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Abstract. We call a closed basic semialgebraic set X ⊂ R
n homogeneous if

it is defined by a finite system of inequalities of the form g(x) ≥ 0, where g
is a homogeneous polynomial. We prove an effective version of the Putinar
and Vasilescu Positivstellensatz for positive homogeneous polynomials on
homogeneous semialgebraic sets.
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1. Introduction. We denote by R[x] the ring of real polynomials in x = (x1,
. . . , xn) and by

∑
R[x]2 the set of sums of squares of polynomials from R[x].

A homogeneous polynomial f is called positive definite if f(x) > 0 for x ∈
R

n\{0}.
An important result concerning nonnegative polynomials is the solution of

Hilbert’s 17th problem by Artin [1], which states that if a polynomial f is
nonnegative on R

n, then f is a sum of squares of rational functions.
For positive definite homogeneous polynomials Reznick proved the follow-

ing theorem (see [10, Theorem 3.12]). Let us start with some notation. We
denote by Qn,k the set of finite sums of kth powers of linear functions. Let
|x| =

√
x2
1 + · · · + x2

n. Set

Gr
n = |x|2r, r ∈ N.
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406 A. Gala-Jaskórzyńska et al. Arch. Math.

Let p ∈ R[x] be a positive definite homogeneous polynomial. Set

ε(p) =
inf{p(u) : u ∈ S}
sup{p(u) : u ∈ S} ,

where S = {x ∈ R
n : |x| = 1} is the unit sphere.

Theorem 1 (Reznick). Let p ∈ R[x] be a positive definite homogeneous polyno-
mial of degree d. Then for any r ∈ Z such that

r ≥ nd(d − 1)
(4 log 2)ε(p)

− n + d

2
,

we have pGr
n ∈ Qn,d+2r.

Scheiderer [11, Remark 4.6] gave a generalization of Reznick’s theorem by
showing that |x|2 in the definition of Gr

n can be replaced by any positive
definite form. Interesting contributions in this context are also [13, Theorem
5.1] and [15].

In real algebraic geometry, important problems concern nonnegative poly-
nomials on closed semialgebraic sets. The deepest result in this topic is the
Krivine Positivstellensatz [4] rediscovered by Stengle [16]. It states that if

X = {x ∈ R
n : g1(x) ≥ 0, . . . , gr(x) ≥ 0},

where g1, . . . , gr ∈ R[x], then every polynomial f that is strictly positive on X
is of the form h1f = 1 + h2 for some polynomials h1, h2 from the preordering

T (g1, . . . , gr)

:=

{
∑

e=(e1,...,er)∈{0,1}r

σeg
e1
1 · · · ger

r : σe ∈
∑

R[x]2 for e ∈ {0, 1}r

}

.

In the case of compact basic semialgebraic sets, an important result was ob-
tained by Schmüdgen (see [12]): if the set X is compact, then every polynomial
f that is strictly positive on X belongs to the preordering T (g1, . . . , gr). More-
over, as proved by Putinar [7], under some additional assumption, f belongs
to the quadratic module

P (g1, . . . , gr) :=

{

σ0 + σ1g1 + · · · + σrgr : σi ∈
∑

R[x]2, i = 0, . . . , r

}

.

Jacobi found an algebraic proof of this fact [2, Theorem 7] (see also [3]). A ver-
sion of the above results was obtained in [5]: if X is compact, f is strictly
positive on X, and g(x) := R2 −|x|2 ≥ 0 on X for some R > 0, then f belongs
to

K(g, g1, . . . , gr) := T (g) +

{

ϕ(g1)g1 + · · · + ϕ(gr)gr : ϕ ∈
∑

R[t]2
}

.

In this context for every closed basic semialgebraic set Putinar and Vasilescu
proved the following Positivstellensatz (see [9, Theorem 4.2], [8]).
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Theorem 2 (Putinar, Vasilescu). Let (p1, . . . , pm) be an m-tuple of real poly-
nomials in t ∈ R

n, and let

φ(t) = (1 + |t|2)−1, t ∈ R
n.

Let p be a real polynomial on R
n. Suppose that the degrees of pj’s and p

are all even.
Let P1, . . . , Pm, P be the homogenizations of the polynomials p1, . . . , pm, p

respectively and assume that P (x) > 0 whenever x ∈ {x ∈ R
n+1 : Pi(x) ≥

0, i = 1, . . . ,m}, x �= 0.
Then there exist an integer b ≥ 0 and a finite collection of real polynomials

ql, qkl, l ∈ L, k = 1, . . . ,m, such that

p(t) = φ(t)2b

(
∑

l∈L

ql(t)2 +
m∑

k=1

∑

l∈L

pk(t)qkl(t)2
)

, t ∈ R
n. (1)

The aim of this article is to simplify the representation (1) for any homo-
geneous polynomial p. We will show

Theorem 3. Let f ∈ R[x] be a homogeneous polynomial of positive even degree
d, and let g1, . . . , gr ∈ R[x] be homogeneous polynomials of even degrees. Set

X = {x ∈ R
n : g1(x) ≥ 0, . . . , gr(x) ≥ 0}. (2)

If f(x) > 0 for x ∈ X\{0}, then there exist positive even integers D,N , a
polynomial q ∈ Qn,D, and a, b ∈ R such that

f(x) = |x|−D+d

(

q +
r∑

i=1

|x|αi(agi(x) + b|x|deg gi)Ngi(x)

)

, (3)

where αi = D − (N + 1) deg gi for i = 1, . . . , r are nonnegative even numbers.

In the proof of Theorem 3, we will use the method from [5] and apply the
Reznick theorem.

From Theorem 3 we immediately obtain a version of the Putinar–Vasilescu
theorem.

Corollary 1. Under the assumptions and notation of Theorem 2, there are even
integers b,D,N ≥ 0 such that D − (N + 1) deg pk ≥ 0 for k = 1, . . . , r, and a
finite collection of real polynomials ql, l ∈ L, with deg ql ≤ 1 and polynomials
qk,1, k = 1, . . . , r, of the form

qk,1(t) = (1 + |t|2)αk

(
ξpk(t) + η(1 + |t|2) deg pk

2

)N

for some ξ, η ∈ R, where αk = D−(N+1) deg pk

2 for k = 1, . . . , r, such that

p(t) = φ(t)b
(

∑

l∈L

qD
l (t) +

m∑

k=1

pk(t)qk,1

)

, t ∈ R
n.

Theorem 3 and Corollary 1 provide an additional information about how
the polynomials defining the basic closed semialgebraic set X are involved in
the representation of f and p respectively (comparable to Schweighifer result
[14, Lemma 8] and [5]).
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2. Proof of Theorem 3. Let f, g1, . . . , gr ∈ R[x] be homogeneous polynomials
of even degrees, and let X ⊂ R

n be of the form (2).

Lemma 1. There exists a polynomial ϕ ∈ ∑
R[t]2 of the form ϕ(t) = (at+b)N ,

where t is a single variable and N is an even nonnegative integer, such that

f(x) −
r∑

i=1

gi(x)ϕ(gi(x)) > 0 for x ∈ S. (4)

Proof. In the proof we will use the method of Kurdyka and Spodzieja from [5,
Lemma 1].

Let M > 1 and A ≥ 1 be constants such that

f(x) ≥ −M for x ∈ S (5)

and

|gi(x)| ≤ A for x ∈ S, i = 1, . . . , r. (6)

Let

G1 := {x ∈ S : f(x) > 0}.

Then there exists η > 0 such that

G2 := {x ∈ S : dist(x,X) ≤ η} ⊂ G1

and

m := min{f(x) : x ∈ G2} > 0. (7)

Since X ∩ S = {x ∈ S : g1(x) ≥ 0, . . . , gr(x) ≥ 0} and S is compact, there
exists 0 < δ ≤ 1 such that

G3 := {x ∈ S : gi(x) ≥ −δ for i = 1, . . . , r} ⊂ G2. (8)

Take

ε :=
m

(r + 1)A
, B := A

M + rε

δ
.

Then there exist a, b ∈ R, N ∈ N, and a polynomial ϕ ∈ R[t] of the form
ϕ(t) = (at + b)N , where N is an even nonnegative integer, such that

ϕ(t) > B for t ∈ [−A,−δ], (9)
ϕ(t) < ε for t ∈ [0, A]. (10)

We prove (4). Let x ∈ X ∩S. Then gi(x) ≥ 0 for i = 1, . . . , r. Since ϕ(t) < ε
for t ∈ [0, A], by (6) we have

gi(x) · ϕ(gi(x)) ≤ Aε <
m

r + 1
for i = 1, . . . , r.

Hence, by (7),

f(x) −
r∑

i=1

gi(x) · ϕ(gi(x)) > m − r
m

r + 1
> 0,

and the assertion (4) holds for x ∈ X ∩ S.
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Suppose now that x ∈ G3\X. We may assume that

g1(x), . . . , gk(x) ≥ 0 and gk+1(x), . . . , gr(x) < 0

for some 0 ≤ k < r. Since ϕ(t) < ε for t ∈ [0, A], we have

gi(x) · ϕ(gi(x)) ≤ Aε <
m

r
for i = 1, . . . , k.

Moreover from ϕ(t) ≥ 0 for t ∈ R, we have

gi(x) · ϕ(gi(x)) < 0 for i = k + 1, . . . , r.

Therefore, f(x) − ∑r
i=1 gi(x) · ϕ(gi(x)) > m − k m

r > 0, and (4) holds for
x ∈ G3\X.

Let now x ∈ S\G3. Then we may assume that

g1(x), . . . , gk(x) ≥ 0, 0 > gk+1(x), . . . , gl(x) ≥ −δ, gl+1(x), . . . , gr(x) < −δ,

where 0 ≤ k ≤ l < r. Then

gi(x) · ϕ(gi(x)) <
m

r + 1
for i = 1, . . . , k,

and

gi(x) · ϕ(gi(x)) < 0 for i = k + 1, . . . , l.

Since ϕ(t) > B for t ∈ [−A,−δ], we see that

gi(x) · ϕ(gi(x)) < −δB = A(−M − rε) = −AM − rm

r + 1
for i = l + 1, . . . , r.

Hence,

gi(x) · ϕ(gi(x)) < −M − rm

r + 1
for i = l + 1, . . . , r,

since A ≥ 1.
Therefore,

f(x) −
r∑

i=1

gi(x) · ϕ(gi(x)) > −M − k
m

r + 1
+ (r − l)

(

M +
rm

r + 1

)

> 0.

This ends the proof of Lemma 1. �
Let a, b ∈ R and N ∈ N be an even number such that for ϕ(t) = (at + b)N

the inequality (4) holds. Let deg gi = di for i = 1, . . . , r, and let

D0 := max{d, (N + 1)d1, . . . , (N + 1)dr}.

Recall that d = deg f is an even number. Therefore D0 is an even number too.
Set

αi = D0 − (N + 1)di for i = 1, . . . , r.

Obviously the αi are nonnegative even numbers.

Lemma 2. The function F : Rn → R defined by

F (x) = |x|D0−df(x) −
r∑

i=1

|x|αigi(x)(agi(x) + b|x|di)N (11)

is a homogeneous polynomial of degree D0.
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Proof. We show that F (tx) = tD0F (x). Indeed,

F (tx) = |tx|D0−df(tx) −
r∑

i=1

|tx|αigi(tx)(agi(tx) + b|tx|di)N . (12)

Since the αi are even numbers and the polynomials f , g1, . . . , gr are homoge-
neous, the right hand side of (12) is equal to

tD0 |x|D0−df(x) −
r∑

i=1

tαi+di+Ndi |x|αigi(x)(agi(x) + b|x|di)2N .

Hence, by the definition of the αi, we deduce the assertion. �

Let F ∈ R[x] be the polynomial defined by (11).

Lemma 3. For any x ∈ R
n, x �= 0, we have

F (x) > 0. (13)

Proof. If x �= 0, then x = tx0 for some x0 ∈ S and t > 0. Hence, F (x) =
tD0F (x0) and by Lemma 1 we have f(x0) − ∑r

i=1 gi(x0)ϕ(gi(x0)) > 0. Thus
F (x) > 0. �

To sum up, we have shown that the polynomial F is homogeneous and
it is positive for x ∈ R

n\{0}, so we can use the Reznick theorem. Therefore
we can represent |x|2rF , for some r ∈ N, as a sum of even powers of linear
polynomials.

Now we prove Theorem 3.

Proof of Theorem 3. Take a polynomial of the form (11) such that the assertion
of Lemma 2 holds. By Lemma 3,

F (x) > 0 for x ∈ R
n\{0}.

Take ε(F ) = inf{F (u):u∈S}
sup{F (u):u∈S} , and let r ∈ N be such that

r ≥ nD0(D0 − 1)
(4 log 2)ε(F )

− n + D0

2
.

So, for D = D0+2r, by Theorem 1 there exist linear functions q1, . . . , qj ∈ R[x]
such that

|x|2rF (x) = qD
1 + · · · + qD

j .

Hence

|x|D−df(x) −
r∑

i=1

|x|αi+2rgi(x)(agi(x) + b|x|di)N =
j∑

i=1

qD
i

and

f(x) = |x|−D+d

(
j∑

i=1

qD
i +

r∑

i=1

|x|αi+2rgi(x)(agi(x) + b|x|di)N
)

,

which completes the proof of Theorem 3. �
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