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A bound for certain s-extremal lattices and codes

Philippe Gaborit

Abstract. In this paper we introduce the notion of s-extremal lattice for uni-
modular Type I lattices. We give a bound on the existence of certain such
s-extremal lattices: an s-extremal lattice of dimension n and minimal even
norm µ must satisfy n < 12µ. This result implies that such lattices are also
extremal and that there are a finite number of them. We also give an equiv-
alent bound for s-extremal self-dual codes: an s-extremal code with doubly-
even minimum distance d and length n must satisfy n < 6d, moreover such
codes are extremal.
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1. Introduction. The class of unimodular lattices has been studied for a long time
and contains many interesting lattices. In particular it is possible to give a bound
on the minimum norm of such lattices. If L is a unimodular lattice with theta
series

θL(τ) :=
∑
x∈L

q(x·x),(1)

where τ ∈ h, the upper half complex plane, and q := eπiτ ; its theta series satisfies
an invariance property under the transformation τ → −1/τ . If the lattice is more-
over even, then its theta series is invariant under the action of the full modular
group SL(2, Z), this result permits to show that the minimum norm µ of an even
unimodular lattice satisfies:

µ ≤ 2[n/24] + 2,(2)

where n is the dimension of the lattice. The first case where this bound is not
known to be tight is n = 72.
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In the case of odd unimodular lattices no satisfactory bound was known until
the introduction of the shadow theory by Conway and Sloane in [4].

Let L be a unimodular lattice. The shadow S of L is S := (L0)∗ \ L, where
L0 denotes the even sublattice of L. If L is an odd lattice, its theta series has the
following expression:

θL(τ) =
[n/8]∑
j=0

cj∆8(q)jθ3(q)n−8j ,(3)

and the theta series of the shadow S is

θS(τ) =
[n/8]∑
j=0

(−1)j

16j
cjθ4(q2)8jθ2(q)n−8j ,(4)

where q := eπiτ , ∆8(q) = q
∏∞

m=1(1 − q2m−1)8(1 − q4m)8, and θ2, θ3, θ4 are the
usual Jacobi theta series (see [3, Chap. 4, § 4]).

This notion was used to prove new bounds for odd unimodular lattices, the
most efficient is the bound by Rains and Sloane [16] which states that except for
the short Leech lattice in dimension 23 all odd unimodular lattices also satisfy the
bound (2) for even lattices.

Another point of view on the shadow was proposed by Elkies who studies in [6]
the minimum norm of the shadow. If we denote, as usual, by µ the minimum norm
of L and by σ, four times the minimum norm of its shadow, Elkies shows that
σ ≤ n and that the only lattice with σ = n is Z

n. He also considers the case where
σ = n−8 for which he gives the short list of such lattices from the classification of
unimodular lattices up to dimension 24. The next cases σ = n−16 and σ = n−24
are first considered by Gaulter in [8] who gives two large upper bounds for the
existence of such lattices. Then Nebe and Venkov consider in [13] more precisely
the case σ = n − 16 and µ ≥ 3 for which they give a tight upper bound of n ≤ 46
for the existence of such lattice.

In this paper we propose to study simultaneously the parameters σ and µ as it
was proposed for codes by Bachoc and the author in [1]. We show that 8µ+σ ≤ n+8
except in the case n = 23 and µ = 3 for which σ = 15. The lattices which satisfy
equality in the bound are called s-extremal. We show that for even µ, s-extremal
lattices exist only if n < 12µ. We also give an equivalent bound for s-extremal
codes: if an s-extremal code of length n has a minimum distance d divisible by
four then n < 6d.

2. S-extremal lattices.

2.1. Definition of s-extremal lattices. We give in the following a theorem and a
definition for s-extremal lattices.
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Theorem 2.1. Let L be a unimodular lattice, assumed not to be of Type II, of
minimum norm µ, and let S be its shadow, of minimum norm σ. Then, 8µ + σ ≤
8 + n, unless n = 23 and µ = 3, for which σ = 15 and the only possible lattice is
the short Leech lattice O23.

Definition 2.2. A lattice which parameters (µ, σ) satisfy equality in the previous
bounds is said to be s-extremal.

Remark: For an s-extremal lattice L the theta series θL and θS are uniquely
determined.

Proof of Theorem 2.1: From (4), the norms in S are congruent to n
4 mod 2. Let

us denote ai the number of vectors of norm i in L and bi the number of vectors of
norm i

4 in S. Let us define σ′ by σ = n − 8σ′. From (3) and (4), the conditions




a0 = 1
ai = 0 for 1 ≤ i ≤ µ − 1
bn−8j = 0 for σ′ + 1 ≤ j ≤ [n/8]

(5)

are linear and independent conditions on the [n/8]+1 coefficients ci. Their number
is µ+[n/8]−σ′, which is greater or equal to [n/8]+1 if and only if 8µ+σ ≥ 8+n.

We now assume that the inequality 8µ + σ ≥ 8 + n holds. From the previous
discussion, the theta series of L and S are uniquely determined. Let t := 8+n−8µ.
We have: {

θL = 1 + aµqµ + aµ+1q
µ+1 + . . .

θS = btq
t + bt+8q

t+8 + . . .
(6)

where bt is not assumed to be non-zero.

In the following we discuss the possibility that bt = 0.

From (4), bt = (−1)µ−1

16µ−1 cµ−1 and ci = 0 for all i > µ − 1. Dividing (3) by θn
3 one

then gets:

µ−1∑
j=0

cj

(
∆8

θ8
3

)j

=
1
θn
3

+
1
θn
3

{aµqµ + · · · }(7)

Hence the coefficients c0, · · · , cµ−1,−aµ are the coefficients of 1
θn
3

developed on(
∆8
θ8
3

)j

. In the following in order to simplify the notation, we denote m = µ − 1.
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As in [16] the Bürman-Lagrange formula [17] allows us to calculate:

cm =
1
m!

∂m−1

∂qm−1

(
∂

∂q

(
θ−n
3

)(qθ8
3

∆8

)m)
q=0

=
1
m!

∂m−1

∂qm−1

(
−n

θ′
3

θn−8m+1
3

(
q

∆8

)m)
q=0

=
−n

m

{
coeff. of qm−1 in:

θ′
3/θ3

θn
3 ( ∆8

qθ8
3
)m

}

Following Rains and Sloane [16], we denote g1 = θ3 and g2 = ∆8/θ8
3, with

(q−1g2)m =
∏∞

j=1(1 + q2j−1)24m and gn
1 =

∏∞
j=1(1 − q2j)n(1 + q2j−1)2n, so that:

cm =
−n

m
{coeff. of qm−1 in:

θ′
3/θ3

gn
1 (q−1g2)m

}

By considering the product form of θ3 we remark that the q-expansion of the
series θ′

3/θ3 is an alternating series with all coefficients non null and positive for
even powers of q. Moreover the series 1/(gn

1 (q−1g2)m) is an alternating series if
and only if 2n − 24m > 0. Hence since the product of an alternating series with
a series with only positive terms for even powers of q is still an alternating series,
the sign of aµ is related to 2n − 24m. Three cases occur:

If 2n − 24m ≥ 0 the series 1/(gn
1 (q−1g2)m) is either an alternating series or

a series with only even powers and positive coefficients, hence since θ′
3/θ3 is an

alternating series and has only non null coefficients, we deduce that cµ−1 �= 0 (and
therefore bt �= 0).

If 2n − 24m ≤ −4 then one gets:

cm =
−n

m

{
coeff. of qm−1 in:

θ′
3
∏∞

j=1(1 + q2j−1)−(2n−24m+2)∏∞
m=1(1 − q2j)n+1

}

since −(2n − 24m + 2) ≥ 2, cµ−1 �= 0.

If 2n−24m = −2: from the bound of [16] this last possibility may only happen
for n = 24k + 11, µ = 2k + 2 or n = 23, µ = 3. We then have:

cm =
−n

m

{
coeff. of qm−1 in:

θ′
3∏∞

m=1(1 − q2j)n+1

}

In the case where n = 24k + 11 and µ = 2k + 2 since µ is even we deduce from
the q-expansion of the series that cµ−1 is non null. The second case corresponds
to the short Leech lattice for which b7 = 0 but b15 �= 0 (see [6]). This concludes
the proof.



Vol. 89 (2007) A bound for certain s-extremal lattices and codes 147

2.2. A bound for certain s-extremal lattices. The following theorem gives a bound
on the existence of s-extremal lattices in the case of even minimum norms. Note
that as we will see in the next section for µ = 4, this bound is tight.

Theorem 2.3. Let L be an s-extremal lattice with parameters (µ, σ) of dimension
n, if µ is even then n < 12µ.

Proof. The proof is similar to the proof of the previous theorem. From (7) we
deduce that the coefficients c0, · · · cµ−1,−aµ are the coefficients of 1

θn
3

developed

on
(

∆8
θ8
3

)j

. The Bürman-Lagrange formula allows us then to calculate:

−aµ = −n

µ

{
coeff. of qµ−1 in:

θ′
3/θ3∏∞

j=1[(1 − q2j)(1 + q2j−1)]n−8µ[(1 − q2j−1)(1 − q4j)]8µ

}

= −n

µ

{
coeff. of qµ−1 in:

θ′
3/θ3∏∞

j=1(1 − q2j)n−8µ(1 − q4j−2)8µ(1 − q4j)8µ(1 + q2j−1)2n−24µ

}

and eventually after simplification:

aµ =
n

µ

{
coeff. of qµ−1 in:

θ′
3/θ3∏∞

j=1(1 − q2j)n(1 + q2j−1)2n−24µ

}

Hence if 2n − 24µ ≥ 0 the series 1
(1+q2j−1)2n−24µ are alternating series and

therefore since θ′
3/θ3 is an alternating series with non null coefficients, the term aµ

is non null and its sign is (−1)µ−1. This implies that s-extremal lattices for even
µ and n ≥ 12µ cannot exist since aµ has to be positive or null. �
Corollary 2.4. S-extremal lattices with even minimum norm are extremal and there
are only finitely many such lattices.

Proof. From the result by Rains and Sloane [16] the minimum norm of a Type I
lattice of dimension n with even norm µ, satisfies: µ ≤ 2[n/24] + 2. The previous
bound implies: 2[n/24] ≤ n/12 < µ ≤ 2[n/24]+2 and the extremality of s-extremal
lattices with even norm. The finite number of such lattice is a consequence of Rains
results of [15, Theorem 5.2]. �

Remark: The notion of s-extremal lattice and the previous bound have been gen-
eralized to strongly unimodular lattices by Nebe and Schindelar in [11].

2.3. Examples of s-extremal lattices.

• µ = 2
Such lattices exist up to dimension 23, this case has been completely classified by
Elkies in [6] from the classification of unimodular lattices up to dimension 24.

• µ = 3
This case has been considered in [13], such lattices exist up to dimension 46. A
questionmark in the table means that no lattice is known at present.
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n num ref n num ref
23 1 [13] 35 ≥ 1 [13]
24 1 [13] 36 ?
25 0 37 ?
26 1 [13] 38 ?
27 2 [13] 39 ?
28 36 [13] 40 ≥ 1 [1]
29 ≥ 1 [13] 41 ?
30 ≥ 1 [13] 42 ?
31 ≥ 1 [13] 43 ?
32 ≥ 1 [13] 44 0 [13]
33 ≥ 1 [13] 45 0 [13]
34 ≥ 1 [13] 46 1 [13]

• µ = 4
In that case, such lattices exist up to dimension 47. We list known lattices for
µ = 4:

n 32 36 37 38 39 40 41 42 43 44 45 46 47
num 5 ≥ 2 ? ≥ 1 ≥ 1 ≥ 1 ? ≥ 1 ? ? ? ≥ 1 ≥ 1
ref [5] [12],[7] [7] [9] [7] [12],[7] [10] [10]

• µ = 5
In that case, it is not known up to which dimension such lattices do exist. The
only known lattice is for dimension 54 in [7].

• µ ≥ 6
For µ = 6, such lattices may only exist for dimensions 56 to 71 ([16, 12, 7]). No
s-extremal lattice is known for µ ≥ 6.

3. S-extremal codes. We now give for s-extremal codes a bound equivalent to the
bound of Theorem 2.3. Let C be a self-dual binary code, which is assumed not
to be doubly-even and let S be its shadow defined as S := C0

⊥ \ C, for C0 the
doubly-even subcode of C. We denote WC and WS the weight enumerators of C
and S. From [4], there exists c0, . . . , c[n/8] ∈ R such that:

{
WC(x, y) =

∑[n/8]
i=0 ci(x2 + y2)

n
2 −4i{x2y2(x2 − y2)2}i

WS(x, y) =
∑[n/8]

i=0 ci(−1)i2
n
2 −6i(xy)

n
2 −4i(x4 − y4)2i

(8)

We denote d the minimum weight of C and s the minimum weight of its shadow.
The following theorem and definition are from [1]:

Theorem 3.1. Let C be a self-dual binary code, assumed not to be doubly-even, of
minimum weight d, and let S be its shadow, of minimum weight s. Then, 2d+ s ≤
4 + n

2 , unless n ≡ 22 mod 24 and d = 4[n/24] + 6, in which case 2d + s = 8 + n
2 .



Vol. 89 (2007) A bound for certain s-extremal lattices and codes 149

Definition 3.2. A code which parameters (d, s) satisfy equality in the previous
bounds is said to be s-extremal.

Remark: The polynomials WC and WS of an s-extremal code are uniquely deter-
mined.

The following theorem gives a bound on the existence of such s-extremal codes.
Note that as for lattices for d = 8, this bound is tight in the sense that such codes
exist for n = 44, and n = 46 corresponds to the special case of a [46, 23, 10] code
with s = 11.

Theorem 3.3. Let C be an s-extremal code with parameters (s, d) of length n, if
d ≡ 0 (mod 4) then n < 6d.

Proof. Let C be an s-extremal codes with parameters (s, d) with d ≡ 0 (mod 4)
then one may assume that the equality 2d + s = 4 + n

2 holds. The weight enumer-
ators of C and S are uniquely determined. Bürman-Lagrange formula allows us to
calculate the coefficients of these polynomials. Let t := 4 + n

2 − 2d. We have:{
WC(x, y) = 1 + adx

n−dyd + ad+2x
n−d−2yd+2 + . . .

WS(x, y) = btx
n−tyt + bt+4x

n−t−4yt+4 + . . .
(9)

We now prove that if d ≡ 0 (mod 4) and n ≥ 6d then then ad < 0, which
proves the theorem since all the coefficients have to be greater or equal to zero.

We have in (8) ci = 0 for all i > d
2 −1. Setting x = 1 and dividing by (1+y2)

n
2

the first equation of (8) leads to:

d
2 −1∑
i=0

ci

{
y(1 − y2)
(1 + y2)2

}2i

=
1

(1 + y2)
n
2

+
1

(1 + y2)
n
2

{ady
d + . . . }

Let g(y) := y(1−y2)
(1+y2)2 . From this last expression, we see that c0, c1, . . . , c d

2 −1,−ad

are the first coefficients of the development of 1
(1+y2)

n
2

as a series in g(y). From

the Bürman-Lagrange formula, we obtain:

−ad =
1
d!

∂d−1

∂yd−1

(
∂

∂y

(
1

(1 + y2)
n
2

)(
(1 + y2)2

1 − y2

)d
)

y=0

which, after simplification, becomes:

ad =
n

d

{
coeff. of yd−2 in:

1
(1 + y2)

n
2 −2d+1(1 − y2)d

}
.
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Let us write n = 6d + 2α, with α ≥ 0 then the previous formula becomes:

ad =
n

d

{
coeff. of yd−2 in:

1
(1 + y2)1+α(1 − y4)d

}
,

and, finally, leads to :

ad =
n

d

∑
j,k∈N

j+2k= d
2 −1

(−1)j

(
α + j

j

)(
d + k + 1

k

)

=
n

d
(−1)

d
2 −1

∑
j,k∈N

j+2k= d
2 −1

(
α + j

j

)(
d + k + 1

k

)

which shows that ad is negative for d ≡ 0 (mod 4). �
Corollary 3.4. All s-extremal codes with doubly-even minimum weight are ex-
tremal.

Proof. From the extension by Rains [14] of the bound on Type II codes to Type
I codes and from the previous bounds one gets: 4[n/24] ≤ n/6 < d ≤ 4[n/24] + 4
and the result follows. �
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