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Fixed points of automorphisms preserving the length of words
in free solvable groups

Witold Tomaszewski

Abstract. Let δ be an automorphism of prime order p of the free group
Fn. Suppose δ has no fixed points and preserves the length of words.
By σ := δ(m) we denote the automorphism of the free solvable group

Fn/F
(m)
n induced by δ. We show that every fixed point of σ has the form

ccσ . . . cσp−1
, where c ∈ F

(m−1)
n /F

(m)
n . This is a generalization of some

known results, including the Macedońska–Solitar Theorem [10].
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1. Introduction. Motivation and the main result. If G is an arbitrary group,
then as usual G(m) is the m-th term of the derived series of G, that is G(0) =
G, G(1) = G′ = [G,G], and for m > 1 we have G(m+1) = [G(m), G(m)]. If g, h
are elements of a group, then gh = h−1gh and [g, h] = g−1h−1gh. We denote
the free group of finite or infinite rank by F and by Fn the free group of rank
n, freely generated by x1, . . . , xn. If w ∈ Fn, then |w| is the length of w in the
variables x1, . . . , xn. The group Fn/F

(m)
n is the free solvable group of rank n,

freely generated by gi = xiF
(m)
n for i ∈ {1, . . . , n}. Throughout this paper I

and J are sets consisting of integers, and we assume that 1 belongs to both
sets. For a family of groups {Gi}i∈I , let

∏
i∈I Gi and

∏∗
i∈I Gi be respectively

the direct and the free product of the groups of this family.
Let δ be an automorphism of Fn. We say that δ preserves the length of

words in the variables x1, . . . , xn if for every word w ∈ Fn we have |wδ| = |w|.
An automorphism δ preserves the length of words in the variables x1, . . . , xn

if and only if there is a permutation σ ∈ Sn and an n-tuple (ε1, . . . , εn) ∈
{−1, 1}n such that xδ

i = xεi
iσ . The set of all such automorphisms forms a sub-

group H of Aut(Fn). The subgroup H has two natural subgroups. The first,
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K, is isomorphic to Zn
2 , the elementary abelian group of order 2n. We associ-

ate an n-tuple (ε1, . . . , εn) ∈ Zn
2 with the automorphism ξ ∈ K acting on free

generators as follows xξ
i = x

(−1)εi

i for i = 1, . . . , n. The second subgroup, L,
is isomorphic to the symmetric group Sn. If σ ∈ Sn, then the corresponding
automorphism σ̄ ∈ L acts on generators as follows: xσ̄

i = xiσ for i = 1, . . . , n.
We say that the automorphisms from L permute the generators. It is easy to
see that K and L are normal subgroups in H and that, in fact, H is isomorphic
to the direct product K × L and to the direct product Zn

2 × Sn. Hence every
automorphism δ preserving the length of words can be uniquely decomposed
as a product δ = ξσ = σξ, where ξ ∈ K and σ ∈ L.

Let δ be an automorphism of Fn without nontrivial fixed points and pre-
serving the length of words. The automorphism δ induces an automorphism
δ(m) of the free solvable group Fn/F

(m)
n by the action (wF

(m)
n )δ(m)

= wδF
(m)
n .

The aim of this work is to describe the subgroup of fixed points of δ(m), that
is

S(δ(m)) = {w ∈ Fn/F (m)
n : wδ(m)

= w}.

Let S(m)(δ) be the preimage of S(δ(m)) in Fn, that is

S(m)(δ) = {w ∈ Fn : w−1wδ ∈ F (m)
n }.

This topic is connected with the notion of symmetric words in groups and
the Marczewski–P�lonka problem. We say that a word w(x1, . . . , xn) in Fn is
symmetric in a group G if for any permutation α ∈ Sn, w(x1, . . . , xn) =
w(x1α , . . . , xnα) is the identity in G. If w is an n-symmetric word in G, then
the function f : Gn → G given by f(g1, . . . , gn) = w(g1, . . . , gn) for every
n-tuple (g1, . . . , gn) ∈ Gn is called a symmetric operation in G. Let K be a
class of all groups G such that the group operation xy is a composition of
symmetric operations. It is clear that all abelian groups are in K. In 1967
Marczewski asked whether K consists only of abelian groups (see [11]). In
1970 P�lonka gave in [12] an example of a non-abelian group which belongs
to K. But it is still an open question which groups belong to K (see [13]).
In [15] P�lonka described symmetric words in nilpotent groups of class ≤ 3,
and it follows from his description that non-abelian nilpotent groups do not
belong to K. In the series of papers [4–6] Ho�lubowski described symmetric
words in free nilpotent groups of class 4 and 5, 2- and 3-symmetric words in
free metabelian groups and in free metabelian nilpotent groups of any class.
In [3] Gupta and Ho�lubowski found all 2-symmetric words in free nilpotent-
by-abelian groups and free centre-by-metabelian groups. In [10] Macedońska
and Solitar characterized 2-symmetric words in free metabelian and solvable
groups of derived length 3. I presented in [16] a description of 2-symmetric
words in free solvable groups of any derived length, and in cooperation with
Bagiński, I described in [1] fixed points of the automorphism cyclically permut-
ing generators in free metabelian groups. In papers the [7–9,14,15], P�lonka,
Krstić, and Macedońska showed that if G is a (free) nilpotent group, then the
function δn

n−1(w(x1, . . . , xn)) = w(x1, . . . , xn−1, 1) is an isomorphism of the
group of n-symmetric words onto the group of (n − 1)-symmetric words.
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Let G = Fn/V be a relatively free group, freely generated by elements
g1 = x1V, . . . , gn = xnV. Then w(x1, . . . , xn) ∈ Fn is a symmetric word in G if
its image w(g1, . . . , gn) in G is a fixed point for all automorphisms permuting
the generators g1, . . . , gn. Such automorphisms are induced by automorphisms
permuting the generators x1, . . . , xn in Fn. In fact, a word w(x1, . . . , xn) ∈ Fn

is the symmetric word in G if and only if its image w(g1, . . . , gn) is a fixed point
of two automorphisms. The one that interchanges g1 and g2 and acts identi-
cally on the rest of the generators and the other which cyclically permutes
generators, i.e. acts on them as follows: g1 → g2 → · · · → gn → g1.

The main result of this paper is the following:

Main Theorem. Let δ be a length preserving automorphism of Fn of prime
order p and without nontrivial fixed points. Let δ(m) be an automorphism of
the free solvable group G = Fn/F

(m)
n induced by δ. Then every fixed point of

σ = δ(m) has the form ccσ . . . cσp−1
, where c ∈ G(m−1) = F

(m−1)
n /F

(m)
n .

It is easy to see that every element of the form ccσ · · · cσp−1
, where c ∈

G(m−1) = F
(m−1)
n /F

(m)
n , is a fixed point for σ = δ(m), but it is not obvious

that only such elements are the fixed points.
The Main Theorem is a generalization of a result of Macedońska and Soli-

tar [10], who described the form of fixed points for automorphisms permuting
generators in the 2-generator free metabelian group and free solvable group of
derived length 3. This was later generalized by the author [16] to include free
solvable groups of any derived length. The Main Theorem is also a general-
ization of a result of Bagiński and the author [1] which gives a description of
the fixed points of the automorphism cyclically permuting generators in free
metabelian groups.

The Main Theorem gives the full description of 2-symmetric words in free
solvable groups, which we formulate as follows:

Corollary 1. Let w(x, y) ∈ F2 be a 2-symmetric word in any solvable group of
derived length m. Then w has the form w = c(x, y)c(y, x)ξ, where c(x, y) ∈
F

(m−1)
2 and ξ ∈ F

(m)
2 .

Proof. If w(x, y) is a 2-symmetric word in any solvable group of the derived
length m, then it is a 2-symmetric word in F2/F

(m)
2 . So by the Main Theorem

w has the required form. �

The next result follows directly from the Main Theorem

Corollary 2. The free, solvable, non-abelian groups of finite rank do not belong
to K.

Proof. Let G = Fn/F
(m)
n be a free, non-abelian, solvable group, freely ge-

nerated by g1, . . . , gn. Let α be the automorphism cyclically permuting the
generators of the free group Fn that is acting on generators of the free group
as follows: x1 → x2 → · · · → xn → x1. There exists a positive integer k such
that β = αk has no nontrivial fixed points in Fn and has prime order p. If
w ∈ Fn is an n-symmetric word in G, then its image w̄ in G has to be a
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fixed point of β̄, so by the Main Theorem, w̄ belongs to G(m−1), and since
G is non-abelian, we have m > 1, so w̄ belongs to G′. If xy were a composi-
tion of symmetric operations, it would belong to G′. However, this would be
impossible. �

2. Proofs. Throughout this section we assume that δ is an automorphism of
Fn preserving the length of words and that δ has no nontrivial fixed points
in Fn. The proof of the Main Theorem is based on Dyer–Scott’s Theorem on
automorphisms of prime order in a free group [2].

Proposition 1. Let δ be an automorphism of Fn of order k that has no non-
trivial fixed points and preserves the length of words in the variables x1, . . . , xn.
Let w and c be elements of Fn.

(i) The equation ccδ . . . cδk−1
= 1 holds if and only if there exists u ∈ Fn

such that c = u−1xεuδ, where x ∈ {x1, . . . , xn} is such that xδ = x−1 and
ε ∈ {−1, 0, 1}. Moreover, if k is odd, then ε = 0 and c = u−1uδ.

(ii) There are no a ∈ Fn and x ∈ {x±1
1 , . . . , x±1

n } which satisfy xδ = x−1 and
aδ = xax.

(iii) If wδ = c−1wc and ccδ . . . cδk−1
= 1, then w = 1.

Proof. (i) Note that if k is odd, then there is no x ∈ {x1, . . . , xn} such that
xδ = x−1, so in this case ε = 0. If c = u−1xεuδ, then

ccδ . . . cδp−1
= u−1xεuδ(u−1xεuδ)δ(u−1xεuδ)δ2

. . . (u−1xεuδ)δk−1

= u−1xεuδu−δx−εuδ2
u−δ2

xεuδ3
. . . u−δk−1

x(−1)kεuδk

= u−1uδk

= u−1u = 1.

For the converse, we use induction on the length of a word c. If c

has the length 1, then c ∈ {x±1
1 ,. . ., x±1

n }, and it satisfies ccδ. . .cδk−1
= 1

only if cδ =c−1. If |c|=2, then c=xε1
i xε2

j , where ε1, ε2 =±1. For the word

ccδ. . .cδk−1
to cancel, we need (xε1

i )δ =x−ε2
j and then c=u−1uδ where u=

x−ε1
i . Let the statement be true for every word of length less than |c| > 2.

Then c=xε1
i c1x

ε2
j and ccδ. . .cδk−1

=xε1
i c1x

ε2
j (xε1

i c1x
ε2
j )δ. . .(xε1

i c1x
ε2
j )δk−1

.

For the word ccδ . . . cδk−1
to cancel, we need again (xε1

i )δ = x−ε2
j and

then 1 = ccδ . . . cδk−1
= xε1

i c1c
δ
1 . . . cδk−1

1 x−ε1
i . So c1 satisfies the equation

c1c
δ
1 . . . cδk−1

1 = 1, and by the inductional assumption it has the form
c1 = u−1

1 xεuδ
1. Hence c has the form c = u−1xεuδ, where u = u1x

−ε1
i .

(ii) Assume that aδ = xax, where x is a generator or its inverse, satisfy-
ing xδ = x−1. We have |a| = |aδ| = |xax|, so we must have a = x−1b or
a = bx−1 for some b such that |b| = |a|−1. Consider the first case, the sec-
ond is analogous. We have aδ = (x−1b)δ = xax = bx and hence xbδ = bx.
So, bδ = x−1bx. Again |b| = |x−1bx|, which means that b = ux−1 or
b = xu for some u such that |u| = |b| − 1 = |a| − 2. The case b = ux−1 is
impossible because then aδ = bx = u and |a| = |aδ| = |u| = |a| − 2. The
second case is also impossible because aδ = xax = bx = xux. It follows
from this that a = u, but a and u have different lengths.

(iii) We can assume that a word satisfying these assumptions is cyclically re-
duced. If not, then we can consider a cyclically reduced word wv, for which
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(wv)δ = (wδ)vδ

= v−δc−1wcvδ = (v−δc−1v)wv(v−1cvδ),

and we have

(v−1cvδ)(v−1cvδ)δ(v−1cvδ)δ2
. . . (v−1cvδ)δk−2

(v−1cvδ)δk−1

= v−1cvδv−δcδvδ2
v−δ2

cδ2
vδ3

. . . v−δk−2
cδk−2

vδk−1
v−δk−1

cδk−1
vδk

= v−1 ccδ . . . cδk−2
cδk−1

︸ ︷︷ ︸
=1

vδk

= v−1v = 1.

So wv also satisfies the assumptions of the Proposition for c1 = v−δc−1v.
Moreover, since δ does not change the length of words, we have |w| = |wc|.
So there exists v such that w = cv or w = vc−1. It is enough to consider
the first equality because the reasoning for the second is analogous. If
w = cv, then (cv)δ = (cv)c = vc. Hence, vc = cδvδ and vδ = c−δvc. Using
(i) we have that c = u−1xεuδ, and so vδ = (u−1xεuδ)−δvu−1xεuδ =
u−δ2

xεuδvu−1xεuδ. So we get:

xεuδvu−1xε = uδ2
vδu−δ = (uδvu−1)δ.

If ε �= 0, then for a = uδvu−1 we get aδ = xax, which by (ii) is impossi-
ble. If ε = 0, then uδvu−1 is a fixed point of δ. But δ has no nontrivial
fixed points, so uδvu−1 = 1. Hence v = u−δu = (u−1uδ)−1 = c−1 and
w = cv = cc−1 = 1, as required.

�

Lemma 1. Let Fn be a free group, freely generated by x1, . . . , xn, and let δ be
an automorphism of Fn of order p which has no nontrivial fixed points and
which does not change the length of words. Then for every positive integer m,

the subgroup F
(m)
n is a free product

∏∗
i∈I〈ai1, . . . , aip〉 ∗∏∗

j∈J〈cj1, . . . , cj(p−1)〉,
where I, J are sets of positive integers, and for all i ∈ I and j ∈ J : aδ

i1 =
ai2, a

δ
i2 = ai3, . . . , a

δ
i(p−1) = aip, a

δ
ip = ai1, cδ

j1 = cj2, c
δ
j2 = cj3, . . . , c

δ
j(p−1) =

c−1
j(p−1)c

−1
j(p−2) . . . c−1

j1 .

Proof. Let δm be a restriction of δ to F
(m)
n . Then δm is an automorphism of

prime order p of F
(m)
n . Dyer and Scott proved [2, Theorem 3] that then F

(m)
n

is a free product F 〈δm〉 ∗ ∏∗
i∈I Fi ∗ ∏∗

j∈J Fj , where F 〈δm〉 is a subgroup of
fixed points of δm, Fi = 〈ai1,. . ., aip〉, aδ

i1 = ai2, a
δ
i2 = ai3,. . ., a

δ
i(p−1) = aip, a

δ
ip =

ai1 , Fj = 〈cj1,. . ., cj(p−1), wk,j , k ∈Jj〉, where cδ
j1 = cj2, c

δ
j2 = cj3, . . . , c

δ
j(p−1) =

c−1
j(p−1)c

−1
j(p−2) . . . c−1

j1 , and for every k ∈ Jj we have wδ
k,j = c−1

j1 wk,jcj1. It is
clear that F 〈δm〉 is trivial (δ has no nontrivial fixed points and neither does
δm). The word cj1 satisfies the equation

cj1c
δ
j1 . . . cδp−1

j1 = cj1cj2 . . . cj(p−1)c
−1
j(p−1)c

−1
j(p−2) . . . c−1

j1 = 1,

so by Proposition 1 (iii) the words wk,j have to be trivial, so Fj = 〈cj1,. . .
cj(p−1)〉, and the statement of the Lemma follows. �
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The similar basis as in Lemma 1 for automorphism interchanging genera-
tors in F2 was constructed by the author in [16]. This construction uses the
special basis in free groups of countable rank described in [16] or in [17]. But
the author cannot use this technique for automorphisms permuting generators
in free groups of rank greater than 2.

Lemma 2. Let A =
∏

i∈I〈Ai〉 × ∏
j∈J〈Cj〉 be a free abelian group, freely gen-

erated by the union of sets Ai = {αi1, . . . , αip} and Cj = {γj1, . . . , γj(p−1)}
for i ∈ I, j ∈ J, and let ϕ be an automorphism of A acting on subgroups 〈Ai〉
and 〈Cj〉 as follows: αϕ

i1 = αi2, α
ϕ
i2 = αi3, . . . , α

ϕ
i(p−1) = αip, α

ϕ
ip = αi1, γϕ

j1 =
γj2, γ

ϕ
j2 = γj3, . . . , γ

ϕ
j(p−1) = γ−1

j(p−1)γ
−1
j(p−2) . . . γ−1

i1 . Then every fixed point a of

ϕ has the form a = ccϕ . . . cϕp−1
, where c ∈ ∏

i∈I Ai.

Proof. It is easy to see that the statement is true if a ∈ Ai for any i ∈ I and
that ϕ has no nontrivial fixed points in Cj for any j ∈ J. The Lemma follows
since ϕ acts independently on direct summands of A. �

Remark 1. Without loss of generality, we can assume that every fixed point of
ϕ satisfying the assumptions of the previous lemma has the form ccϕ . . . cϕp−1

,
where c = αd1

11 . . . αdk

k1 for some k, where ai1 ∈ Ai.

Remark 2. It follows from Lemma 1 that for every m, a group F
(m)
n /F

(m+1)
n

has a basis such that the automorphism ϕ = δ̄m satisfies the assumptions of
Lemma 2, where δ̄m is a restriction of δ̄ onto F

(m)
n /F

(m+1)
k . We will use this

remark both for F
(m)
n /F

(m+1)
n and

F (m−1)
n /F (m)

n 	
(
F (m−1)

n /F (m+1)
n

)/(
F (m)

n /F (m+1)
n

)
.

Lemma 3. For every integer m > 0 we have:
(i) S(m+1)(δ) ⊆ S(m)(δ),

(ii) F
(m)
n ⊆ S(m)(δ) ⊆ F

(m−1)
n ,

(iii) S(m+1)(δ) is a normal subgroup of S(m)(δ).

Proof. Let us be reminded that

S(m)(δ) = {w ∈ Fn : w−1wδ ∈ F (m)
n }.

(i) If w belongs to S(m+1)(δ), then w−1wδ ∈ F
(m+1)
n ⊆ F

(m)
n , so w ∈ S(m)(δ).

(ii) The inclusion F
(m)
n ⊆ S(m)(δ) is trivial, so we shall prove that S(m)(δ) ⊆

F
(m−1)
n . We use an induction on m. For m = 1 the situation is clear. Now

suppose that the statement is true for some m > 0. By part (i) and the
induction hypothesis S(m+1)(δ) ⊆ S(m)(δ) ⊆ F

(m−1)
n . Let u ∈ S(m+1)(δ).

We know that u ∈ S(m)(δ)∩F
(m−1)
n , and we want to show that u ∈ F

(m)
n .

By Lemmas 1 and 2 we have that u = aaδ . . . aδp−1
z with

a = ad1
1 . . . adk

k ,
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where a1, a
δ
1, . . . , a

δp−1

1 , . . . , ak, aδ
k, . . . , aδp−1

k are among the free genera-
tors for F

(m−1)
n and z ∈ F

(m)
n . Let φi be an endomorphism of F

(m−1)
n

that fixes the generators ai, a
δ
i , . . . , a

δp−1

i and maps all other generators
to 1. Clearly, φi commutes with the action of δ on F

(m−1)
n and thus

vi = uφi = bbδ . . . bδp−1
zφi

is also in S(m+1)(δ), where b = adi
i . Then v̄i, the image of vi in

F
(m−1)
n /F

(m+1)
n , is a fixed point of an automorphism cyclically permuting

the generators of the free metabelian group 〈āi, ā
δ
i , . . . , ā

δp−1

i 〉. It follows
from [1, Theorem 3] that v̄i belongs to 〈āi, ā

δ
i , . . . , ā

δp−1

i 〉′, which means
that di = 0. This shows that d1 = d2 = · · · = dk = 0 and thus u ∈ F

(m)
n .

(iii) Let w ∈ S(m+1)(δ) and v ∈ S(m)(δ). By assumption v−1vδ ∈ F
(m)
n and

w−1wδ ∈ F
(m+1)
n . By (ii) we know that w ∈ F

(m)
n , and thus w commutes

with v−1vδ modulo F
(m+1)
n . Thus, modulo F

(m+1)
n , we have

(wv−1
)−1(wv−1

)δ = vw−1v−1vδwδ(vδ)−1 = vv−1vδw−1wδ(vδ)−1

= vδ(vδ)−1 = 1,

so wv−1
= vwv−1 ∈ S(m+1)(δ).

�
Proof of the Main Theorem. If u is a fixed point of δ(m+1) in Fn/F

(m)
n , then

by Lemma 3 (ii) u belongs to F
(m−1)
n /F

(m)
n , which is a free abelian group. By

Remark 2, if ϕ is a restriction of δ(m+1) to F
(m−1)
n /F

(m)
n , then ϕ satisfies the

assumptions of Lemma 2. So u has the required form. �
There are many questions connected with the topic of this paper to which

the author so far has no answers.
For example, is it true that S(m)(δ)/S(m+1)(δ) is a free metabelian group?
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