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Abstract. Crofton’s formula of integral geometry evaluates the total mo-
tion invariant measure of the set of k-dimensional planes having nonempty
intersection with a given convex body. This note deals with motion in-
variant measures on sets of pairs of hyperplanes or lines meeting a convex
body. Particularly simple results are obtained if, and only if, the given
body is of constant width in the first case, and of constant brightness in
the second case.
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1. Introduction. More than 150 years ago, Crofton [1] proved that the total
motion invariant measure of the set of lines meeting a given convex body K in
the Euclidean plane is equal to the boundary length L(K) of K, multiplied by
a factor that depends only on the normalization of the measure. Nowadays, a
generalization of this result, known as ‘Crofton’s formula’ in integral geometry,
may be written as∫

A(d,k)

V0(K ∩ E)μk(dE) = cdkVd−k(K), k = 1, . . . , d − 1,

for K ∈ Kd, the set of convex bodies (nonempty compact convex sets) in
Euclidean space Rd. Here A(d, k) is the space of k-dimensional affine subspaces
of Rd with its usual topology, μk is its motion invariant measure with a suitable
normalization, and the constant cdk depends on this normalization. We refer
to [8, (4.59)] or [9, Thm. 5.1.1] for more details and a more general formula.
The functionals V0, . . . , Vd−1 are the intrinsic volumes, which can be defined
by the Steiner formula
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Vd(K + λBd) =
d∑

k=0

λd−kκd−kVk(K), λ ≥ 0,

where Vd denotes the volume, Bd is the unit ball of Rd, and κd = Vd(Bd) (see,
e.g., [8, Section 4.1]). In particular, V0(K) = 1 for every convex body K, and if
one extends this by defining V0(∅) = 0, then V0 = χ is the Euler characteristic
on Kd ∪ {∅}. Further, cdV1 = W with cd = 2κd−1/(dκd) is the mean width,
and 2Vd−1 = S is the surface area. With the usual normalization, we can write
two special cases of the Crofton formula as∫

A(d,d−1)

χ(H ∩ K)μd−1(dH) = W (K) (1)

and ∫

A(d,1)

χ(G ∩ K)μ1(dG) = 2cdS(K). (2)

In the plane, both formulas (1) and (2) yield the same, namely Crofton’s
original formula.

Recently, Cuf́ı, Gallego, and Reventós [2] have computed certain motion
invariant measures of pairs of lines meeting a planar convex body. They con-
sider measures on pairs of lines in the plane which with respect to the product
μ1 ⊗ μ1 of the invariant line measure μ1 have a density that depends only on
the angle between the lines. More precisely, let f : R → R be a function which
is even, π-periodic, and integrable over [0, π]. For a line G in the plane, let
ϕ(G) be the angle that it makes with a fixed direction. Then the article [2]
treats (with different notation) the integral

I(K, f) :=
∫

A(2,1)

∫

A(2,1)

χ(G1∩K)χ(G2∩K)f(ϕ(G1)−ϕ(G2))μ1(dG1)μ1(dG2).

The authors express this integral in terms of the Fourier coefficients of f and
of the support function of K. While aiming at various consequences, they note
that for a body K of constant width, one has the simple formula

I(K, f) = λ[f ]L(K)2, (3)

where the constant λ[f ] depends only on f , and hence is given by λ[f ] =
I(B2, f)/(4π2). We recall that the width of a convex body K ∈ Kd at a unit
vector u is the distance of the two supporting hyperplanes of K orthogonal to
u.

In the following, we extend the preceding observations to higher dimensions,
in two different ways, considering either hyperplanes or lines. We prove also a
converse to the higher-dimensional version of (3). A main goal is to assume only
invariance properties of the underlying measures, and not a specific analytic
representation involving a density with respect to μk⊗μk. To make this precise,
we recall that A(d, k) is the space of k-dimensional planes in R

d, with its usual
topology, and by G(d, k) we denote the Grassmannian of k-dimensional linear
subspaces of Rd (for k ∈ {1, . . . , d−1}). For a topological space X, we denote by
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B(X) the σ-algebra of Borel subsets of X. Measures in the following, without
further specification, are Borel measures. Let μ be a measure on A(d, k)2. The
measure μ is called separately translation invariant if for any B ∈ B(A(d, k)2)
and x1, x2 ∈ R

d, the relation μ({(L1 + x1, L2 + x2) : (L1, L2) ∈ B}) = μ(B)
is satisfied. We denote by G(d) the group SO(d) if d is even and the group
O(d) if d is odd. The measure μ is called jointly G(d)-invariant if for any
B ∈ B(A(d, k)2) and any ϑ ∈ G(d), we have μ(ϑB) = μ(B), where ϑB :=
{(ϑL1, ϑL2) : (L1, L2) ∈ B}. A similar definition is used for measures on
G(d, k)2 or on (Sd−1)2, where S

d−1 is the unit sphere. By Mk we denote the
set of locally finite Borel measures on A(d, k)2 which are separately translation
invariant, jointly G(d)-invariant, and symmetric, that is, invariant under the
mapping (L1, L2) 	→ (L2, L1).

More generally, we can consider two convex bodies K1,K2 ∈ Kd. Let Θ be
a locally finite measure on the space A(d, d−1)2 of pairs of hyperplanes. Then
we define

I(K1,K2,Θ) := Θ({(H1,H2) ∈ A(d, d − 1)2 : Hi ∩ Ki 
= ∅ (i = 1, 2)}).

Similarly, with a locally finite measure Θ on the space A(d, 1)2 of pairs of lines,
we define

J(K1,K2,Θ) := Θ({(G1, G2) ∈ A(d, 1)2 : Gi ∩ Ki 
= ∅ (i = 1, 2)}).

We write I(K,Θ) := I(K,K,Θ) and J(K,Θ) := J(K,K,Θ).
If Θ ∈ Mi for i = d − 1, respectively i = 1, general expressions for the

quantities I(K1,K2,Θ), J(K1,K2,Θ) will be given in Theorem 6. This theorem
requires some preparations, therefore it will be formulated only in Section 4.
Already here we can state the following.

Theorem 1. Let K1,K2 ∈ Kd, and let Θ be a locally finite measure on A(d, d−
1)2 which is separately translation invariant. If K1,K2 are bodies of constant
width, then

I(K1,K2,Θ) = λ[Θ]W (K1)W (K2) with λ[Θ] := I(Bd,Θ)/4. (4)

The following theorem shows that convex bodies of constant width neces-
sarily enter the scene in this situation.

Theorem 2. If a convex body K ∈ Kd satisfies

I(K,Θ) = λ[Θ]W (K)2 with λ[Θ] := I(Bd,Θ)/4 (5)

for each measure Θ ∈ Md−1, then K has constant width.

As the proof will show, relation (5) is only required for a subclass of the
set of measures in Md−1. A similar remark applies to Theorem 4.

Instead of affine subspaces of codimension one, we can also consider affine
subspaces of dimension one. In that case, the role of the width is taken over
by the brightness. The brightness of a convex body K ∈ Kd at a unit vector
u is the (d − 1)-dimensional volume of the orthogonal projection of K to a
hyperplane orthogonal to u.
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Theorem 3. Let K ∈ Kd, and let Θ be a locally finite measure on A(d, 1)2

which is separately translation invariant. If K1,K2 are bodies of constant
brightness, then

J(K1,K2,Θ) = κ[Θ]S(K1)S(K2) with κ[Θ] := J(Bd,Θ)/S(Bd)2. (6)

Theorem 4. If a convex body K ∈ Kd satisfies

J(K,Θ) = κ[Θ]S(K)2 with κ[Θ] := J(Bd,Θ)/S(Bd)2 (7)

for each measure Θ ∈ M1, then K has constant brightness.

If Θ ∈ Md−1, then (4) holds already if only one of the two convex bodies
is of constant width.

Theorem 5. Let K1,K2 ∈ Kd, and let Θ ∈ Md−1. If K1 is a body of constant
width, then

I(K1,K2,Θ) = λ[Θ]W (K1)W (K2) with λ[Θ] := I(Bd,Θ)/4. (8)

Again, there is also an analogous counterpart to equation (6), which we do
not formulate.

Concerning bodies of constant width in general, we refer to the recent com-
prehensive monograph [5] by Martini, Montejano, and Oliveros. Information on
bodies of constant brightness can be found in Gardner’s book [3], in particular
Section 3.2 and its notes.

That equation (4) holds for bodies of constant width and (6) holds for
bodies of constant brightness, follows easily in the next section, once the sep-
arately translation invariant measures on A(d, k)2 have been found to have a
special form. Theorems 2, 4, and 5 will be proved in Section 4, after Theo-
rem 6 has been treated. Before that, we need to find analytic representations
for the measures under consideration; these will be established in the next two
sections.

2. Separately translation invariant measures. The following lemma, which is
formulated for general k, allows us to deal easily with translations. Here we
denote by λL the j-dimensional Lebesgue measure in a subspace L ∈ G(d, j).

Lemma 1. Let k ∈ {1, . . . , d−1}. Let Θ be a locally finite, separately translation
invariant measure on A(d, k)2. Then there exists a uniquely determined finite
measure Θ0 on G(d, k)2 such that

Θ(A) =
∫

G(d,k)2

∫

L⊥
1

∫

L⊥
2

1A(L1 + x1, L2 + x2)λL⊥
2
(dx2)λL⊥

1
(dx1)Θ0(d(L1, L2))

(9)

for every Borel set A ⊂ A(d, k)2. If Θ is jointly G(d)-invariant and symmetric,
then Θ0 is jointly G(d)-invariant and symmetric.

Proof. This can be shown in an elementary way by modifying the proof of
[9, Thm. 4.4.1]. We reproduce part of the proof, to indicate the necessary
modifications.
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We choose a (d − k)-dimensional subspace U ∈ G(d, d − k), and define

GU := {L ∈ G(d, k) : dim (L ∩ U) = 0}, AU := {L + x : L ∈ GU , x ∈ U}.

The mapping ϕ : G2
U × U2 → A2

U , (L1, L2, x1, x2) 	→ (L1 + x1, L2 + x2),
is a homeomorphism. We fix A ∈ B(G2

U ), and for B ∈ B(U2), we define
η(B) := Θ(ϕ(A × B)). Then η is a locally finite and translation invariant
measure on U2, hence it is a constant multiple of the product measure λU ⊗λU .
Denoting the factor by ρ(A), we thus have

Θ(ϕ(A × B)) = ρ(A)(λU ⊗ λU )(B).

Evidently, ρ is a finite measure on G2
U . Thus, ϕ−1(Θ)(A × B) = (ρ ⊗ λU ⊗

λU )(A × B), where ϕ−1(Θ) denotes the image measure of Θ A2
U under the

mapping ϕ−1. This gives ϕ−1(Θ) = ρ ⊗ λU ⊗ λU and, therefore, Θ A2
U =

ϕ(ρ⊗λU⊗λU ). Hence, for every nonnegative measurable function f on A(d, k)2,
we have∫

A2
U

f dΘ =
∫

G2
U×U2

(f ◦ ϕ) d(ρ ⊗ λU ⊗ λU )

=
∫

G2
U

∫

U2

f(L1 + x1, L2 + x2)λ2
U (d(x1, x2)) ρ(d(L1, L2)).

For given L ∈ GU , let ΠL : U → L⊥ denote the orthogonal projection
to the orthogonal complement of L. It is bijective since L ∈ GU . Therefore,
ΠL(λU ) = a(L)λL⊥ , with a factor a(L) > 0 that depends only on L. Further,
L + x = L + ΠL(x). This yields∫

U2

f(L1 + x1, L2 + x2)λ2
U (d(x1, x2))

= a(L1)a(L2)
∫

L⊥
1

∫

L⊥
2

f(L1 + x1, L2 + x2)λL⊥
2
(dx2)λL⊥

1
(dx1).

Defining a measure ΘU on G2
U by a(L1)a(L2)ρ(d(L1, L2)) =: ΘU (d(L1, L2)),

we have∫

A2
U

f dΘ =
∫

G2
U

∫

L⊥
1

∫

L⊥
2

f(L1 + x1, L2 + x2)λL⊥
2
(dx2)λL⊥

1
(dx1)ΘU (d(L1, L2)).

It is now clear from the rest of the proof of [9, Thm. 4.4.1] how one has to
proceed to obtain the measure Θ0 satisfying (9).

From (9), we obtain, for A ∈ B(G(d, k)2),

Θ0(A) =
1

κ2
d−k

Θ
({

(L1 + x1, L2 + x2) : (L1, L2) ∈ A, xi ∈ Bd (i = 1, 2)
})

.

(10)

From this equation, it is obvious that Θ0 is finite and uniquely determined.
We also see that Θ0 is jointly G(d)-invariant and symmetric if this holds for
Θ. �
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For K ∈ Kd and u ∈ S
d−1, let wK(u) be the width of K at u. Moreover,

for H ∈ G(d, d − 1), we denote by u(H) one of the two unit normal vectors of
H. If Ki ∈ Kd for i = 1, 2 and Θ satisfies the assumptions of Lemma 1, then
this lemma yields

I(K1,K2,Θ) =
∫

G(d,d−1)2

∫

H⊥
1

∫

H⊥
2

1{(H1 + x1)∩K1 
= ∅}1{(H2 + x2) ∩ K2 
= ∅}

λH⊥
2

(dx2)λH⊥
1

(dx1)Θ0(d(H1,H2))

=
∫

G(d,d−1)2

wK1(u(H1))wK2(u(H2))Θ0(d(H1,H2)). (11)

If now Ki is of constant width wKi
= W (Ki) for i = 1, 2, then this gives

I(K1,K2,Θ) = W (K1)W (K2)
∫

G(d,d−1)2

Θ0(d(H1,H2)),

which is (4).
Relation (6) is obtained similarly, replacing the width function by the

brightness function and noting that the surface area of a convex body is, up
to a dimension-dependent factor, the mean value of its brightness function.

3. The measures in Md−1 or M1. Our next aim is to obtain an analytic
representation for jointly G(d)-invariant measures on pairs of points on the
unit sphere S

d−1. By σ we denote the spherical Lebesgue measure on S
d−1.

For u ∈ S
d−1 and t ∈ [−1, 1], let Su,t := {x ∈ S

d−1 : 〈u, x〉 = t}. For t ∈ (−1, 1),
we denote by σu,t the normalized spherical Lebesgue measure on the (d − 2)-
sphere Su,t. For t ∈ {−1, 1}, the measure σu,t is the Dirac measure at −u,
respectively u. The measures σu,t are considered as measures on S

d−1.

Lemma 2. Let M be a finite, jointly G(d)-invariant measure on (Sd−1)2. Then
there is a unique finite, even measure ψ on [−1, 1] such that∫

(Sd−1)2

f dM =
∫

Sd−1

∫

[−1,1]

∫

Su,t

f(u, v)σu,t(dv)ψ(dt)σ(du) (12)

for every nonnegative, measurable function f on (Sd−1)2.

Proof. We use a result of Kallenberg on the existence of invariant disintegra-
tions. It follows from [4, Thm. 3.5] (with S = T = S

d−1 and ν := M(·×S
d−1))

that M = ν ⊗ μ (which is explained in (13)), where μ is a G(d)-invariant fi-
nite kernel from S

d−1 to S
d−1. We note that from M = ν ⊗ μ it follows that

ν =
∫
1{s ∈ ·}μ(s, T ) ν(ds), which implies that μ(s, T ) = 1 for ν-almost all

s ∈ S. (A similar observation will be used below. In the present case, we may
remark that, since G(d) acts transitively on S and ϑ(T ) = T for each ϑ ∈ G(d),
we even have μ(s, T ) = 1 for all s ∈ S.) Since ν is a finite, rotation invariant
Borel measure on S

d−1, it is a constant multiple of the spherical Lebesgue mea-



Vol. 115 (2020) Integral geometry of pairs of hyperplanes or lines 345

sure σ. Assuming that M 
≡ 0, we can choose ν = σ, absorbing the constant
into μ. Then M = ν ⊗ μ means that∫

(Sd−1)2

f dM =
∫

Sd−1

∫

Sd−1

f(u, v)μ(u,dv)σ(du) (13)

for every nonnegative, measurable function f on (Sd−1)2. Here μ : S
d−1 ×

B(Sd−1) → [0,∞) is a kernel, that is, a mapping such that μ(u, ·) is a (finite)
measure for each u ∈ S

d−1 and μ(·, A) is measurable for each A ∈ B(Sd−1).
The G(d)-invariance of μ means that

μ(ϑu, ϑA) = μ(u,A) for u ∈ S
d−1, A ∈ B(Sd−1), ϑ ∈ G(d).

We fix u ∈ S
d−1 and define the map pu : Sd−1 → [−1, 1] by pu(v) := 〈u, v〉.

By ψu = pu(μ(u, ·)) we denote the image measure of μ(u, ·) under pu.
First we show that ψu is independent of u. Let ϑ ∈ G(d). For u, v ∈ S

d−1, we
have pϑu(v) = 〈ϑu, v〉 = 〈u, ϑ−1v〉 = pu(ϑ−1v) and hence, for A ∈ B([−1, 1]),

x ∈ p−1
ϑu (A) ⇔ pϑu(x) ∈ A ⇔ pu(ϑ−1x) ∈ A ⇔ ϑ−1x ∈ p−1

u (A)

⇔ x ∈ ϑp−1
u (A),

thus p−1
ϑu (A) = ϑp−1

u (A). This gives

ψϑu(A) = μ(ϑu, p−1
ϑu (A)) = μ(ϑu, ϑp−1

u (A)) = μ(u, p−1
u (A)) = ψu(A).

Therefore, we can from now on write ψu =: ψ.
By the independence just shown, and since the reflection in the origin is in

G(d), we also have

ψ(−A) = ψ−u(−A) = μ(−u, p−1
−u(−A)) = μ(−u,−p−1

u (A))

= μ(u, p−1
u (A)) = ψ(A),

thus the measure ψ is even.
Now we further disintegrate the measure μ(u, ·). Let q : S

d−1 → S
d−1

denote the identity map. Then the image measure M := (pu × q)(μ(u, ·))
is a finite Borel measure on [−1, 1] × S

d−1. We define the operations of the
subgroup Gu(d) := {ϑ ∈ G(d) : ϑ(u) = u} of G(d) on [−1, 1] as the identity
and on S

d−1 in the usual way. Then it is easy to check that (pu × q)(μ(u, ·)) is
jointly invariant under Gu(d). Hence, by another application of Kallenberg’s
disintegration result (with S = [−1, 1], T = S

d−1, ν = M(· × S
d−1) = ψ), we

obtain (pu×q)(μ(u, ·)) = ψ⊗κu, where κu : [−1, 1] → S
d−1 is a Gu(d)-invariant

kernel such that∫

Sd−1

h(〈u, v〉, v)μ(u,dv) =
∫

[−1,1]

∫

Sd−1

h(t, v)κu(t,dv)ψ(dt) (14)

for every nonnegative, measurable function h on [−1, 1]×S
d−1. As noted above,

for ψ-almost all t ∈ [−1, 1], the measure κu(t, ·) is a probability measure, and
by (14), it is (for almost all t) concentrated on Su,t and invariant under Gu(d).

For t ∈ (−1, 1), this measure is supported by the sphere Su,t, hence for
ψ-almost all t ∈ (−1, 1), it is a constant multiple of the spherical Lebesgue
measure on this sphere, thus κu(t, ·) = c(u, t)σu,t. Since κu(t, ·) is a probability
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measure, c(u, t) = c(t) is independent of u for ψ-almost all t ∈ (−1, 1). With
c(±1) := 1, the latter relation holds also for t ∈ {−1, 1}. Since κu(·,Sd−1)
is measurable, this defines a measurable function c (ψ-almost everywhere on
[−1, 1]). In particular, for each nonnegative, measurable function g on S

d−1,
we get ∫

Sd−1

g dμ(u, ·) =
∫

[−1,1]

∫

Su,t

g(y)σu,t(dy)c(t)ψ(dt),

and after redefining the measure ψ, we can write∫

Sd−1

g dμ(u, ·) =
∫

[−1,1]

∫

Su,t

g(y)σu,t(dy)ψ(dt).

Together with (13) (and f(u, v) = g(v)), this yields the assertion of the lemma.
The uniqueness of ψ follows from (12) by choosing f(u, v) = g(〈u, v〉) with

an arbitrary nonnegative, measurable function g : [−1, 1] → [0,∞). In fact,
with this choice, we obtain∫

(Sd−1)2

g(〈u, v〉)M(d(u, v)) =
∫

Sd−1

∫

[−1,1]

∫

Su,t

g(〈u, v〉)σu,t(dv)ψ(dt)σ(du)

=
∫

Sd−1

∫

[−1,1]

∫

Su,t

g(t)σu,t(dv)ψ(dt)σ(du)

= dκd

∫

[−1,1]

g(t)ψ(dt)

since σu,t(Su,t) = 1 and σ(Sd−1) = dκd. Hence, for M as in the statement of
the lemma, the measure ψ is uniquely determined by (12). �

Now let Θ0 be a finite, jointly G(d)-invariant, and symmetric measure on
G(d, d−1)2. A set B ∈ B((Sd−1)2) is (for the moment) called small if (u, v) ∈ B
implies (−u,w) /∈ B and (w,−v) /∈ B for all w ∈ S

d−1. Let B be small. We
define

M(B) := Θ0

({
(u⊥, v⊥) ∈ G(d, d − 1)2 : (u, v) ∈ B

})
.

Clearly, this extends to a finite measure M on B((Sd−1)2), which is jointly
G(d)-invariant and symmetric. From the symmetry, it follows that in (12), we
may interchange the first and the second argument of f . Therefore, together
with (12), the relation∫

(Sd−1)2

f dM =
∫

Sd−1

∫

[−1,1]

∫

Sv,t

f(u, v)σv,t(du)ψ(dt)σ(dv) (15)

holds for every nonnegative, measurable function f on (Sd−1)2, with the same
measure ψ.
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Recall that u(H) denotes one of the two unit normal vectors of H ∈ G(d, d−
1). Then for every measurable function f : (Sd−1)2 → [0,∞) which is even in
each argument, we have∫

G(d,d−1)2

f(u(H1), u(H2))Θ0(d(H1,H2)) =
∫

(Sd−1)2

f(u, v)M(d(u, v)). (16)

Similarly, let Θ0 be a finite, jointly G(d)-invariant, and symmetric mea-
sure on G(d, 1)2. For G ∈ G(d, 1), we denote be u(G) one of the two unit
normal vectors parallel to G. Clearly, there is a finite, jointly G(d)-invariant
and symmetric measure M on (Sd−1)2 such that for every measurable function
f : (Sd−1)2 → [0,∞) which is even in each argument, we have∫

G(d,1)2

f(u(G1), u(G2))Θ0(d(G1, G2)) =
∫

(Sd−1)2

f(u, v)M(d(u, v)). (17)

4. Formulas for general convex bodies. In the following, we assume that d ≥ 3.
The two-dimensional case can be treated with obvious modifications.

We use spherical harmonics, in particular, the Funk–Hecke theorem and
the Parseval relation. (For a brief introduction to spherical harmonics, we refer
to [8, Appendix], where relevant literature is quoted. A more comprehensive
introduction is found in [7, Appendix].) By Hd

m we denote the real vector
space of spherical harmonics of order m on the unit sphere S

d−1. The (finite)
dimension of Hd

m is denoted by N(d,m). On the space C(Sd−1) of continuous
real functions on S

d−1, we define a scalar product by

(f, g) :=
∫

Sd−1

fg dσ, f, g ∈ C(Sd−1),

where σ denotes the spherical Lebesgue measure on S
d−1. We write σ(Sd−1) =

ωd. Orthogonality on C(Sd−1) refers to this scalar product. In each space Hd
m,

we choose an orthonormal basis (Ym1, . . . , YmN(d,m)). For f ∈ C(Sd−1) and
m ∈ N0, the function

πmf :=
N(d,m)∑

j=1

(f, Ymj)Ymj

is the image of f under orthogonal projection to the space Hd
m. The Parseval

relation says that

(f, g) =
∞∑

m=0

N(d,m)∑
j=1

(f, Ymj)(g, Ymj) =
∞∑

m=0

(πmf, πmg).

Of the Funk–Hecke theorem, we need a consequence, which can be found
in Müller [6, Lemma 2, p. 31]. It says that∫

Sv,t

Ym(u)σv,t(du) = Pm(d; t)Ym(v) (18)
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for m ∈ N0, Ym ∈ Hd
m, v ∈ S

d−1, t ∈ [−1, 1], where Pm(d; ·) denotes the
Legendre polynomial in dimension d of order m (note that the measure σv,t is
normalized).

We turn to calculating I(K1,K2,Θ) for general convex bodies K1,K2 ∈ Kd

and a measure Θ ∈ Md−1. From (11), (16), and Lemma 2, we obtain

I(K1,K2,Θ) =
∫

(Sd−1)2

wK1(u)wK2(v)M(d(u, v))

=
∫

Sd−1

∫

[−1,1]

∫

Su,t

wK1(u)wK2(v)σu,t(dv)ψ(dt)σ(du)

with a finite, jointly G(d)-invariant and symmetric measure M on (Sd−1)2 and
a finite even measure ψ on [−1, 1]. Hence, with

g(u) :=
∫

[−1,1]

∫

Su,t

wK2(v)σu,t(dv)ψ(dt),

we get

I(K1,K2,Θ) =
∫

Sd−1

g(u)wK1(u)σ(du)

= (g, wK1) =
∞∑

m=0

(πmg, πmwK1).

With (12), (15), and (18), we obtain

(g, Ym) =
∫

Sd−1

⎡
⎢⎣

∫

[−1,1]

∫

Su,t

wK2(v)σu,t(dv)ψ(dt)

⎤
⎥⎦ Ym(u)σ(du)

=
∫

(Sd−1)2

Ym(u)wK2(v)M(d(u, v))

=
∫

Sd−1

⎡
⎢⎣

∫

[−1,1]

∫

Sv,t

Ym(u)σv,t(du)ψ(dt)

⎤
⎥⎦ wK2(v)σ(dv)

=
∫

Sd−1

⎡
⎢⎣

∫

[−1,1]

Pm(d; t)Ym(v)ψ(dt)

⎤
⎥⎦ wK2(v)σ(dv)

= βm[Θ](Ym, wK2)

with

βm[Θ] =
∫

[−1,1]

Pm(d; t)ψ(dt). (19)
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Therefore,

πmg =
N(d,m)∑

j=1

(g, Ymj)Ymj = βm[Θ]
N(d,m)∑

j=1

(wK2 , Ymj)Ymj = βm[Θ]πmwK2 .

We note that βm[Θ] = 0 for odd m since ψ is an even measure and the
Legendre polynomial Pm(d; ·) is an odd function for odd m. This finally gives
the first part of the following theorem.

Theorem 6. If K1,K2 ∈ Kd and Θ ∈ Md−1, then

I(K1,K2,Θ) =
∞∑

m=0, m even

βm[Θ] (πmwK1 , πmwK2) , (20)

where βm[Θ] is given by (19).
If K1,K2 ∈ Kd and Θ ∈ M1, then

J(K1,K2,Θ) =
∞∑

m=0, m even

βm[Θ] (πmbK1 , πmbK2) , (21)

where bKi
is the brightness function of Ki.

To prove the second part of this theorem, we note that a line G ⊂ R
d

parallel to the unit vector u can uniquely be written in the form G = lin{u}+y
with y ∈ u⊥. For G represented in this way, we write u = u(G). Let Ki ∈ Kd

(i = 1, 2) and Θ ∈ M1. We have

J(K1,K2,Θ) =
∫

G(d,1)2

bK1(u(G1))bK2(u(G2))Θ0(d(G1, G2))

by Lemma 1, where Θ0 is a finite, jointly G(d)-invariant, and symmetric mea-
sure on G(d, 1)2. Now the proof of the second part of Theorem 6 can be
completed in the same way as that of the first part, just replacing the even
function wKi

by the even function bKi
.

Proof of Theorem 2. Assume that K ∈ Kd is a convex body which satisfies
(5) for each Θ ∈ Md−1. We only need to consider special measures Θ, of the
form

Θ =
∫

A(d,d−1)2

1{(H1,H2) ∈ ·}F (|〈u(H1), u(H2)〉|)μ2
d−1(d(H1,H2))

with a nonnegative, continuous function F . Since both sides of (5) are linear
with respect to Θ (and hence F ), it follows that (5) holds for any continuous
function F . For such a function F , one obtains with the Funk–Hecke formula
([6, p. 30]) that

βm[Θ] = ωd−1

1∫

−1

F (|t|)Pm(d; t)(1 − t2)
d−3
2 dt,
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where ωd−1 is the total spherical Lebesgue measure of the (d − 2)-dimensional
unit sphere.

Now let k ∈ N be even, k 
= 0. Let F be the restriction of the Legendre poly-
nomial Pk(d; ·) to [−1, 1]. Then F is an even function, and by the orthogonality
properties of the Legendre polynomials (see [6, p. 22]), saying that

1∫

−1

Pk(d; t)Pm(d; t)(1 − t2)
d−3
2 dt

{
= 0 if m 
= k,

= 0 if m = k,

we have βm[Θ] = 0 for m 
= k and βk[Θ] 
= 0. Therefore, (4) (where now
λ[Θ] = β0[Θ]ωd = 0 by (20)) and (20) give πkwK = 0 for k 
= 0 (note that
(20) can be applied since Θ ∈ Md−1). Since wK is an even function, we also
have πkwK = 0 for all odd k. Now the completeness of the system of spherical
harmonics yields that wK is constant. This completes the proof of Theorem 2.

�

It is clear that Theorem 4 can be proved similarly.

Proof of Theorem 5. Suppose that K1 is of constant width. Then the function
wK1 is constant and hence πmwK1 = 0 for m 
= 0 (since constant functions are
spherical harmonics of order 0, and spherical harmonics of different orders are
orthogonal). It follows from (20) that

I(K1,K2,Θ) = β0[Θ]ωdW (K1)W (K2) = λ[Θ]W (K1)W (K2).

Here we have used that π0f = ω−1
d

∫
f dσ. �
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Birkhäuser/Springer, Cham (2019)

[6] Müller, C.: Analysis of Spherical Symmetries in Euclidean Spaces. Springer, New

York (1998)

[7] Rubin, B.: Introduction to Radon Transforms. Encyclopedia of Mathematics and

Its Applications, vol. 160. Cambridge University Press, New York (2015)

[8] Schneider, R.: Convex Bodies: The Brunn–Minkowski Theory. 2nd edn., Ency-

clopedia of Mathematics and Its Applications, vol. 151. Cambridge University

Press, Cambridge (2014)

[9] Schneider, R., Weil, W.: Stochastic and Integral Geometry. Springer, Berlin

(2008)

Daniel Hug
Department of Mathematics
Karlsruhe Institute of Technology
76128 Karlsruhe
Germany
e-mail: daniel.hug@kit.edu

Rolf Schneider
Mathematisches Institut
Albert-Ludwigs-Universität
79104 Freiburg i. Br.
Germany
e-mail: rolf.schneider@math.uni-freiburg.de

Received: 26 November 2019

http://arxiv.org/abs/1906.10374v1

	Integral geometry of pairs of hyperplanes or lines
	Abstract
	1. Introduction
	2. Separately translation invariant measures
	3. The measures in mathcalMd-1 or mathcalM1
	4. Formulas for general convex bodies
	References




