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Abstract. The fraction of pyruvate dehydrogenase
complex (PDC) in the active form is reduced by the
activities of dedicated PD kinase isozymes (PDK1,
PDK2, PDK3 and PDK4). Via binding to the inner
lipoyl domain (L2) of the dihydrolipoyl acetyltrans-
ferase (E2 60mer), PDK rapidly access their E2-
bound PD substrate. The E2-enhanced activity of the
widely distributed PDK2 is limited by dissociation of
ADP from its C-terminal catalytic domain, and this is
further slowed by pyruvate binding to the N-terminal

regulatory (R) domain. Via the reverse of the PDC
reaction, NADH and acetyl-CoA reductively acety-
late lipoyl group of L2, which binds to the R domain
and stimulates PDK2 activity by speeding up ADP
dissociation. Activation of PDC by synthetic PDK
inhibitors binding at the pyruvate or lipoyl binding
sites decreased damage during heart ischemia and
lowered blood glucose in insulin-resistant animals.
PDC activation also triggers apoptosis in cancer cells
that selectively convert glucose to lactate.

Keywords. Pyruvate dehydrogenase, pyruvate dehydrogenase kinase, lipoyl domain, glucose, energy metab-
olism, starvation, diabetes, heart ischemia.

Introduction

In mammals, the conversion of pyruvate to acetyl-
CoA by the mitochondrial pyruvate dehydrogenase
complex (PDC) results in net reduction of glucose or
glucose precursors [1–10]. The latter includes glyco-
gen, lactate, citric acid cycle intermediates, and amino
acids that form pyruvate or citric acid cycle inter-
mediates. When carbohydrate stores are reduced,
mammalian PDC activity is down-regulated to limit
the oxidative utilization of glucose in most nonneural
tissues. Up-regulation of PDC allows carbohydrate to
be oxidatively used in response to energy demands

and is needed for the conversion of surplus dietary
carbohydrate to fatty acids.
To satisfy the discrete tissue-specific roles that PDC
must meet in the management of fuel consumption
and storage, a set of dedicated regulatory enzymes
provide highly adaptable control of the fraction of
PDC in the active form (PDCa) [1–10]. Four pyruvate
dehydrogenase kinase (PDK) isozymes [9–12] and
two pyruvate dehydrogenase phosphatase (PDP) iso-
forms govern the activity state of PDC [13]. In
combination these carry out a continuous phosphor-
ylation-dephosphorylation cycle that determines the
proportion of the pyruvate dehydrogenase (E1)
component that is in the active, nonphosphorylated
state. Increasing PDCa by inhibiting PDK activity is a
drug target for diabetes [14–16], heart disease [17–22],
and more recently cancer [23–25]. This review ad-* Corresponding author.
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dresses the short-term control of PDKs, stressing the
regulatory mechanisms involved with emphasis on the
well-characterized PDK2, the differences in regula-
tory properties of four PDK isoforms, the develop-
ment and use of synthetic PDK inhibitors, and why
inhibition of PDK activity is an important and fruitful
target for treatment of the above diseases.
Short-term and long-term mechanisms act to alter the
activities and levels of the PDK and PDP to thereby
vary PDCa as required in managing use and storage of
fuels [1–10]. To limit the loss of glucose carbons, PDC
activity is restricted in many tissues when fatty acids or
ketone bodies serve as primary fuel sources. Upon the
initiation of exercise, the oxidative use of muscle
glycogen and blood glucose is linked to increasing
PDC activity. Routine heart function involves eleva-
tion of the PDC reaction following dietary intake of
carbohydrate and diminishing flux through the PDC
reaction as carbohydrate stores are depleted. During
long-term exercise or short-term fasting, PDC activity
is attenuated in skeletal muscle and stringently mini-
mized in heart in conjunction with increased use of
fatty acids and ketone bodies. Full oxidation of
glucose is normally retained in neural tissues with
the PDC reaction serving as a limiting step. As
carbohydrate reserves are depleted, the throttling
down of the PDC reaction in most tissues serves to
conserve residual carbohydrate for support of neural
tissue and red blood cells. In liver, depletion of
carbohydrate demands that PDC activity be greatly
restricted to support gluconeogenesis from three
carbon sources and this is also needed to aid process-
ing of lactate through the Cori cycle during anaerobic
exercise. During starvation, elevated PDK activity
emphatically down-regulates PDC in heart, skeletal
muscle, liver and kidney, thereby limiting the deple-
tion of body carbohydrate reserves (below). In
cholinergic neurons, acetylcholine is made from
acetyl-CoA produced by the PDC reaction [26]. In
white and brown adipose tissues, liver and lactating
mammary gland, an increase in PDCa follows dietary
intake of carbohydrate to support fatty acid biosyn-
thesis and then PDCa is rapidly decreased as carbo-
hydrate becomes limiting [1–9, 27–32]. In adipose
tissues, PDC activity is increased by insulin-based up-
regulation of PDP activity [33–35]. Therefore, tissue-
specific regulation of PDC activity constitutes a
crucial means of disposing of excess carbohydrate,
meeting short-term energy demands (such as stepped
up muscle activity), conserving limited body carbohy-
drate reserves, and responding to the ongoing dynam-
ic energy demands of neural tissues.

Components and organization of the
mammalian PDC

PDK function and regulation are dependent on and
influenced by the organization and catalytic function
of mammalian PDC [1, 2, 9, 36–38]. Therefore, this
background must be succinctly described. The irre-
versible PDC reaction proceeds via the sequential
steps catalyzed by the E1, dihydrolipoyl acetyltrans-
ferase (E2), and dihydrolipoyl dehydrogenase (E3)
components (Fig. 1). The core of the complex is an
integrated structure formed by association of the
multi-domain E2 and E3-binding protein (E3BP)
(Fig. 2). The domain structures of E2 and E3BP were
evident from their sequences [39, 40]. The C-terminal,
catalytic domain of E2 forms an inner core 60mer (I
domain). In this structure, 20 I-domain trimers
assemble at the corners in a dodecahedron. Recent
evidence supports the related C-terminal I domain of
E3BP being integrated into the inner core [41]. This
surprising result is based on analytical ultracentrifu-
gation (AUC) and small angle x-ray scattering studies
indicating that E2·E3BP has a smaller mass than the
E2 60mer. Based on this and the capacities to bind E1
and E3, a symmetric E248·E3BP12 structure (Fig. 2,
inner core model on the right) was proposed [41]. E2
and E3BP provide E1-binding and E3-binding do-
mains, B and B� domains, respectively (Fig. 2) [41–44].
There are two N-terminal lipoyl domains in E2,
designated L1 and L2, and one in E3BP, designated
L3 in Figure 2. All these globular domains in E2 and
E3BP are sequentially connected by 20–30 amino acid
linker regions rich in Ala and Pro residues (Fig. 2).
The somewhat stiff but mobile linker or hinge regions
(labeled with H and sequentially numbered from the
N terminus) support separation with a capacity for
rapid and flexible movement (like a computer mouse
cable) [45]. The PDK (PDK2, Fig. 2) and PDP1 also
bind to E2 lipoyl domains (see below).
The five-step PDC reaction (Fig. 1) starts with the
decarboxylation of pyruvate and ends with the
reduction of NADH. In the three intervening reaction
steps, intermediates are formed and transferred
between component active sites on a lipoyl prosthetic
group of the flexibly held lipoyl domains. While up to
48 E1 are bound per E2*E3BP [41], the mammalian
complex generally contain 20–30 E1 tetramers (a2b2)
[9]. E1 first catalyzes the thiamine diphosphate-
dependent decarboxylation of pyruvate and then the
reductive acetylation of the lipoyl-lysine prosthetic
groups on the lipoyl domains of E2 and E3BP. The E1-
catalyzed reductive acetylation reaction requires
specific structure in the lipoyl domains [45, 46] and is
normally rate limiting in the mammalian complex
[47]. The E1 reaction involves alternating use of the
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two active sites; recent structural insights contribute
explanations for this linked function [48, 49]. Via
trimer units of its inner core [50, 51], E2 then catalyzes

the transfer of the acetyl group from dihydrolipoyl
prosthetic group to CoA. Up to 12 E3 dimers per
E2*E3BP are bound [41]; these accept the remaining
reducing equivalents via reduction of their thiol-FAD
system and then transfer them via FAD to NAD+.
Facile movement of the lipoyl domains between the
E1, E2, and E3 active sites is executed by the mobile
linker regions of E2 and E3BP [45]. In the E1, E2, and
E3 reactions, specific binding of the lipoyl groups
occurs in channels formed at the interfaces located
between subunits of these components [48–50, 52–54].
The high activities of the rapid and reversible E2 and
E3 reactions determine the ratio of the 108 lipoyl
groups of one PDC (96/48 E2 subunits, 12/12 BP
subunits) that are in the oxidized, reduced, or
acetylated forms (oxidized disulfide, 6,8-dithiol, and
8-S-acetyl). Increasing the proportion of the reduced
and acetylated forms directly inhibits PDC activity,
but with mammalian PDC, small increases that cause
little direct inhibition, elicit significant PDC inactiva-
tion by stimulating PDK activity [55, 56] (see below).

General properties of PDK and PDP isoforms

PDK isozymes together with the related branched-
chain dehydrogenase kinase comprise a novel family
of serine kinases, unrelated to cytoplasmic Ser/Thr/Tyr
kinases [11, 12, 57–61]. Based on the order in which
they were initially cloned, the four PDK isoforms,
identified in mammals, are designated PDK1, PDK2,
PDK3, and PDK4 [11, 12]. The ~46-kDa PDK
subunits have two-domain structures (see below);
the C-terminal domain is clearly related to another
class of ATP-consuming enzymes [55–59] that broadly
includes bacterial histidine kinases. The sequences of
the same PDK isozyme in different mammals are
highly conserved (>94% identity for human versus
rat) [9]. The different subunits of the human isoforms
share 65�4% sequence identity, with only short
segments at the N terminus not being easily aligned.
These sequence differences reflect substantial varia-
tion in the functional and regulatory properties of the
four PDK isoforms. The PDK are normally dimers
[62–64], although effector-induced changes in oligo-
meric state of a specific isoform have be described
[65]. Insights into the structural basis for effector
modulation of PDK activity are considered.
The two PDP isoforms (PDP1 and PDP2) have 52-
kDa catalytic subunits that are members of the 2C
class of protein phosphatases [13, 66]. Besides its
catalytic subunit (PDP1c), PDP1 also contains a large
(95.6-kDa) regulatory subunit (PDP1r) [67–69]. Both
PDP1 and PDP2 activities require Mg2+ and are
regulated with regard to their responsiveness to this

Figure 1. Overall reaction of the pyruvate dehydrogenase complex
(PDC). LD is used as an abbreviation for the three lipoyl domains,
L1 and L2 of E2 and L3 of E3BP (see domain structures Fig. 2).
Only the changes in the reactive ends of the attached lipoyl groups
are shown. The reaction sequence is described in the text.

Figure 2. Domain structure and domain interactions of the E2 and
E3BP components. The domains and interactions (dashed lines)
are as described in the text. The black * is used to indicate position
of the lipoyl groups on the lipoyl domains and red * shows the
position of the active site of E1, which is at an interface between the
a (upper) and b (lower) subunits of E1. All three serines of the a-
subunit that undergo phosphorylation are near the E1 active site
[48]. Human component subunit masses were used to calculate
component masses based on established oligomer states or the
proposed E2·E3BP oligomeric state that is based on the inner core
model shown on the right [41]. The connecting H-labeled hinge (or
linker) regions are shown in extended conformations; these are
numbered consecutively from the N-terminal end in E2 and E3BP
domain structures, and contain the amino acid sequence for human
E2 and E3BP. Globular domains in E2 and E3BP are from various
sources; the L1 and L3 domains are based on the L2 domain of
human E2 [129]; the L2 domain is a different fold of L2 as found
bound to PDK3 [63]; the I domains E2 and E3BP are from B.
stearothermophilus E2-I domain [45]. Structures of human E1 [48]
and human PDK2 [60] are used.
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essential metal [13, 69, 70]. Micromolar Ca2+ greatly
stimulates the activity of PDP1, which is found in
Ca2+-sensitive tissues [71–73]. Polyamines, most ef-
fectively spermine, significantly reduce the Kms for
Mg2+ of both PDP isoforms [13, 69, 70]. PDP2 is
expressed in fat-synthesizing tissues [13] and is
probably the primary target by which insulin-predi-
cated regulation enhances PDP activity via a mecha-
nism that, like spermine, leads to a lowering of the Km

for Mg2+ [74, 75]. Putative final stage mechanisms
whereby insulin regulation enhances PDP activity
include allosteric mediators [76, 77] and phosphory-
lation by PKCd [78]. However, definitive support for
such mechanisms has not been provided. There is
strong evidence for multiple pathways in the insulin-
induced increase in PDCa [79].
When metabolic regimens (nutritional state, hormone
signaling, and tissue-specific fuel preferences) favor
oxidation of fatty acids as the primary fuel, reduction
of PDCa is critically important for the conservation of
carbohydrate reserves [1–9]. The impact of increased
use of fatty acids and ketone bodies is registered via
increases in the NADH to NAD+ and acetyl-CoA to
CoA ratios, which bring about enhanced PDK-cata-
lyzed inactivation of PDC [80–82]. A sufficient supply
of carbohydrate is recognized via adequate pyruvate
levels and the need for increasing PDC activity is
conveyed by a reduction in phosphate potential (ATP/
ADP + Pi). ADP plus pyruvate (enhanced by
phosphate, Pi) act synergistically to inhibit the activity
of PDK thereby fostering higher PDCa [83, 84].
Hormone-induced or workload-fostered increases in
glucose transport or glycogen breakdown coupled to
glycolysis elevate pyruvate; increased cellular work-
load elevates ADP and Pi. Dichloroacetate (DCA)
binds PDK at the pyruvate-binding site [83, 85] and
unlike pyruvate is not consumed in the E1 and other
reactions. Studies with DCA provided both mecha-
nistic insights [64, 83] and some of the first indications
of potential medical benefits [14] from inhibiting the
activity of PDK. CoA inhibition of PDK activity has
also been reported [80, 84].

Control of PDK4 expression

To conserve carbohydrate reserves, the suppression of
PDC activity during starvation is bolstered by en-
hanced expression of PDK4 particularly in heart,
skeletal and other muscle tissues, kidney, and liver [7–
9, 86–99]; increased expression of PDK2 is also
observed in liver [30, 87] and kidney [87, 100]. As a
complement to up-regulation of PDK4, PDP2 levels
are decreased in heart by starvation [101]. Enhanced
PDK4 expression is also fostered by a high fat (low

carbohydrate) diet [8, 89, 93], diabetes [86–88],
carnitine deficiency [102], extended exercise [103],
and hibernation [104]. The very low tissue PDC
activities that result from effector control augmented
by the greatly enhanced expression of these PDKs,
lead to fatty acids being used almost exclusively as an
energy source in liver and kidney. This serves to direct
available pyruvate (derived from amino acids or
circulating lactate) through gluconeogenesis to pro-
vide glucose for the brain and other neural tissues.
Elevation of insulin in conjunction with re-feeding
carbohydrate prevents enhanced expression of PDK4.
Under basal conditions PDK4 expression is sup-
pressed in most tissues by maintaining the histones
of the PDK4 gene in the nonacetylated state (i.e. , by
histone deacetylase activity) [94, 96–98]. Via perox-
isome proliferator-activated receptor-a (PPARa),
WY-14,643 (a potent agonist for PPARa receptor)
or fatty acids increase the expression of PDK4 [90, 91].
Activation of PPARd [92, 95] also enhances PDK4
expression, and PPARg signaling inhibits expression
[95, 105]. These results suggest that increases in free
fatty acid levels can directly affect the level of PDK4.
Based on studies with PPARa–null mice, the control
of PDK4 expression via PPARa is particularly im-
portant in liver and kidney but other means of control
operate in skeletal and heart muscle [90, 106].
Glucocorticoids increase during starvation or diabe-
tes. PDK4 expression is increased by glucocorticoids,
which foster acetylation of histones associated with
the PDK4 gene, and thereby enhance production of
PDK4 mRNA [96]. This results from binding of
retinoic acid-responsive elements to the promoter
region of PDK4 gene; these block histone deacetyla-
tion and recruit a histone acetyltransferase (such as
p300/CBP) [96]. Insulin inhibits PDK4 expression via
the phosphatidylinositol 3-kinase pathway by activat-
ing protein kinase B, which, in turn, phosphorylates
FOXO factors (Forkhead Box O family members)
[96–98]. FOXO factors are needed for binding of
p300/CBP, and insulin-initiated phosphorylation by
protein kinase B results in the FOXO factors leaving
the nucleus, thereby blocking expression [96–98, 107,
108]. In diabetic animals, due to the absence of insulin
or due to insulin insensitivity, the unimpeded over-
expression of PDK4 curtails glucose oxidation (see
treatment of diabetes by PDK inhibitors below).
In homozygous PDK4 knockout mice (PDK4�/�), 48-h
starvation results in more than a twofold decrease in
blood glucose as compared to PDK4+/+ starved
animals [99]. This is compensated in part by an
increase in ketone bodies in the blood. Even with no
PDK4, effector control by the other PDKs still leads to
PDCa levels being greatly reduced due to starvation in
heart, skeletal muscle, diaphragm, kidney, and liver.
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The largest difference in the percent of PDC in the
active form was observed in the diaphragm after 48 h
of starvation (10.7�2.4% PDCa for PDK4�/� mice
versus 1.7�0.2% for PDK4+/+ mice) [99]. Independ-
ent of nutritional state, total PDC activity was
unchanged for each tissue comparing PDK4�/� and
PDK4+/+ mice. Thus, PDK4 overexpression results in
conservation of gluconeogenic substrates during star-
vation but further contributes to hyperglycemia in
diabetes. The maintenance of blood glucose during
starvation is substantively perturbed in animals lack-
ing PDK4.

Focus on PDK2

Not all the PDK isoforms undergo the full set of
effector responses. PDK2 is the most widely distrib-
uted among the four PDK isoforms [87, 109]. PDK2
responds in a sensitive manner to the full set of known
regulatory effectors of mammalian PDK [9, 84, 109–
111]. With PDK2, there is an advanced understanding
of the molecular structure [60, 64], mechanisms of
effector regulation [55, 65, 84, 110–113], sites of
binding of effectors [64], conformational dynamics
[64, 65], interactions with other components [62, 65,
84, 110, 114–116], and effector-induced changes in the
oligomeric state of PDK2 [65]. Therefore, the molec-
ular mechanisms involved in PDK2 regulation are
described first, and then the comparative properties of
the other PDK isoforms are succinctly covered.
In the presence of specific ions and using E2·E1 as a
substrate (see below), PDK2 activity is stimulated
three- to fourfold by NADH and acetyl-CoA, and is
reduced by elevated pyruvate and ADP to <10%
residual activity [84, 110, 111]. An important aspect of
PDK function is the interaction of PDK with lipoyl
domains [9, 37, 38, 62, 65, 84, 110, 114–122]. These
interactions and effects on these interactions result in
the largest changes in PDK function. Although there
is considerable insight into PDK2-lipoyl domain
interactions, there are significant and consequential
differences in the lipoyl domain interactions of the
other PDKs. Furthermore, detailed structural infor-
mation exists only for human PDK3-lipoyl domain
complex [63]. Insights from that structure will also be
emphasized.
In the context of the PDK structures and understand-
ing of the mechanism of action of known physiological
effectors (and DCA), the properties of tightly binding
synthetic PDK inhibitors are considered as appropri-
ate. The the use of DCA and more recently limited use
of these tightly binding inhibitors in treatment of
diseases is then described along with the potential for
further developments in disease treatment.

PDK structure and lipoyl domain binding by PDK

Three-dimensional structures of rat PDK2 (Fig. 2)
[60], human PDK2 (Fig. 3) [64] and human PDK3
(Fig. 4) [63] have established the ligand and lipoyl
domain binding sites within the PDK. PDK2 is a dimer
with each subunit containing two large domains and a
C-terminal intersubunit cross arm (Fig. 3a, b). In
ribbon (Fig. 3a) and space-filled (Fig. 3b) presenta-
tions of the PDK2 dimer structure, the N-terminal,
regulatory (R) domains (residues 6–169) are colored
red in one subunit and blue in the other subunit. The
ATP/ADP-binding C-terminal catalytic (Cat) do-
mains (residues 178–364) and cross arm (residues
365–385) are colored orange or lavender in the
different subunits. In the central base of the structure,
the Cat domains associate via an interface primarily
formed by the offset interaction of equivalent mixed
b-sheet regions. Near the center of the base formed by
the b-sheet interfaces, the opposed Phe331 side chains
of each subunit interact with each other. From this
central subunit-association base, the subunits rise in
opposed directions in the shape of a large, somewhat
skewed trough with the R domains forming the upper
sides. An open trough PDK2 structure is exhibited in
Fig. 2 (Cat domains at top and R domains below). In
some crystal structures of PDK2, an additional dimer
interaction is created by C-terminal cross arms span-
ning this trough with insertion of Trp383 (Fig. 3a)
between residues of the Cat and R domain [64].
Opposite from the trough side on the outside of each
subunit, the interface between the R and Cat domains
forms an extended cavity with the ATP/ADP binding
site located in the Cat domain at one end of the active
site cavity (Fig. 3). The R domain is the site of binding
of regulatory ligands (Fig. 3c) [64].
PDK2 associates with PDC by binding to the L2
domain of the E2 component (Fig. 2) via an inter-
action that requires both structure of the protein
domain and direct binding of the lipoyl group [9, 37,
38, 62, 65, 84, 110, 113–122]. This association and
movement between lipoyl domains facilitate a large
increase in PDK2 activity by providing enhanced
access to the E1 substrate. Indeed, PDK2 uses E1
bound to E2 with at least a 400-fold lower concen-
tration dependence than when PDK2 uses free E1
[84]. Under typical assay conditions (0.4 mg/ml E1,
physiological salts), E2 enhances PDK2 activity by 10-
fold [110]; only the full outer structure of E2
(L1wL2wB) gave some enhancement of PDK2 activ-
ity, apparently by providing E1 [115]. Besides ATP,
the PDK2 structures in Figure 3a and b also show the
tight-binding inhibitor, Nov3r, which is also included
in ribbon structure of the monomer (Fig. 3c) [64]. This
inhibitor binds at the site of binding of the lipoyl group
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of the L2 domain [63, 64]; Nov3r (see structure, Fig. 5,
below) and related inhibitors [123–126] prevent bind-
ing of PDK2 to L2 or E2. PDK2 bind much tighter to
the dimeric GST-L2 structure than the L2 monomer,
supporting bifunctional binding of PDK2 to two L2
domains [62]. Reduction of the lipoyl groups of GST-
L2 further enhances binding [62, 65]. With 0.1 mM E2
60mer and 30 PDK2 per 60mer, a change from
oxidized, to reduced to acetylated increased the
number of PDK2 bound from 7 to 12 to 16 per E2
60mer [111]. The reaction state of the lipoyl group
alters PDK2 binding to L2 (below). PDK3 is activated
15-fold by E2 [110] and PDK1 by 2.5-fold [127]. In the
absence of effectors, the impact of E2 on PDK4
activity is only observed at low levels of E1 because
PDK4 has a much lower Km for free E1 [128].
PDK3 binds the L2 domain very tightly and its activity
is directly increased by the isolated L2 domain and
more strongly by glutathione-S-transferase-L2 (GST-
L2), a dimeric structure that favors bifunctional
binding by both L2 domains [110]. In the absence of
L2, PDK3 dimers tend to self-associate. By AUC
studies, we have found that PDK3 binds to GST-L2
with a binding affinity of <5 nM. With just the L2
domain, a binding affinity of <20 nM for PDK3
binding to two lipoyl domains has been observed by
AUC studies; this affinity is tighter than that esti-
mated by other approaches [63, 114, 122]. It was
proposed that PDK moves between lipoyl domains on
the surface of E2 by a nondissociative, hand-over-
hand mechanism [9, 37, 38, 120]. This mechanism
would seem to be particularly important in the case of
the tightly bound PDK3. Hand-over-hand transfer
requires that a PDK dimer binds two L2 domains and
forms an intermediate in which the dimer releases one
lipoyl domain and then rebinds randomly to another
L2 faster than it fully dissociates. Although PDK3
binds the L1 domain with a much weaker affinity than
it binds the L2 domain, PDK3 binds the L1 domain
with an affinity similar to that of PDK2 binding of the
L2 domain [62]. PDK3 binds very tightly to the
isolated dilipoyl domain of E2 (L1wL2).
The crystal structure of PDK3·L2 establishes how
PDK3 binds two L2 domains (Fig. 4) [63]. The C-
terminal, intersubunit cross arms play critical roles in
PDK3 binding of the two L2 domains (Fig. 4).
Extending beyond the intersubunit cross arm, the
ongoing C-terminal tail of PDK3 loops around the
lipoyl domain and up alongside the bound lipoyl group
with a couple of residues contributing to the lipoyl
group binding. A pocket in the trough side of the R
domain contributes most of the residues binding the
lipoyl prosthetic group (yellow, Fig. 4); as indicated
above, this corresponds to the Nov3r binding site in
PDK2 (Fig. 3). The R domain residues of this pocket

Figure 3. Cross arm in ribbon (a) and space-filled (b) PDK2 dimer
structures and ligand-binding sites in PDK2 monomer (c). In (a)
and (b), ATP and Nov3r are present as space-filled structures (CPK
colored); the N-terminal R domains of PDK2 are shown in blue
and red and the C-terminal Cat domains with following intersu-
bunit cross arms are shown in orange and lavender. In (a), the cross
arms are shown as stick structures. (c) ADP·Mg2+ bound to Cat
domain (green) and Pfz3, DCA, and Nov3r binding sites [64] in the
R domain (dark cyan) are shown. Most of the ribbon backbone is
from the PDK2 structure with DCA/ADP bound [64]; the bracket
indicates cross arm structure not observed in PDK2 crystal
structure with ADP and DCA bound, but which is observed with
Nov3r or Pfz3 bound. In (c), the interdomain loop is in white
(bottom right corner).
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are highly conserved in the four PDK isoforms [64].
Besides the C-terminal tail and the spanning region of
the incoming cross arm, the beginning of the outgoing
cross arm (i.e. , from the subunit to which the lipoyl
group is bound) and a few residues of the R domain
contribute to the binding of each L2 domain. The large
differences among the PDK isoforms in their affinities
for binding to L2 probably reside primarily in these

protein-protein interactions. As predicted based on
these structures, mutations and deletions of the C-
terminal regions of PDK2 or PDK3 interfere with
lipoyl domain binding [116, 122].
The folding of the L2 in the PDK3·L2 crystal structure
(Fig. 4) differs from that of the L2 structure deter-
mined for free L2 by NMR [129] in that the C terminus
of the bound L2 is organized as part of the folded L2
domain. In Fig. 2 the structures shown for the L1 and
L3 domains are, in fact, from the NMR structure of the
free L2 domain. The L2 domain of E2 in Fig. 2 is from
the PDK3·L2 crystal structure. Presumably, the L2
fold also associates with PDK2. A need to have the C
terminus of L2 interact with the domain was previ-
ously indicated by instability of L2 mutated in the C-
terminal region [46]. The folding of the C-terminal
region of L2 may vary and be stabilized in more than
one conformation by different protein-protein inter-
actions.
PDK1 also preferentially binds tightly to the L2
domain and its activity is also directly increased by
free lipoyl domain structures (GST-L2 = L1wL2> L2
> L1 for binding and activation), but binding is
somewhat weaker and PDK1 activity is increased less
than PDK3 [127]. Although PDK4 activity is mini-
mally affected by E2, PDK4 also binds to lipoyl
domains but with a lesser preference for the L2
domain. PDK4 is the most effective among PDK
isoforms in using E1 not bound to E2 as a substrate.
The C terminus of PDK4 uniquely ends with a
hydrophobic sequence (EVAM), and this serves as a
hydrophobic signal that reduces recovery upon ex-
pression in E. coli [193]. Adding hydrophilic groups
(GEE) interfered with binding of PDK4 to E2 [128].

Figure 4. PDK3 dimer binding two L2 domains. Two L2 domains bound to PDK3 [63] are shown in green (with dark green used for one in
right panel); the lipoyl group is yellow and shown as space-filled in left panel as is the lysine to which the lipoyl group is attached. In the left
panel, the W indicates Trp389 in PDK3, which is equivalent to Trp383 in PDK2, sequence numbering is as described in aligned sequence for
the four PDK isoforms in the Supplemental Materials of [64]. The C-terminal tail that follows Trp389 and wraps around L2 domain and
along side lipoyl group is shown with a darker lavender color. This structure is a stick structure in the left panel, and in both panels is the left
forward structure arising from the Cat domain on the right. Pink arrows point at the K+ that is chelated in part by an oxygen of the a-
phosphate of ATP [63].

Figure 5. Comparison of Nov3r and acetyl-dihydrolipoyl-lysine
structures and CoA and Pfz3 structures.

836 T.E. Roche and Y. Hiromasa Pyruvate dehydrogenase kinase molecular mechanisms
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These residues align with the first four of the last five
residues of the C-terminal tail of PDK3 (YKAKQ);
this positively charged, hydrophilic segment at the
very end of the C-terminal tail of PDK3 was not
resolved in the PDK3·L2 structure [63].
The studies on the four PDK isoforms in our
laboratory since 2000 [110] have been performed
with all human components (E1, E2, E3BP, E3 and
four PDK isoforms) prepared by recombinant ex-
pression in E. coli with any affinity tags removed from
all but E3. Table 1 summarizes many of the properties
of human PDK2 and comparative properties of the
other three human PDK isoforms based on results
from our laboratory, including the relative binding to
lipoyl domains and E2 activation described above.
The studies by Popov and coworkers (e.g. [59, 60, 109,
112, 114–116]) have used recombinantly expressed rat
PDK with human and rat components that were
recombinantly expressed.

Stimulation by reductive acetylation of lipoyl groups
and related potent inhibitors

As indicated above, fatty acid catabolism increases the
NADH/NAD+ and acetyl-CoA/CoA ratios. Modest
increases in these product ratios substantially enhance
PDK catalyzed inactivation of PDC, most effectively
by PDK2. These ratios are translated by the reversible
E3 and E2 reactions interconverting the lipoyl groups
between the oxidized, reduced and acetylated forms

[9, 37, 38, 55, 111–113, 131–133]. Stimulation of PDK2
activity results from reduction and acetylation of the
L2 domains of the E2 oligomer (see Fig. 6, below). In
vitro, stimulation can also be achieved by E1-cata-
lyzed reductive acetylation but this rate-limiting
reaction would ordinarily not be a determining factor
for the state of acetylation of lipoyl groups in respiring
mitochondria. Stimulation is only observed in buffers,
containing elevated K+ and Cl� and/or Pi [111, 131]. A
mechanistic basis for the K+ effect is suggested by
recent studies (see below). With free lipoyl domains,
significant stimulation by NADH and acetyl-CoA is
retained with free E1 or a peptide substrate as long as
E3 is available to catalyze lipoyl reduction, and the
lipoyl domain-free inner core of E2 (E2I) is available
to catalyze the acetylation [55, 112]. Just reduction of
the lipoyl group of E2 can give a 1.8-fold increase in
PDK2 activity; acetylation of E2 stimulates PDK2
activity by up to 4-fold [110]. Using E2 structures with
Ala substituted for the Lys residues of L1 and L2 that
undergo lipoylation, nearly the same level of stimu-
lation is retained with E2 in which only the L2 domain
is lipoylated [110]. With just L1 undergoing reductive
acetylation, stimulation of PDK2 is halved, and
stimulation is prevented when lipoylation of L1 and
L2 is prevented by Ala substitutions. Reductive
acetylation of the free L2 monomer gives only a
small stimulation of PDK2 activity but substantial
stimulation is achieved upon acetylating L2 in the
dimeric GST-L2 [110].
With E2 oligomer, maintenance of E2 with all lipoyl

Figure 6. Summary of molecular
mechanisms regulating PDK2 ac-
tivity. At the top, the E3 and E2
reactions are shown acting in the
reverse directions to make re-
duced and reductively acetylated
L2 (Pyr, pyruvate). The other
effects and transitions are as
described in the text.

838 T.E. Roche and Y. Hiromasa Pyruvate dehydrogenase kinase molecular mechanisms



groups in the oxidized state (E2ox) greatly reduces the
capacity of E2 to enhance PDK2 activity [111]. With
E2ox, the fractional increase in activity with reduction
of lipoyl groups is much larger, and then acetylation
gives only modest further activation; however, the
final PDK2-specific activity remains low [111, 113].
The basis for this effect and the lack of full reversibility
even with extended incubation of E2 under reducing
conditions are not fully understood. Treatment of
PDK2 with disulfide reagents also lowers PDK2
activity but this is readily reversed by reducing
conditions [111]. Apparently, the capacity to pass
limited reducing equivalents among lipoyl groups (by
disulfide exchange) maintains E2 lipoyl domains in a
conformational state that aids kinase function.
Product stimulation increases Vmax and the Km for
ATP, whereas with E2ox the reduction in PDK2
activity occurs in association with a greatly reduced
Km for ATP [111]. This trend, in which increases in kcat

also increase the Km for ATP and vice versa, fits an
ordered mechanism in which ATP binds first and the
dissociation of ADP is rate limiting in the absence of
stimulatory effectors [84, 111]. ADP3� complexed
with Mg2+ and K+ at the PDK2 active site slows ADP
dissociation (Fig. 6) [84]. In agreement with this
mechanism, the fractional stimulation by reductive
acetylation increases with the concentration of ATP
until ATP is added at a near saturating level [111].
Significant PDK2 stimulation was also observed using
DBE2 (E2 60mer lacking the E1 binding domain)
[111]. Under conditions of stimulation by reductive
acetylation of DBE2, binding studies revealed some
weakening of the Kd for ATP, but a larger increase in
Kd for ADP. In support of stimulation particularly
enhancing ADP dissociation from PDK2, kinetic
studies (fixed levels of free E1 with ATP varied)
found that Km » Kd for ATP. Other results that fit the
ordered mechanism and effector control of ADP
dissociation are described below.
In the absence of inhibitors, PDK3 activity is not
significantly stimulated by reductive acetylation of
intact E2, but ADP-inhibited PDK3 activity is stimu-
lated by reductive acetylation, which removes all
ADP inhibition [110]. PDK3 activity is also enhanced
by acetylation of free lipoyl domain structures.
Reductively acetylated GST-L2 supports the highest
activity (increases from 80 to 130 nmol·min�1·mg�1)
whereas reductive acetylation of GST-L1 gives by far
the highest fold-increase (from 14 to 95 nmol·-
min�1·mg�1) [110].
High-throughput screening followed by extensive
synthetic refinements generated a potent class of
PDK inhibitors that are amides of trifluoro-2-hy-
droxy-2-menthylpropionate [123–127]. Nov3r was the
first high-potency inhibitor described in this class

[123]. As indicated above, recent studies have estab-
lished that Nov3r and related inhibitors bind tightly to
PDK2 at the site of binding of the lipoyl prosthetic
group of the L2 domain [64]. More specifically, based
on structural alignment, these inhibitors mimic the
acetyl-dihydrolipoyl group (ac-DHL-Lys, Fig. 5).
While these inhibitors prevent binding of PDK2 to
the L2 domain of E2, they do not fully prevent the
residual PDK activity observed in the absence of E2
(i.e. , without E2 supporting PDK access to E1). Potent
inhibition of PDK2 activity requires physiological K+

just as stimulation by reductive acetylation of the
lipoyl group. Lack of K+ led to Mann et al. [134] to
conclude that Nov3r was not a potent inhibitor of
PDK2, but, in fact, PDK2 is the most potently
inhibited among the PDK by this class of inhibitors
[126, 135, 136].
PDK1 activity was only increased by ~2.5-fold by E2
and consequently its activity was only reduced about
60% by Nov3r [126, 135, 136]. PDK3 is less effectively
inhibited by Nov3r than PDK2 because it binds the L2
domain about 100-fold tighter than PDK2 [9]. Sur-
prisingly, PDK4 activity is stimulated by the Nov3r
class of inhibitors [126, 135, 136]. At elevated E1
levels, PDK4 is not activated by binding to E2 (it has a
much lower Km for E1) [128], but PDK4 activity is
stimulated by reductive acetylation of E2 [109, 113,
128]. As the only significant change among four PDKs
in a residues involved in binding Nov3r in PDK2,
PDK4 has a leucine replacing a phenylalanine (Phe28
of PDK2). It seems likely this change coupled to the
capacity of PDK4 to effectively use of E1 in the
absence of E2 explain the marked transition from
potent inhibition by Nov3r to stimulation of PDK4.
Nov3r probably causes changes at the active site that
mimic those induced by a reductively acetylated lipoyl
group binding at the same site. Table 1 compares the
effects of reductive acetylation and Nov3r of the well-
characterized PDK2 and the other PDK isoforms,
based on results from our laboratory.

ADP and pyruvate effects on PDK2: inhibition of
activity, hindering of L2 binding, and induction of
tetramer formation

The potent synergistic inhibition of PDK2 activity,
which is by elevated ADP and pyruvate [83, 84], is a
good indicator of low energy (ADP) and available
PDC substrate (pyruvate). As described in the section
below, strong synergistic inhibition requires both K+

and Pi. Early findings were that pyruvate binds
directly to PDKs [137], and DCA is an effective
analog to replace pyruvate [85]. By not being a
substrate in the E1 reaction, DCA avoids the prob-

Cell. Mol. Life Sci. Vol. 64, 2007 Review Article 839



lems seen with pyruvate of catalytic depletion and
stimulation of PDK activity by being used in the
reductive acetylation of lipoyl groups [131]. Pyruvate
inhibition can be studied with E1 lacking TPP [84] and
pyruvate binding to PDK2 in the absence of E1 and E2
by Trp fluorescence [65].
Fig. 3c shows the location of the binding of DCA along
with ADP and Mg2+ in the active site [64]. ADP and
DCA were crystallized in one structure, whereas the
positioning of Nov3r and the other ligand, designated
Pfz3, are from other PDK2 crystal structures [64].
DCA is bound to the central part of the R domain. In a
space-filled model, bound DCA is almost entirely
enveloped in this DCA/pyruvate binding site. The
carboxyl group of DCA forms a salt bridge with
Arg154; DCA is sandwiched between His115 and
Ile157. Replacement in PDK2 of Ile157 with phenyl-
alanine, as found in PDK3, greatly reduces DCA/
pyruvate inhibition. This is in accord with the very
weak pyruvate/DCA inhibition of PDK3 [109, 110].
In E2-activated PDK2 catalysis in the presence of
physiological ions (importance below), kinetic and
binding studies support an ordered mechanism with
ATP binding first with ATP, in the absence of
effectors, dissociating with a rate constant slower
than kcat [84]. ADP dissociation limits PDK2 catalysis
[84, 111]. The rapid E2-facilitated delivery of PDK2 to
E1 is important for ADP dissociation being the rate-
limiting step. The ordered mechanism with slow ADP
dissociation explains the observed substantially high-
er Km than Kd for ATP. Pyruvate and DCA are
uncompetitive inhibitors with preferential binding to
PDK2·ADP (but also to PDK2·ATP) [84]; this further
slows ADP dissociation, which, in part, explains the
synergistic inhibition of PDK2 by these effectors
(Fig. 6).
Quenching of Trp fluorescence of PDK2 is a partic-
ularly effective means of observing binding of adenine
nucleotides and pyruvate [65]. Under these nonturn-
over conditions, weak pyruvate binding to PDK2 is
observed but ADP decreases the concentration of
pyruvate, giving half-maximal quenching by 150-fold
[63]; this large change is dependent on linked binding
of K+ and Pi binding (see below). All the quenching
due to adenine nucleotides and most of the quenching
due to pyruvate or the combination of ATP/ADP and
pyruvate were caused by quenching of Trp383 (i.e. ,
quenching removed by W383F mutation) [65]. As
indicated above, Trp383 anchors the intersubunit cross
arms in PDK2 (an equivalent Trp anchors the cross
arm in PDK3). The marked quenching by ADP plus
pyruvate may occur in association with displacement
of the cross arm; the cross arm is absent in the PDK2
crystal structure with ADP and DCA bound [64].
Adenine nucleotides (ATPor ADP) reduce somewhat

the binding PDK2 to E2 and more specifically the L2
domain [62, 65, 115]. In the opposite direction,
binding of L2 reduces the affinity of ATP at the active
site [65, 115]. The combination of ADP and pyruvate
cause a marked decrease in binding to GST-L2 [65].
Furthermore, these ligands cause human PDK2 to
self-associate to a tetramer with a Kd of ~7.5 mM [65].
The tetramer has a higher frictional coefficient (1.61
vs 1.39), suggesting it is a looser structure. As indicated
above, these conditions cause marked quenching of
Trp383 and may cause release of the cross arms. Based
on this and complementary hydrophobic and charged
groups in the cross arms, it was suggested that the
released cross arms directly participate in tetramer
formation [65]. The marked reduction in binding of
PDK2 to the L2 domain of E2 due to binding of ADP
and pyruvate (aided by K+ and phosphate) likely
makes a major contribution (beyond slowing ADP
dissociation) to the potent inhibition by these effec-
tors.
Less information is available on the regulation of the
other PDK isoforms (see Table 1). Not only is PDK3
weakly inhibited by pyruvate/DCA but ADP does not
particularly enhance this inhibition [109, 110]. How-
ever, ADP is an effective inhibitor of PDK3 activity
and inhibition is enhanced by Pi [110]. PDK1 and
PDK4 are more sensitive than PDK3 to pyruvate/
DCA inhibition but less sensitive than PDK2 [109,
127, 128].
With the intention of developing high-affinity inhib-
itors that bind at the DCA site, Espinal et al. [134]
developed compounds with a 2,2-dichloroacetophe-
none (DCAP) core structure and tested these for
inhibition of PDKs associated with bovine purified
heart PDC. Minimal evidence was presented that
these compounds indeed bind at the DCA/pyruvate
site. Like DCA, one compound (p-methyl-DCAP, IC50

= 1 mM) appeared to be an uncompetitive inhibitor
versus ATP [138]. One study comparing the effects of
DCAP on the different PDKs did not include K+ and
Pi [134], which have marked effects on inhibition of
PDK2 by pyruvate and DCA [84].
Fig. 3c also shows the inhibitor Pfz3 bound at a third
site in the R domain of PDK2 [64]. This inhibitor was
found in screening inhibition of PDK associated with
porcine PDK2. It is suggested that this inhibitor may
be acting as an analog of CoA (structural comparison,
Fig. 5). Direct inhibition, but only to a small extent, of
human PDK2 by CoA has been observed [84]. For
CoA to bind where Pfz3 binds, it would have to enter
from the other side of the R domain with the adenine
portion of CoA near the active site cleft. A potential
opening for binding of CoA may form from the
pyrophosphate portion of CoA displacing Glu128
[64].
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Key role of binding of K+ and Pi in effector regulation
and changes in structure and oligomeric state of PDK2

Mitochondria contain high levels of K+ (100–
130 mM). With undefined bovine PDK associated
with kidney PDC (PDK2 and PDK3 indicated in later
immunoblot studies), the Km for ATP is decreased and
ADP inhibition is enhanced by elevating K+ ion levels
[139]. Pyruvate inhibition is increased both by this
condition and by Pi anion [83, 84], and stimulation by
NADH and acetyl-CoA requires and is increased with
concentration of KCl or KxPO4 [131]. These effects
and requirements were confirmed in studies with
human PDK2 [84, 111]. Indeed, no stimulation by
NADH and acetyl-CoA was observed unless both K+

and at least one anion (Pi or Cl�) were included in
assay mixtures [111].
ATP can be captured at the active site by a cold-
trapping procedure in which PDK2 is transferred and
diluted in cold potassium phosphate buffer and then
collected on Millipore filter [84]. ATP quenching of
Trp fluorescence of PDK2 gave a similar low apparent
Kd of 3.5 mM ATP [65]. This high-affinity binding
requires K+ binding. Using Trp fluorescence, we have
been able to demonstrate a coupling effect of ~65 for
binding of K+ and ATP (i.e. , change in the ratio of the
equilibrium binding dissociation constants without
versus with a saturating level of the other ligand bound
[140]). In Fig. 4, left, arrows point to K+ bound at the
active site that are directly chelated by an oxygen of
the a-phosphate of ATP and by other residues in the
active site [63]. Similar binding was observed with
ADP [63]. Ligand-induced changes in K+ binding
were proposed based on PDK2 structures [64]. Using
Trp fluorescence, we have obtained direct evidence
that K+ is required for tight binding of ADP, for
greatly enhancing binding by pyruvate, and for addi-
tional Pi binding that by these sequential equilibria
captures ADP and pyruvate on PDK2. Interestingly,
the conversion of PDK2 to a tetramer (above) upon
binding of ADP and pyruvate requires K+ and is
markedly enhanced by Pi anion. Therefore, potent
inhibition of PDK2 activity by pyruvate results from
simultaneous binding of K+ and Pi that stabilizes the
dead-end complex (Fig. 6); formation of this dead-end
complex also greatly hinders binding of PDK2 to the
L2 domain and fosters PDK2 dimers associating to
form a tetramer (Fig. 6).
A comparison of PDK2 crystal structures supports a
hinge movement between the Cat and R domains of
PDK2 that leads to opening of the active site cleft and
reduction of the spacing in the trough region upon
formation of the intersubunit cross arm [64]. A similar
conformational change comparing the rat
PDK2·ADP and PDK3·L2 structures was attributed

to PDK3 binding the L2 domain [63]. L2 binding
would capture and greatly stabilize the cross arm, and
therefore stabilize the more open active site cavity.
The induction of a more open active site is predicted to
contribute to enhanced kinase activity due to favor-
able binding of the E1 substrate and weaker binding of
ADP.
Stimulation by reductive acetylation was shown to
speed up ADP dissociation and to raise the apparent
Km for ATP. Transitions in the active site region of
PDK2 with Nov3r (a mimic of acetyl-dihydrolipoyl
group) fit weaker binding of K+ [64]. Direct evidence
for this effect needs to be obtained. Interlinked
mechanisms for inhibition and stimulation of PDK2
are shown in Fig. 6. Inhibitory conditions slow the
release of ADP from the active site by favoring
formation of ADP·Mg·K complex. This further favors
binding of pyruvate and Pi, which is linked to the
closing of the active site cleft and loss of the
intersubunit cross arm and acquisition of the capacity
to form a tetramer [65, 84]. With E2-favored catalysis,
cross arm formation is stabilized and supports binding
to and movement of PDK2 between the L2 domains of
E2 to efficiently access E1. These conditions also
support an open active site cavity that favors E1
binding and somewhat weakened ADP binding [64].
Stimulation by reductive acetylation of L2 induces
conformational changes that weaken K+ interactions
with PDK2 and bound ATP or ADP at the active site,
thereby greatly speeding up dissociation of ADP [62].

Activation of PDC by PDK inhibition for treating
diabetes, heart disease, and cancer

Diabetes
As indicated above, extended starvation precipitates
PDC activity, which is emphatically suppressed in
most tissues by overexpressing PDK4. The same
regulatory control severely confines PDC activity in
diabetic animals, obstructing consumption of abun-
dant glucose [6–9, 86–88, 93, 96]. This contributes to
elevated blood glucose and protein glycation, which
causes damage to the vascular system [141–144].
Glucose oxidation is also decreased in obese individ-
uals (including man); in studies with obese rats and
mice, this is linked to a low percentage of the PDC
being in the active form, at least in part due to insulin
resistance [1, 3, 4, 6, 32]. The potential therapeutic
value of tissue-targeted control of PDK expression
and the potential value of therapeutic interventions to
reduce PDK4 expression in muscle in insulin resist-
ance has been proposed [106]. However, beyond
insulin, a specific intervention for reducing PDK4
expression (such as a PPARa agonist) has not been
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described. Use of PDK inhibitors to elevate PDC
activity and thereby promote glucose disposal in
peripheral tissues of diabetic animals has been pur-
sued as a therapeutic approach. Initial studies using
DCA were encouraging [145], but this compound is a
weak PDK inhibitor and a toxic metabolite [146–148].
With the objective of designing potent drugs to
increase the metabolic use of glucose in individuals
with type II diabetes, Glaxo [134], Novartis [123–125,
149], AstraZeneca [126, 135, 136], and Pfizer [64]
have produced PDK inhibitors. Novartis and Astra-
Zeneca developed the class of tight-binding inhibitors
that are amides of trifluoro-2-hydroxy-2-methylpro-
pionic acid [123-126, 135, 136]. As indicated above,
these inhibitors, including Nov3r and AZD7545, bind
at the lipoyl group binding site and effectively increase
PDC activity. As a consequence of increasing PDCa,
inhibitors in this class (AZD7545, compound K) were
shown to reduce blood glucose in obese Zucker fa/fa
rats, a model for the early stages of type II diabetes [15,
16]. Interestingly, as indicated above, this class of
inhibitors actually stimulates the activity of PDK4
[126, 135, 136].
Concerns with inhibiting PDK2, which is universally
distributed in body tissues, include that activation of
PDC in some tissues may be deleterious or that PDK4
overexpression will override the effects of PDK2
inhibition. While PDK4 overexpression is well docu-
mented in association with type I diabetes, the
situation in type II diabetes is less clear. It has been
reported in obese Zucker rats that levels of expression
of PDK2 and PDK4 in liver and skeletal muscle are
similar to those found in lean rats [150]. A similar
pattern of expression of PDK4 was also observed in
hyperglycemic human patients [151]. However, there
was increased PDK2 and PDK4 expression in the
Otsuka Long-Evans Tokushima Fatty rat [152]. In-
hibition of PDK2 not only favors glucose use by
muscle tissues, including heart, but PDK2 is the
primary PDK of liver [30, 87, 109]. Activation of
liver PDC acts in opposition to liver gluconeogenesis,
which proceeds in diabetic patients even though
blood glucose is elevated. Another potential advant-
age of selective PDK2 activation is that retention of
PDK4 activity allows it to serve as a back-up,
preventing depletion of blood glucose during ex-
tended periods of diminished dietary intake of
glucose.
Because the role of liver PDC is fatty acid biosynthesis
and PDK2 is also the primary PDK in adipose tissue, a
potential concern with PDK2 inhibition is increasing
fat synthesis from glucose. In agreement with the
specificity for inhibiting PDK2 [126] by AZD7545 or
compound K, the increase in PDC activity in fasted
rats is tempered in muscle tissues (60% PDCa) but

rises to a high level in liver (90% PDCa) [16].
However, in addition to lowering blood glucose as
effectively as rosiglitazone, a 4week treatment of
obese (fa/fa) Zucker rats with AZD7545 had no effect
on food intake or body weight gain [16]. In contrast,
rosiglitazone caused weight gain in the same study
[16], in agreement with previous results with Zucker
rats [153] or human patients [154]. Apparently,
increased glucose conversion to fatty acids upon
activation of PDC is being prevented by upstream
regulation, probably, in part, by retention of low
phosphofructokinase activity.

Heart disease
Particularly in heart muscle, it is important to dampen
PDC activity under low energy demand/nonstress
conditions, and to gear up PDC activity when use of
carbohydrate is needed to meet energy demands (e.g. ,
due to increased activity or medical conditions such as
partial ischemia or in postischemic myocardium) [17–
22, 155, 156]. Activation of PDC by inhibiting PDK
activity has been a useful therapeutic target for
avoiding cardiomyopathy, particularly during heart
surgery or partial ischemia [17–22, 155–163]. Fatty
acids are the primary mitochondrial substrate during
moderately severe ischemia [1, 4, 8, 20, 164]. While
glycolysis remains active, use of fatty acids favors PDC
being converted to the inactive form. Ischemia, in
turn, causes pyruvate to be converted to lactate,
thereby increasing the acidification within the myo-
cardium [155, 156, 164]. This disruption in cell
homeostasis causes a decrease in ATP and poor Ca2+

uptake by the sarcoplasmic reticulum [19, 156–158].
To date, PDK inhibition by DCA has been the primary
means of drug intervention to directly activate PDC.
However, use of the combination of glucose-insulin-
K+ or inhibiting fatty acid oxidation (e.g. , trimetazi-
dine or ranalozine) also beneficially increases PDCa
[21, 161–163].
Interventions aimed at activating PDC in postische-
mic myocardium (primarily with rat hearts) give
variable results depending on the reperfusion con-
ditions [19, 159, 165–169]. The change in glucose
oxidation depends both on the length of time of the
ischemic shut down and the substrate/inhibitor con-
ditions used in the reperfusion media. Inclusion of
fatty acids along with glucose decreased responsive-
ness compared to use of glucose as the sole substrate.
Increasing pyruvate has also been shown to improve
the mechanical performance of the heart under
normoxic and postischemic conditions [21, 170–175].
Preferential use of external pyruvate over glucose or
lactate was enhanced by insulin or DCA [21]. A direct
effect of insulin in increasing PDCa is probably due to
PDP2 activation. PDP2 is found in heart but is
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decreased by starvation [101]. Known regulation
predicts very low PDP2 activity without insulin.
While highly beneficial for myocardial ischemia, DCA
has toxic side effects [145–148]. Testing of the more
potent Nov3r class of inhibitors for reducing compli-
cations due to lactate build-up during heart ischemia
seems warranted. Increasing mitochondrial Ca2+ has
been shown to be a critical event for PDC activation
upon reperfusion of ischemic hearts [176–181]. There-
fore, activation of PDP1 is also a critical event for
lowering lactate levels.

Cancer
A longstanding observation is the development of so-
called Warburg metabolism in a wide range of cancers
[182, 183]. Similar to anaerobic muscle, glucose is
converted through glycolysis to lactate, which is
secreted. Partial hypoxia in poorly oxygenated solid
tumors serves as a plausible rationale for this mode of
metabolism in some cancers. However, Warburg
metabolism is also found in some well-oxygenated
cancer cells [183–189]. Whether under hypoxic or
aerobic conditions, the reliance on glycolysis is
associated with increased malignancy. Recent studies
suggest that forcing cells into more aerobic metabo-
lism suppresses cancer growth [25, 186–189]. Whereas
continuously dividing cells allows fatty acids and
amino acids to be directed to membrane and protein
synthesis, respectively, the logic for cancer cells
establishing this low efficiency metabolism is not
well understood. Certainly, full oxidative use of
glucose is a more efficient way of generating ATP in
well-oxygenated cells. Regardless of the rationale, the
transition to Warburg metabolism requires shutting
down of the PDC reaction.
In the transition to Warburg metabolism, there is
enhanced signaling by the hypoxia-inducing factor
(HIF) in cancer cells [188–192]. Indeed, mutations
that directly or indirectly instigate HIF signaling
appears to be a common transition in the development
of cancer [190–192]. Two recent studies [23, 24]
demonstrated that HIF induces the overexpression
of PDK1, which then acts to lower PDC activity.
PDK1 phosphorylation can be particularly effective
for maintaining inactive PDC since this isoform
uniquely phosphorylates three serine residues in the
alpha subunit of E1 [113, 193]. Reactivation of E1
requires the removal of all three phosphate groups.
Selectively blocking HIF-induced expression of
PDK1 induced apoptosis in the cancer cells [23, 24].
One study emphasized oxygen depletion due to
activation of PDC as the cause of apoptosis [23].
The other study emphasized that PDC activation led
to enhanced production of reactive oxygen species
(ROS) and suggested that this induced apoptosis [24].

Whether oxygen depletion or ROS production, both
studies supported selective PDC activation as a
sufficient change to induce apoptosis. Inhibition of
PDK1 and possibly other PDK isoforms would appear
to be a potential target for killing cancer cells. The
Nov3r-class inhibitors are high-affinity inhibitors of
PDK1, but maximally cause only 60% inhibition of
this isoform [126]. The reason for this is that the low
(2.5-fold) activation of PDK1 by E2 is being prevent-
ed. PDK3 can also be induced by HIF [23]. Since many
cancers utilize Warburg metabolism, the development
of potent PDK1 and PDK3 inhibitors may provide a
powerful approach for killing or, at least, greatly
slowing the growth of many forms of cancer.

Conclusions

Varied control of PDC activity is needed to regulate
the conversion of carbohydrate to energy or fat in
mammalian tissues. The dedicated PDK/PDP system
responds to metabolite and hormone signals to vary
PDC activity in response to changes nutritional state.
Based on advanced insights into the structure and
mechanisms of short-term effector regulation, PDK2
function and control is delineated. The activity of this
most widely distributed PDK is facilitated by its
bifunctional binding to and movement among the L2
lipoyl domains of the E2 component; this process
provides PDK2 with efficient access to its E1 sub-
strate. At a domain level, the structural basis for
PDK2 binding L2 and its lipoyl cofactor is described.
Metabolic conditions favoring fatty acids or ketone
bodies being the major energy source in a tissue favor
reductive acetylation of L2, which leads to enhanced
PDK2 activity in association with stronger binding to
L2 and an increased rate of ADP dissociation. Low
energy and a sufficiency of carbohydrate favor PDC
activation via PDK2 inhibition that involves binding
of pyruvate and Pi enforcing ADP binding. A key
feature in making ADP dissociation the rate-limiting
step is chelation of K+ by bound ADP. We suggest that
stimulation displaces K+ and inhibition enforces
retention of the PDK2·ADP·K+ complex via the
favored binding of additional ligands (pyruvate and
phosphate). The binding of the full set of inhibitory
ligands prevents binding to L2 and causes PDK2 to
associate to a tetramer. Based on Trp fluorescence
studies, tetramer formation is suggested to occur in
association with release of an intersubunit cross arm in
PDK2 that is anchored at the other subunit via Trp383.
Some tight-binding inhibitors of PDK have been
developed for use in preventing glucose depletion in
insulin-resistant diabetes and damage due to lactic
acid production in ischemic heart. Recent studies
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support the potential for using PDK inhibitors to
induce apoptosis in cancer cells operating with War-
burg metabolism.
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