Papa S, Attardi G (2003) Marked aging-related decline in efficiency of oxidative phosphorylation in human skin fibroblasts. FASEB J 17:1706–1708

    PubMed  CAS  Google Scholar 

  170. Drew B, Leeuwenburgh C (2004) Ageing and subcellular distribution of mitochondria: role of mitochondrial DNA deletions and energy production. Acta Physiol Scand 182:333–341

    Article  PubMed  CAS  Google Scholar 

  171. Lopez ME, Van Zeeland NL, Dahl DB, Weindruch R, Aiken JM (2000) Cellular phenotypes of age-associated skeletal muscle mitochondrial abnormalities in rhesus monkeys. Mutat Res 452:123–138

    PubMed  CAS  Google Scholar 

  172. Narita M, Nũnez S, Heard E, Narita M, Lin AW, Hearn SA, Spector DL, Hannon GJ, Lowe SW (2003) Rb-mediated heterochromatin formation and silencing of E2F target genes during cellular senescence. Cell 113:703–716

    Article  PubMed  CAS  Google Scholar 

  173. Braig M, Lee S, Loddenkemper C, Rudolph C, Peters AHFM, Schlegelberger B, Stein H, Dorken B, Jenuwein T, Schmitt CA (2005) Oncogene-induced senescence as an initial barrier in lymphoma development. Nature 436:660–665

    Article  PubMed  CAS  Google Scholar 

  174. Zhang R, Poustovoitov MV, Ye X, Santos HA, Chen W, Daganzo SM, Erzberger JP, Serebriiskii IG, Canutescu AA, Dunbrack RL, Pehrson JR, Berger JM, Kaufman PD, Adams PD (2005) Formation of MacroH2A-containing senescence-associated heterochromatin foci and senescence driven by ASF1a and HIRA. Dev Cell 8:19–30

    Article  PubMed  CAS  Google Scholar 

  175. Funayama R, Saito M, Tanobe H, Ishikawa F (2006) Loss of linker histone H1 in cellular senescence. J Cell Biol 175:869–880

    Article  PubMed  CAS  Google Scholar 

  176. Ye X, Zerlanko B, Zhang R, Somaiah N, Lipinski M, Salomoni P, Adams PD (2007) Definition of pRB- and p53-dependent and -independent steps in HIRA/ASF1a-mediated formation of senescence-associated heterochromatin foci. Mol Cell Biol 27:2452–2465

    Article  PubMed  CAS  Google Scholar 

  177. Zhang R, Chen W, Adams PD (2007) Molecular dissection of formation of senescence-associated heterochromatin foci. Mol Cell Biol 27:2343–2358

    Article  PubMed  CAS  Google Scholar 

  178. Narita M, Narita M, Krizhanovsky V, Nũnez S, Chicas A, Hearn SA, Myers MP, Lowe SW (2006) A novel role for high-mobility group A proteins in cellular senescence and heterochromatin formation. Cell 126:503–514

    Article  PubMed  CAS  Google Scholar 

  179. Denoyelle C, Abou-Rjaily G, Bezrookove V, Verhaegen M, Johnson TM, Fullen DR, Pointer JN, Gruber SB, Su LD, Nikiforov MA, Kaufman RJ, Bastian BC, Soengas MS (2006) Anti-oncogenic role of the endoplasmic reticulum differentially activated by mutations in the MAPK pathway. Nat Cell Biol 8:1053–1063

    Article  PubMed  CAS  Google Scholar 

  180. Collado M, Gil J, Efeyan A, Guerra C, Schuhmacher AJ, Barradas M, Benguria A, Zaballos A, Flores JM, Barbacid M, Beach D, Serrano M (2005) Tumour biology: senescence in premalignant tumours. Nature 436:642

    Article  PubMed  CAS  Google Scholar 

  181. Chen Z, Trotman LC, Shaffer D, Lin H-K, Dotan ZA, Niki M, Koutcher JA, Scher HI, Ludwig T, Gerald W, Cordon-Cardo C, Paolo Pandolfi P (2005) Crucial role of p53-dependent cellular senescence in suppression of Pten-deficient tumorigenesis. Nature 436:725–730

    Article  PubMed  CAS  Google Scholar 

  182. Michaloglou C, Vredeveld LCW, Soengas MS, Denoyelle C, Kuilman T, van der Horst CMAM, Majoor DM, Shay JW, Mooi WJ, Peeper DS (2005) BRAFE600-associated senescence-like cell cycle arrest of human naevi. Nature 436:720–724

    Article  PubMed  CAS  Google Scholar 

  183. Herbig U, Ferreira M, Condel L, Carey D, Sedivy JM (2006) Cellular senescence in aging primates. Science 311:1257

    Article  PubMed  CAS  Google Scholar 

  184. Takai H, Smogorzewska A, de Lange T (2003) DNA damage foci at dysfunctional telomeres. Curr Biol 13:1549–1556

    Article  PubMed  CAS  Google Scholar 

  185. Rogakou EP, Boon C, Redon C, Bonner WM (1999) Megabase chromatin domains involved in DNA double-strand breaks in vivo. J Cell Biol 146:905–916

    Article  PubMed  CAS  Google Scholar 

  186. d’Adda di Fagagna F, Reaper PM, Clay-Farrace L, Fiegler H, Carr P, von Zglinicki T, Saretzki G, Carter NP, Jackson SP (2003) A DNA damage checkpoint response in telomere-initiated senescence. Nature 426:194–198

    Article  PubMed  CAS  Google Scholar 

  187. Herbig U, Jobling WA, Chen BPC, Chen DJ, Sedivy JM (2004) Telomere shortening triggers senescence of human cells through a pathway involving ATM, p53, and p21CIP1, but not p16INK4a. Mol Cell 14:501–513

    Article  PubMed  CAS  Google Scholar 

  188. Sedelnikova OA, Horikawa I, Zimonjic DB, Popescu NC, Bonner WM, Barrett JC (2004) Senescing human cells and ageing mice accumulate DNA lesions with unrepairable double-strand breaks. Nat Cell Biol 6:168–170

    Article  PubMed  CAS  Google Scholar 

  189. Mounkes LC, Stewart CL (2004) Aging and nuclear organization: lamins and progeria. Curr Opin Cell Biol 16:322–327

    Article  PubMed  CAS  Google Scholar 

  190. Liu B, Wang J, Chan KM, Tjia WM, Deng W, Guan X, Huang JD, Li KM, Chau PY, Chen DJ, Pei D, Pendas AM, Cadinanos J, Lopez-Otin C, Tse HF, Hutchison C, Chen J, Cao Y, Cheah KSE, Tryggvason K, Zhou Z (2005) Genomic instability in laminopathy-based premature aging. Nat Med 11:780–785

    Article  PubMed  CAS  Google Scholar 

  191. Scaffidi P, Misteli T (2005) Reversal of the cellular phenotype in the premature aging disease Hutchinson-Gilford progeria syndrome. Nat Med 11:440–445

    Article  PubMed  CAS  Google Scholar 

  192. Liu Y, Rusinol A, Sinensky M, Wang Y, Zou Y (2006) DNA damage responses in progeroid syndromes arise from defective maturation of prelamin A. J Cell Sci 119:4644–4649

    Article  PubMed  CAS  Google Scholar 

  193. Scaffidi P, Misteli T (2006) Lamin A-dependent nuclear defects in human aging. Science 312:1059–1063

    Article  PubMed  CAS  Google Scholar 

  194. Hallows WC, Lee S, Denu JM (2006) Sirtuins deacetylate and activate mammalian acetyl-CoA synthetases. Proc Natl Acad Sci USA 103:10230–10235

    Article  PubMed  CAS  Google Scholar 

  195. Schwer B, Bunkenborg J, Verdin RO, Andersen JS, Verdin E (2006) Reversible lysine acetylation controls the activity of the mitochondrial enzyme acetyl-CoA synthetase 2. Proc Natl Acad Sci USA 103:10224–10229

    Article  PubMed  CAS  Google Scholar 

  196. Schlicker C, Gertz M, Papatheodorou P, Kachholz B, Becker CFW, Steegborn C (2008) Substrates and regulation mechanisms for the human mitochondrial sirtuins Sirt3 and Sirt5. J Mol Biol 382:790–801

    Article  PubMed  CAS  Google Scholar 

  197. Lombard DB, Alt FW, Cheng H-L, Bunkenborg J, Streeper RS, Mostoslavsky R, Kim J, Yancopoulos G, Valenzuela D, Murphy A, Yang Y, Chen Y, Hirschey MD, Bronson RT, Haigis M, Guarente LP, Farese RV Jr, Weissman S, Verdin E, Schwer B (2007) Mammalian Sir2 homolog SIRT3 regulates global mitochondrial lysine acetylation. Mol Cell Biol 27:8807–8814

    Article  PubMed  CAS  Google Scholar 

  198. Jacobs KM, Pennington JD, Bisht KS, Aykin-Burns N, Kim HS, Mishra M, Sun L, Nguyen P, Ahn BH, Leclerc J, Deng CX, Spitz DR, Gius D (2008) SIRT3 interacts with the daf-16 homolog FOXO3a in the mitochondria, as well as increases FOXO3a dependent gene expression. Int J Biol Sci 4:291–299

    PubMed  CAS  Google Scholar 

  199. Demidenko ZN, Blagosklonny MV (2008) Growth stimulation leads to cellular senescence when the cell cycle is blocked. Cell Cycle 7:3355–3361

    PubMed  CAS  Google Scholar 

  200. Korsakova N, Sergeeva V, Petrov S (2008) Immunohistochemical analysis of lens cells on formation of different types of age-related cataract in humans. Neurosci Behav Physiol 38:887–890

    Article  PubMed  CAS  Google Scholar 

  201. Terman A, Brunk UT (1998) On the degradability and exocytosis of ceroid/lipofuscin in cultured rat cardiac myocytes. Mech Ageing Dev 100:145–156

    Article  PubMed  CAS  Google Scholar 

  202. Kadenbach B, Munscher C, Frank V, Muller-Hocker J, Napiwotzki J (1995) Human aging is associated with stochastic somatic mutations of mitochondrial DNA. Mutat Res 338:161–172

    PubMed  CAS  Google Scholar 

  203. Song YS, Lee BY, Hwang ES (2005) Dinstinct ROS and biochemical profiles in cells undergoing DNA damage-induced senescence and apoptosis. Mech Ageing Dev 126:580–590

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Dr. Byung Pal Yu at the University of Texas Health Science Center at San Antonio for the time and effort he generously devoted to improve the quality of the manuscript. We also thank Dr. Daniel DiMaio at Yale University for helpful discussion and correction of English. This work was supported by a grant from the Research Program of Dual Regulation Mechanisms of Aging and Cancer from the Korea Science and Engineering Foundation) (M10756040001-08N5604-00110) and by the Korea Research Foundation Grant (MOEHRD, Basic Research Promotion Fund) (KRF-2007-314-C00229).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eun Seong Hwang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hwang, E.S., Yoon, G. & Kang, H.T. A comparative analysis of the cell biology of senescence and aging. Cell. Mol. Life Sci. 66, 2503–2524 (2009). https://doi.org/10.1007/s00018-009-0034-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-009-0034-2

Keywords

Navigation