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A note on H1 − BMO duality

Adam Osękowski

Abstract. We establish an estimate related to the H1 − BMO duality in
the dyadic setting. Specifically, for any Hilbert space H over R and any
functions ϕ, ψ : R → H, we have∫

R

ϕ · ψ du ≤
√

2‖ϕ‖H1‖ψ‖BMO.

The constant
√

2 is the best possible. The proof rests on the existence
of a certain special function enjoying appropriate size and concavity re-
quirements.
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1. Introduction. A classical result of Fefferman states that the class BMO,
the space of functions of bounded mean oscillation, is the dual space of H1.
This fact, originally proved in [2] in the analytic setting, was later extended
to the probabilistic context by Getoor and Sharpe [3]. The purpose of this
paper is to establish a certain sharp estimate related to this duality in the
one-dimensional context.

We start with some background and notation. Throughout, for brevity, the
symbol I will stand for the interval [0, 1]. Let (hn)n≥0 be the Haar system on
[0, 1], i.e.,

h0 = χ[0,1], h1 = χ[0,1/2) − χ[1/2,1),

h2 = χ[0,1/4) − χ[1/4,1/2), h3 = χ[1/2,3/4) − χ[3/4,1),

h4 = χ[0,1/8) − χ[1/8,1/4), h5 = χ[1/4,3/8) − χ[3/8,1/2),
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and so on. Let H be a separable real Hilbert space with scalar product · and
norm | · |. For any dyadic subinterval I ⊆ I and an integrable function ϕ : I →
H, we will write 〈ϕ〉I for the average of ϕ over I: that is, 〈ϕ〉I = 1

|I|
∫
I
ϕdu.

Furthermore, for any such ϕ and any nonnegative integer n, we will use the
notation

ϕn =
n∑

k=0

1
|Ik|

∫

I
ϕ(s)hk(s)ds hk

for the projection of ϕ on the subspace generated by the first n + 1 Haar
functions (Ik denotes the support of hk). The dyadic square function of ϕ is

S(ϕ)(x) =

⎛
⎜⎝∑∣∣∣∣∣∣

1
|In|

∫

I
ϕ(s)hn(s)ds

∣∣∣∣∣∣
2
⎞
⎟⎠

1/2

, x ∈ I, (1.1)

where the summation runs over all nonnegative integers n such that x ∈ In.
The Hardy space H1(I) consists of those ϕ on I, for which the norm ‖ϕ‖H1 =
‖S(ϕ)‖L1 is finite. All the above definitions extend obviously to the case when
I is replaced by an arbitrary dyadic subinterval of R. Actually, one easily
defines S(ϕ) and H1 when the underlying space is the entire line R. To this
end, consider in (1.1) the sum over all dyadic intervals I contained in R, and
replace In with I and hn with hI = χI− − χI+ , where I−, I+ are the left and
right halves of I. The definition of H1 remains unchanged.

A function ψ : I → H belongs to the (dyadic) class BMO if

||ψ||BMO := sup
I

(〈|ψ − 〈ψ〉I |2〉I
)1/2

< ∞,

where the supremum is taken over all dyadic subintervals I of I. This space,
introduced by John and Nirenberg in [6], plays a fundamental role in harmonic
analysis and probability theory. It is well-known that it often serves as a con-
venient substitute for L∞: many important operators—e.g., singular integrals,
area functions—are not bounded on L∞, but send L∞ into BMO instead (cf.
[4]). In addition, BMO behaves nicely from the viewpoint of interpolation,
see, e.g., [1,4]. Our motivation comes from another property, already men-
tioned above: this space is dual to H1. Specifically, it follows from the above
result of Fefferman that for H = R, there is a finite constant C such that for
any ϕ ∈ H1 and any ψ ∈ BMO with 〈ψ〉I = 0,∫

I
ϕ · ψdu ≤ C‖ϕ‖H1‖ψ‖BMO. (1.2)

We will identify the optimal constant in this estimate, in the context of general
Hilbert spaces H. Here is our main result.

Theorem 1.1. For any Hilbert space H, the inequality (1.2) holds with the con-
stant C =

√
2. The constant is the best possible already for H = R.

Obviously, this result is valid if we replace the interval I by an arbitrary
dyadic subinterval of R. Actually, by a standard limiting argument, it also
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remains true if I is replaced with the real line R. There is a natural question
about the optimal constant in the higher-dimensional setting. Unfortunately,
although our argumentation seems to work up to some point, we have not
managed to push all the relevant calculations through.

We would also like to mention two related works from the literature. First,
Getoor and Sharpe [3] obtained the probabilistic version of the above inequal-
ity (with the same constant

√
2) for continuous, real-valued martingales. That

result can be deduced from Theorem 1.1: namely, one can rephrase the es-
timate (1.2) in the language of the so-called dyadic martingales which, by
approximation, lead to the continuous case. The reverse implication does not
seem to be valid. We would also like to refer the reader to the paper [11] by
Slavin and Volberg, which contains the proof of a certain version of (1.2) in
the context of Triebel–Lizorkin spaces.

A few words about the proof are in order. Our approach will exploit the
so-called Bellman function method, which reduces the study of (1.2) to the
existence of a certain special function. The efficiency of this technique in the
study of various sharp BMO estimates has been confirmed in numerous pa-
pers: we refer the interested reader to the works [5,7–10,12] (the complete list
is much longer). We should stress, however, that the estimate (1.2) is four-
dimensional, i.e., the corresponding Bellman function involves four variables.
Hence, it does not fall into scope of the contexts studied in the aforementioned
papers, which mostly handled two-dimensional problems.

The remaining part is organized as follows. The general version of our
approach is described in detail in the next section. The final part of the paper
is devoted to the proof of Theorem 1.1.

2. On the method of proof. Fix a Hilbert space H and consider the four-
dimensional domain

D =
{

(x, s, y, z) ∈ H × [0,∞) × H × [0,∞) : |y|2 ≤ z ≤ |y|2 + 1
}

.

Next, let V : H × [0,∞) × H → R be a given function and suppose that we
want to establish the estimate∫

I
V (ϕ, S(ϕ), ψ) du ≤ 0 (2.1)

for all simple functions ϕ, ψ : I → H satisfying ||ψ||BMO ≤ 1 and 〈ψ〉I = 0.
Here by simplicity we mean that ϕ, ψ can be written as finite sums of the
form

∑m
k=0 akhk for some integer m and some coefficients a0, a1, . . ., am ∈

H. This assumption implies in particular that the integral appearing in (2.1)
makes sense. To study this problem, consider the class U(V ) consisting of all
U : D → (−∞,∞] satisfying the following three requirements:

U(x, s, y, |y|2) ≥ V (x, s, y) for all (x, s, y, |y|2) ∈ D , (2.2)
U(x, |x|, 0, z) ≤ 0 for all (x, |x|, 0, z) ∈ D , (2.3)
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and the further condition that for any (x, s, y, z) ∈ D and any d, e ∈ H, f ∈ R

satisfying (x±,
√

s2 + |d|2, y±, z±) := (x ± d,
√

s2 + |d|2, y ± e, z ± f) ∈ D ,

U(x, s, y, z)

≥ 1
2

[
U
(
x−,

√
s2 + |d|2, y−, z−

)
+ U

(
x+,

√
s2 + |d|2, y+, z+

)]
.

(2.4)

So, the functions from U(V ) cannot be too big nor too small, and they must
satisfy a mid-concavity-type property. The connection between the class U(V )
and the estimate (2.1) is studied in the two theorems below.

Theorem 2.1. If the class U(V ) is nonempty, then (2.1) holds true for all sim-
ple ϕ, ψ satisfying ‖ψ‖BMO ≤ 1 and 〈ψ〉I = 0.

Proof. Fix ϕ and ψ. The first step of our analysis is to prove that the sequence
⎛
⎝
∫

I
U
(
ϕn, S(ϕn), ψn, (|ψ|2)n

)
du

⎞
⎠

n≥0

(2.5)

is nonincreasing. (Let us comment here that (|ψ|2)n is the projection of |ψ|2
on the subspace generated by the first n+1 Haar functions.) Observe that 0 ≤
(|ψ|2)n − |ψn|2 ≤ 1, where the left estimate follows from Schwarz’ inequality,
while the right is due to ‖ψ‖BMO ≤ 1. So, in particular, the integrals in (2.5)
are well-defined: the point

(
ϕn, S(ϕn), ψn, (|ψ|2)n

)
belongs to the domain of

U . Fix n ≥ 1, denote by I the support of hn, and let I−, I+ be the left and
the right halves of I. Observe that ϕn−1, S(ϕn−1), ψn−1, and (|ψ|2)n−1 are
constant on I; denote the corresponding values by x, s, y, and z, respectively.
Furthermore, there exist d, e ∈ H and f ∈ R such that ϕn ≡ x ± d, S(ϕn) ≡√

s2 + |d|2, ψn ≡ y ± e, and (|ψ|2)n ≡ z + f on I±, respectively. Therefore,

1
|I|

∫

I

U
(
ϕn, S(ϕn), ψn, (|ψ|2)n

)
du

=
1
|I|

∫

I−

U
(
ϕn, S(ϕn), ψn, (|ψ|2)n

)
du +

1
|I|

∫

I+

U
(
ϕn, S(ϕn), ψn, (|ψ|2)n

)
du

=
U(x − d,

√
s2 + |d|2, y − e, z − f) + U(x + d,

√
s2 + |d|2, y + e, z + f)

2
,

which, by (2.4), does not exceed

U(x, s, y, z) =
1
|I|

∫

I

U
(
ϕn−1, S(ϕn−1), ψn−1, (|ψ|2)n−1

)
du.

Since (ϕn, S(ϕn), ψn, (|ψ|2)n) and (ϕn−1, S(ϕn−1), ψn−1, (|ψ|2)n−1) coincide
on I \ I, the monotonicity of the sequence (2.5) follows. Now, recall that ϕ, ψ
are simple, which implies that there is m such that ϕm = ϕ, S(ϕm) = S(ϕ),
ψm = ψ, and (|ψ|2)m = |ψ|2. Combining this with (2.2) and (2.3), we obtain
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∫

I
V (ϕ, S(ϕ), ψ)du ≤

∫

I
U(ϕm, S(ϕm), ψm, (|ψ|2)m)du

≤
∫

I
U(ϕ0, S(ϕ0), ψ0, (|ψ|2)0)du

=
∫

I
U(〈ϕ〉I , |〈ϕ〉I |, 〈ψ〉I , 〈|ψ|2〉I)du ≤ 0.

(2.6)

This completes the proof. �

The beautiful feature of the method is that the implication of the above
theorem can be reversed. For (y, z) ∈ H × [0,∞) such that |y|2 ≤ z ≤ |y|2 + 1,
let M(y, z) denote the class of all simple functions ψ : I → H satisfying
‖ψ‖BMO ≤ 1, 〈ψ〉I = y, and 〈|ψ|2〉I = z. The class M(y, z) is nonempty: for
example, it contains the function ψ = (y − e)χ[0,1/2) + (y + e)χ[1/2,1), where
e ∈ H is a vector satisfying |e|2 = z − |y|2. Define U0 : D → (−∞,∞] by

U0(x, s, y, z) = sup

⎧⎨
⎩
∫

I
V
(
ϕ,

√
s2 − |x|2 + S2(ϕ), ψ

)
du

⎫⎬
⎭ , (2.7)

where the supremum is taken over all simple ϕ with 〈ϕ〉I = x and all ψ ∈
M(y, z). Considering the constant function ϕ ≡ x and the above “two-point”
function ψ = (y − e)χ[0,1/2) + (y + e)χ[1/2,1) ∈ M(y, z), we derive that

U0(x, s, y, z) ≥ 1
2

[
V (x, s, y − e) + V (x, s, y + e)

]
. (2.8)

Theorem 2.2. If (2.1) holds for all simple ϕ, ψ : I → H satisfying ||ψ||BMO ≤
1, then the class U(V ) is nonempty and U0 is its least element.

Proof. Let us first handle the minimality of U0. Pick U ∈ U(V ), (x, s, y, z) ∈ D
and an arbitrary pair ϕ, ψ as in the definition of U0(x, s, y, z). Repeating the
arguments in (2.6), one gets∫

I
V
(
ϕ,

√
s2 − |x|2 + S2(ϕ), ψ

)
du

≤
∫

I
U
(
ϕ0,

√
s2 − |x|2 + S2(ϕ0), ψ0, (|ψ|2)0,

)
du = U(x, s, y, z).

So, taking the supremum over ϕ and ψ, we get U0(x, s, y, z) ≤ U(x, s, y, z) and
therefore U0 is indeed the smallest element.

Now we check that U0 belongs to the class U(V ). The majorization (2.2)
is the direct consequence of (2.8): if z = y2, then e = 0 and hence the bound
follows. The condition (2.3) is also easy: by (2.1), for any ϕ of average x and
any ψ ∈ M(0, z), we have ∫

I
V (ϕ, S(ϕ), ψ)du ≤ 0.
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Taking the supremum over all such ϕ and ψ, we get U0(x, |x|, 0, z) ≤ 0. To
prove (2.4), fix x, s, y, z, d, e, f as in the statement of this condition. Pick
two simple functions ϕ± : R → H satisfying 〈ϕ±〉I = x±, and two functions
ψ± ∈ M(y±, z±). Next, splice these objects by the formula

ϕ(t) =

{
ϕ−(2t) if t ∈ [0, 1/2),
ϕ+(2t − 1) if t ∈ [1/2, 1],

ψ(t) =

{
ψ−(2t) if t ∈ [0, 1/2),
ψ+(2t − 1) if t ∈ [1/2, 1].

Then ϕ has the average x since

〈ϕ〉I =

1/2∫

0

ϕ−(2t)dt +

1∫

1/2

ϕ+(2t − 1)dt =
〈ϕ−〉I + 〈ϕ+〉I

2
= x.

Similarly, we have

〈ψ〉I =
〈ψ〉I + 〈ψ〉I

2
= y, 〈|ψ|2〉I =

〈|ψ−|2〉I + 〈|ψ+|2〉I
2

= z

and hence ψ ∈ M(y, z) (the inequality ‖ψ‖BMO ≤ 1 is directly inherited from
the analogous estimate for ψ±). Finally, we easily check that

−〈ϕ〉2I + S2(ϕ)(t) =

{
|d|2 − 〈ϕ−〉2I + S2(ϕ−)(2t) for t ∈ [0, 1/2),
|d|2 − 〈ϕ+〉2I + S2(ϕ+)(2t − 1) for t ∈ [1/2, 1].

Therefore, by the very definition of U0,

U0(x, s, y, z) ≥
∫

I
V
(
ϕ,

√
z2 − |x|2 + S2(ϕ), ψ

)

=

1/2∫

0

V

(
ϕ,

√
z2 − 〈ϕ〉2I + S2(ϕ), ψ

)

+

1∫

1/2

V

(
ϕ,

√
z2 − 〈ϕ〉2I + S2(ϕ), ψ

)

=
1
2

[ ∫

I
V

(
ϕ−,

√
z2 + |d|2 − 〈ϕ−〉2I + S2(ϕ−), ψ−

)

+
∫

I
V

(
ϕ+,

√
z2 + |d|2 − 〈ϕ+〉2I + S2(ϕ+), ψ+

)]
.

Taking the supremum over all ϕ± and ψ± as above yields (2.4). �

3. Proof of Theorem 1.1.

3.1. Proof of (1.2). The desired estimate is of the form (2.1) with V (x, s, y) =
x · y − √

2s, and by a straightforward approximation, it is enough to establish
it for simple functions only. By virtue of Theorem 2.1, the estimate will be
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proved if we find an element of U(V ). Consider the function U : D → R given
by

U(x, s, y, z) = x · y +
s√
2
(z − |y|2 − 2).

Some steps which lead to the discovery of this object can be found in the next
subsection. Let us verify that the function enjoys all the required properties.
The majorization (2.2) is equivalent to z − |y|2 ≥ 0, which is guaranteed
in the definition of the domain D . The condition (2.3), after straightforward
manipulations, transforms into s(z − 2) ≤ 0, which follows from the estimates
s ≥ 0 and z ∈ [0, 1] (the latter being the consequence of (x, |x|, 0, z) ∈ D). It
remains to establish the concavity-type condition (2.4). Note that

1
2

[
U
(
x−,

√
s2 + |d|2, y−, z−

)
+ U

(
x+,

√
s2 + |d|2, y+, z+

)]

= x · y + d · e +

√
s2 + |d|2√

2

(
z − |y|2 − |e|2 − 2

)

and hence (2.4) can be rewritten in the form

d · e +
√

s2 + d2 − s√
2

(z − |y|2 − 2) −
√

s2 + d2√
2

|e|2 ≤ 0.

We have z − |y|2 ≤ 1 (since (x, s, y, z) ∈ D) and d · e ≤ |d||e|, so it is enough
to show that

−
√

s2 + d2 − s√
2

+ |d||e| −
√

s2 + d2√
2

|e|2 ≤ 0. (3.1)

Consider the left-hand side above as a quadratic function of |e|; the discrimi-
nant of this function is equal to

|d|2 − 2
√

s2 + |d|2(
√

s2 + |d|2 − s) = |d|2
(

1 − 2
√

s2 + |d|2√
s2 + |d|2 + s

)
≤ 0.

Therefore (3.1) holds and hence U ∈ U(V ). This completes the proof of (1.2).

3.2. Sharpness. The examples, which show that the constant
√

2 is optimal in
(1.2), have very complicated structure and their analysis is quite involved. Most
of these technicalities an be avoided, by an appropriate use of Theorem 2.1, as
we shall see below. Throughout this subsection, we let H = R and assume that
the inequality (1.2) holds with some constant C. This estimate is of the form
(2.1), with V (x, s, y) = xy − Cs. Recall the definition (2.7) of the associated
special function U0:

U0(x, s, y, z) = sup
∫

I

(
ϕψ − C

√
s2 − |x|2 + S2(ϕ)

)
du,
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the supremum taken over all simple ϕ of average x and all ψ ∈ M(y, z). We
start with some homogeneity-type properties of U0 (which also give some hint
how the function U used in the previous subsection was discovered).

Lemma 3.1. For any λ > 0 and a ∈ R, we have

U0(λx, λs, y, z) = λU0(x, s, y, z), (3.2)
U0(x + a, s, y, z) = ay + U0(x, s, y, z), (3.3)

and

U0(x, s, y + a, z + 2ya + a2) = U0(x, s, y, z) + ax. (3.4)

Consequently, U0(x, s, y, z) = xy + sζ(z − y2) for some function ζ : [0, 1] → R.

Proof. Fix an arbitrary ϕ of average x and any ψ ∈ M(y, z). Then λϕ is also
simple and has average λx, so by the definition of U0(λx, λs, y, z),

U0(λx, λs, y, z) ≥
∫

I

(
λϕψ − C

√
λ2s2 − |λx|2 + S2(λϕ)

)
du

= λ

∫

I

(
ϕψ − C

√
s2 − |x|2 + S2(ϕ)

)
du.

Taking the supremum over all ϕ and ψ as above, we get U0(λx, λs, y, z) ≥
λU0(x, s, y, z). Putting x̄ = λx, s̄ = λs, and λ̄ = λ−1, we get the reverse
bound (with x, s, λ replaced by x̄, s̄, λ̄). The identity (3.3) is shown similarly:
for any a ∈ R and any simple ϕ of average x, we have 〈ϕ + a〉I = x + a and
hence for any ψ ∈ M(y, z),

U0(x + a, λs, y, z) ≥
∫

I

(
(ϕ + a)ψ − C

√
s2 − |x + a|2 + S2(ϕ + a)

)
du

= ay +
∫

I

(
ϕψ − C

√
s2 − |x|2 + S2(ϕ)

)
du.

Consequently, we get U0(x + a, λs, y, z) ≥ ay + U0(x, s, y, z) and the reverse
bound follows by replacing a with −a. The proof of the identity (3.4) is the
same and is left to the reader. To show the final claim, we use (3.3) (with
a = −x), (3.4) (with a = −y), and then (3.2) (with λ = s−1) to obtain

U0(x, s, y, z) = xy + U0(0, s, y, z)

= xy + U0(0, s, 0, z − y2) = xy + sU0(0, 1, 0, z − y2).
(3.5)

Thus we let ζ(u) = U0(0, 1, 0, u). It remains to show that ζ is finite (recall
that the elements of U(V ), in general, are allowed to take infinite values).
But this is simple: applying (3.5) to x = s = 1, y = 0, and z = u gives
ζ(u) = U0(1, 1, 0, u), which, by (2.3), is nonpositive. �
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We are ready to prove that C ≥ √
2. Fix ε ∈ R and apply the inequality

(2.4) to (x, s, y, z) = (1, 1, 0, 1) and (d, e, f) = (
√

2ε, ε, 0) to obtain

U0(1, 1, 0, 1)

≥ 1
2

[
U0(1 −

√
2ε,

√
1 + 2ε2,−ε, 1) + U0(1 +

√
2ε,

√
1 + 2ε2, ε, 1)

]
.

(3.6)

Now it follows from (2.4) that the function z → U0(1 − √
2ε,

√
1 + 2ε2,−ε, z)

is midpoint concave on [ε2, 1 + ε2]. Since it is bounded from below (by (2.8),
we have U0(x, s, y, z) ≥ xy − Cs for all (x, s, y, z) ∈ D), it is merely concave
and therefore

U0(1 −
√

2ε,
√

1 + 2ε2,−ε, 1)

≥ ε2U0(1 −
√

2ε,
√

1 + 2ε2,−ε, ε2)

+(1 − ε2)U0(1 −
√

2ε,
√

1 + 2ε2,−ε, 1 + ε2). (3.7)

However, the condition (2.2) implies

U0(1 −
√

2ε,
√

1 + 2ε2,−ε, ε2) ≥ −(1 −
√

2ε)ε − C
√

1 + 2ε2,

and by (3.4), we get

U0(1 −
√

2ε,
√

1 + 2ε2,−ε, 1 + ε2) = −(1 −
√

2ε)ε

+U0(1 −
√

2ε,
√

1 + 2ε2, 0, 1).

Plugging these two observations into (3.7) gives

U0(1 −
√

2ε,
√

1 + 2ε2,−ε, 1)

≥ −(1 −
√

2ε)ε − Cε2
√

1 + 2ε2 + (1 − ε2)U0(1 −
√

2ε,
√

1 + 2ε2, 0, 1)

= −(1 −
√

2ε)ε − Cε2
√

1 + 2ε2 + (1 − ε2)
√

1 + 2ε2ζ(1).

Replacing ε with −ε, we see that we also have

U0(1 +
√

2ε,
√

1 + 2ε2, ε, 1)

≥ (1 +
√

2ε)ε − Cε2
√

1 + 2ε2 + (1 − ε2)
√

1 + 2ε2ζ(1).

Combining the last two inequalities with (3.6) gives

ζ(1) ≥
√

2ε2 − Cε2
√

1 + 2ε2 + (1 − ε2)
√

1 + 2ε2ζ(1).

Now observe that (1 − ε2)
√

1 + 2ε2 = 1 + o(ε2) as ε → 0. Therefore, moving
the term (1 − ε2)

√
1 + 2ε2ζ(1) to the left, dividing by ε2 and letting ε → 0

gives 0 ≥ √
2 − C, which is equivalent to the desired bound C ≥ √

2.
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