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Nuclear ranges in implicative semilattices
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Abstract. A nucleus on a meet-semilattice A is a closure operation that
preserves binary meets. The nuclei form a semilattice NA that is iso-
morphic to the system NA of all nuclear ranges, ordered by dual inclu-
sion. The nuclear ranges are those closure ranges which are total subal-
gebras (l-ideals). Nuclei have been studied intensively in the case of com-
plete Heyting algebras. We extend, as far as possible, results on nuclei
and their ranges to the non-complete setting of implicative semilattices
(whose unary meet translations have adjoints). A central tool are so-called
r-morphisms, that is, residuated semilattice homomorphisms, and their
adjoints, the l-morphisms. Such morphisms transport nuclear ranges and
preserve implicativity. Certain completeness properties are necessary and
sufficient for the existence of a least nucleus above a prenucleus or of a
greatest nucleus below a weak nucleus. As in pointfree topology, of great
importance for structural investigations are three specific kinds of l-ideals,
called basic open, boolean and basic closed.
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1. Introduction

Closure is a vital theme in quite diverse mathematical disciplines (see [16] for a
survey and historical background). A convenient framework for closure theory
is that of ordered sets (posets): a closure or hull operation on a poset A is an
isotone (order-preserving), inflationary (extensive) and idempotent self-map
on A, or in succinct terms, a unary operation g on A with

x ≤ gy ⇔ gx ≤ gy. (C)
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Extensions to the even more comprehensive categorical theory of reflections,
monads [1, Ch. V-20] and closure operators [10,12] are possible but will not
concern us here. Closure may be described by several equivalent structures,
the most obvious ones being the so-called closure ranges [15,16], elsewhere also
termed partial ordinals [2], closure subsets [9], or closure systems [11]. While by
a closure range of a poset A we mean a subset C such that above each element
of A there is a least element in C, we reserve the name “closure system” for
subsets of power sets PX that are closed under arbitrary intersections (with⋂

∅ = X), hence closure ranges in PX. Sending each closure operation to its
range (the fixpoint set), one obtains an isomorphism between the pointwise
ordered set CA of all closure operations and the set CA of all closure ranges,
ordered by dual inclusion.

Taking into account any binary operation on A that is isotone in both
arguments, one calls g multiplicative if g preserves that operation. An early
investigation of this rather general situation with many examples is due to
Varlet [44,45]. Specifically, motivated by the familiar notion of Kuratowski
closure in topology, one considers closure operations on boolean algebras that
preserve finite joins. This approach, intertwining topology with algebraic logic
and lattice theory, was pursued by McKinsey and Tarski in their ground-
breaking papers The algebra of topology [34] and On closed elements in closure
algebras [35], which had a great number of followers. In the same vein as the
lattices of open resp. closed sets in topological spaces are the fixpoint sets of
topological interior resp. closure operators on power sets, the range of any
interior operation on a boolean algebra is a Heyting algebra, and all Heyting
algebras arise this way; see Esakia [20] for a categorical equivalence.

Another obvious choice is the binary meet operation of ∧-semilattices
with top, in this paper merely referred to as semilattices. At first glance, this
choice does not look very promising, because on a boolean algebra the only ∧-
preserving closure operations are the unary join-operations γa : x �→ a∨x. But
∧-preserving closure operations, nowadays often called nuclei, turned out to be
of fundamental importance in pointfree topology, logic, topos theory [27,28],
and other branches of mathematics. Perhaps the first account of that theme
is Bergmann’s 1952 paper [5]. Restricting the isomorphism between CA and
CA to the poset NA of all nuclei on a semilattice A leads to an isomorphism
between NA and the subsemilattice NA of CA consisting of all nuclear ranges
(also termed nuclear systems [11] or strong ideals [40]).

In the paper at hand and its successor [17] we investigate nuclei on
implicative semilattices (cf. [6,7,36,44,45]), that is, semilattices with a
binary operation →, called residuation, formal implication or relative pseudo-
complementation (according to the respective interpretation), such that

x ∧ y ≤ z ⇔ y ≤ x→z.

Other common notations for x→z are x ∗ z [36,30,45] or z : x [9], but often it
is more convenient to use the symbols xz for x→z and xyz for (xy)z in order to
avoid parentheses in iterated applications [8,45]. According to that convention,
it is consistent to write x⊥ for the pseudocomplement x∗ = x→⊥ (provided
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a bottom element ⊥ exists). In fact, ⊥ is a kind of orthocomplementation, in
view of De Morgan’s law (x ∨ y)⊥ = x⊥∧ y⊥ in Heyting algebras. Notice also
the “powerful” equation

xzz ∧ xz = z

which assures that implicative semilattices are distributive: x ∧ y ≤ z implies
z = x′ ∧y′ for some x′ ≥ x and y′ ≥ y (take x′ = xzz, y′ = xz). The exchanged
notation zx instead of xz would be more suggestive, in view of the rules

x→ (y ∧ z) = (x→y) ∧ (x→z),

(x ∨ y)→z = (x→z) ∧ (y→z),

(x ∧ y)→z = x→ (y→z),

which in the zx notation, oppressing the symbol ∧ and writing + for ∨,
would turn into the familiar exponential rules (yz)x = yxzx, zx+y = zxzy,
zxy = (zy)x. However, this exchanged notation seems not to have prevailed in
the lattice-theoretical literature, while it is common in the wider context of
cartesian closed categories (see, e.g., [1, Ch. VII]).

Implicative semilattices are also called relatively pseudocomplemented
or Brouwerian (see, e.g., Köhler [30,31]); some authors use the latter term
for the dual structures (McKinsey and Tarski [35]). Picado, Pultr and Tozzi
[40] speak of Heyting semilattices, while we reserve that term for bounded
implicative semilattices (possessing a least element ⊥). A Heyting lattice is
then both a Heyting semilattice and a lattice, and the associated algebra with
the operations ∨,∧,⊥,� and → is a Heyting algebra; for the origins of this
concept, see the pioneering work of Glivenko [24] and Heyting [25] related
to Brouwer’s intuitionistic logic. Immense research has been devoted to that
theme and its role in logic, algebra and topology (see, e.g., Esakia [20]).

Some of the results we shall prove for nuclei on semilattices are known
for the case of lattices or at least of complete lattices, but the lack of certain
joins or meets often requires new methods. By general properties of adjoint
maps (see Sect. 2), binary meets in implicative semilattices distribute over
all existing joins, and the complete Heyting lattices are the frames or locales
[26,27,38,39,43], satisfying for all subsets Y the distributive law

x ∧
∨

Y =
∨

{x ∧ y | y ∈ Y }.

Further examples of Heyting lattices are all products of bounded chains. The
chain ω of natural numbers is not an implicative semilattice, missing a top
element. On the contrary, the dual chain ωop is a

∨
-complete implicative lattice

(but not a Heyting lattice), and Cωop = Nωop is the closure system of all
subsets containing the top element. Thus, it is a boolean frame. The following
six structures all describe the same objects if their carriers are finite:

nonempty (bounded) distributive lattices, frames, locales,
Heyting semilattices, Heyting lattices, Heyting algebras.

Nuclei on Heyting algebras are also referred to as modal operators (Beazer
and Macnab [4], Macnab [32,33]). Our perspective is slightly different from
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the classical one: we consider an implicative semilattice A with top element�
as a general algebra with the binary meet operation ∧, the nullary operation �,
and the family α = (αa : a ∈ A) of unary operations

αa : A−→ A with αay = a→y,

which are related to the unary meet operations

λa : A−→A with λax = a ∧ x

via the adjoining equivalence

λax ≤ y ⇔ x ≤ αay.

The subalgebras of (A,∧,�, α) are what Köhler calls total subalgebras [31].
In accordance with a general ideal concept in universal algebra, we call them
left →-ideals, or l-ideals for short (Picado, Pultr and Tozzi merely speak of
ideals [40]). Those l-ideals which are closure ranges are said to be nuclear,
because they are exactly the ranges of nuclei. Under the changed perspective
the appropriate alternative to the usual homomorphisms are residuated (that
is, coadjoint) and top-preserving ∧-homomorphisms between semilattices. We
call them r-morphisms and their adjoints l-morphisms. A basic observation
will be that the image of an implicative semilattice under an r- or l-morphism
is implicative, too. For implicative semilattices, the unary meet operations λa

induce r-morphisms from A onto ↓a = {x ∈ A |x ≤ a}, and their adjoints αa

are nuclei inducing l-morphisms from ↓ a into A.
In the complete case, the r-morphisms are nothing but the frame homo-

morphisms, whereas the l-morphisms are the locale morphisms or localic maps
[38], the natural morphisms in pointfree topology, corresponding to continuous
maps between topological spaces [26,27,38]. The tools of r- and l-morphisms
provide extensions of results from the realm of frames/locales to arbitrary
Heyting algebras or even to implicative semilattices. Sometimes the existence
of certain joins or meets is indispensable. But one also finds substantial results
on nuclei in the non-complete setting, for example in the work of Macnab
[32,33] on Heyting algebras; see also Varlet [44,45].

Section 2 provides the necessary fundaments concerning adjunctions and
closure operations. In Section 3 we introduce some useful weak variants of
nuclei and see that nuclei and their ranges are transported forth and back
by suitable adjoint maps. Section 4 contains the relevant connections between
nuclei, prenuclei and weak nuclei on implicative semilattices and their ranges.
Certain completeness properties turn out to be necessary and sufficient in
order that for each prenucleus there is a least nucleus above it, and for each
weak nucleus there is greatest nucleus below it. Section 5 is devoted to three
important kinds of l-ideals in implicative semilattices: the basic open l-ideals
aa = {a→x |x ∈ A}, the boolean l-ideals ba = {x→a |x ∈ A}, and the basic
closed l-ideals ca = {x ∈ A |x ≥ a}. The first two kinds are always nuclear,
whereas the ca’s are closure ranges only in lattices. The nuclear l-ideals ba form
a meet-dense subset of NA and are exactly those l-ideals which are boolean
lattices. The basic open and the basic closed l-ideals are complementary in
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the frame TA of all l-ideals, and together they generate NA via joins of finite
meets if A is a Heyting algebra [33].

In the second part [17] we use the results derived in this first part for a
thorough study of the algebraic structure of TA (cf. Köhler [31]) and of NA
(cf. Picado, Pultr and Tozzi [40]). Other applications occur in [19].

2. Closure operations, closure ranges, and adjoint maps

The letter A denotes a (partially) ordered set (poset), ≤ its order relation,
≥ the dual order, and Aop the opposite or dually ordered set. A least element
(bottom) is denoted by ⊥ or ⊥A, and a greatest element (top) by � or �A. A
poset possessing a top is said to be topped. For Y ⊆ A,

↑ Y = {x ∈ A | ∃ y ∈ Y (x ≥ y)} and ↓ Y = {x ∈ A | ∃ y ∈ Y (x ≤ y)}
are the upset and the downset generated by Y , respectively. ↑ y = ↑{y} resp.
↓ y = ↓{y} is the principal upset resp. principal downset generated by y ∈ A.
An equation x =

∨
Y means that x is the least upper bound (join, supremum)

of Y ; dually, meets (infima) are defined as greatest lower bounds and denoted
by

∧
Y . The poset A is complete if all subsets have joins (or equivalently,

all subsets have meets), and
∨

-complete if all nonempty subsets have joins
(or equivalently, all lower bounded subsets have meets). In a ∨-semilattice, the
binary joins x∨y =

∨
{x, y} exist for all elements x, y; dually, in ∧-semilattices

all binary meets x ∧ y exist.
If maps are applied to elements, we omit parentheses and write fa or fa

for the image of an element a under a map f, and also fX for the image of a
subset X of the domain, while the preimage of a subset Y of the codomain is
denoted by f←Y . We write AA for the pointwise ordered set of all self-maps
or unary operations f on A, and we put

Af = {a ∈ A |fa = a}, Afx = Af ∩ ↑x for x ∈ A.

The fixpoint set Af coincides with the range fA whenever f is idempotent
(ff = f). The map f is isotone if x ≤ y implies fx ≤ fy, and inflationary or an
inflation if x ≤ fx. By a preclosure operation we mean an isotone inflation, and
by a weak closure operation [41] an idempotent inflation. A retraction (in [23]:
projection) is an isotone idempotent map, and a closure or hull operation is an
idempotent preclosure operation. Dual closure operations are called coclosure
or kernel operations. An easy verification shows:

Lemma 2.1. For all preclosure operations j and all weak closure operations g,
passing to the ranges inverts the order: j ≤ g is equivalent to Ag ⊆ Aj.

We call a subset C of A a closure range if for each a ∈ A there is a least
c ∈ C with a ≤ c, but apply the terms closure operator and closure system only
to the case of power set lattices A = PX. A coclosure range or kernel range in A
is a closure range in the dual poset Aop. The term “closure range” is justified
by the fact that associating with each closure operation its range yields an
isomorphism between CA, the pointwise ordered set of closure operations on



18 Page 6 of 22 M. Erné Algebra Univers.

A, and CA, the set of all closure ranges, ordered by dual inclusion [2,16,44].
Closure ranges are subsets that are closed under all existing meets; the converse
holds in complete lattices. A basic construction of closure operations leans on
the existence of certain meets [16]:

Lemma 2.2. Let S be a any subset of A. If for each x ∈ A the set S ∩↑x has a
meet mx then the so defined map m is a closure operation on A, and its range
is the closure range generated by S.

Closure operations are connected with adjoint maps. Given two posets
A,B and two maps h : A−→B and f : B −→ A related by the equivalence

hx ≤ y ⇔ x ≤ fy

one calls f the (right or upper) adjoint of h, and h the coadjoint (left or lower
adjoint) of f. In that situation, the resulting equations fhf = f and hfh = h
ensure that fh is a closure operation, and hf a kernel operation. In accordance
with [38] we chose the letter h because often h will be a homomorphism between
semilattices or lattices. Observe that in [9] and elsewhere f stands for the left
adjoint, while right adjoints are often denoted by g.

Every map h from A to B factors through its surjective corestriction h0

from A onto hA and the inclusion map h0 from hA into B. By the characteristic
equivalence (C), g is a closure operation iff g0 is adjoint to g0. A map is
left adjoint iff it is residuated, that is, preimages of principal downsets are
principal downsets, and (right) adjoint iff it is residual, that is, preimages
of principal upsets are principal upsets. Residuated maps preserve all existing
joins, and residual maps all existing meets; the converse holds for maps between
complete lattices. For more results on adjoint maps and closure operations refer
to [9,15,16,18,23]. Note the following straightforward equivalences:

Lemma 2.3. A map h : A−→B with adjoint f : B −→ A is surjective iff f is
injective iff hf = idB iff hx =

∨
Y for all subsets Y of B with x =

∨
fY .

Thus, for a residuated surjection h, if A is (
∨

-)complete then so is B = hA.

Lemma 2.4. A map h : A−→B with adjoint f is injective iff f is surjective,
and then C ⊆ A is a principal upset iff its preimage f←C is a principal upset.

Proof. Suppose f←C = ↑y. Then y ∈ f←C, fhfy = fy ∈ C, hfy ∈ f←C = ↑y,
and so y = hfy (as hfy ≤ y). Now, injectivity of h gives fhx = x, and then

fy ≤ x ⇒ y ≤ hx ⇒ hx ∈ f←C

⇒ x = fhx ∈ C ⇒ y ≤ hx ⇒ fy ≤ fhx = x

confirms the equation C = ↑fy. �

Closure operations and their ranges are transported by adjoint maps:

Proposition 2.5. Let h : A−→B be residuated and f : B −→ A its adjoint.
(1) For a closure operation j on B with range C, fjh is a closure operation

on A with range fC. Hence, adjoint maps send closure ranges to closure
ranges.
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(2) For a closure operation g on A, the restriction g′ of hgf to hA is a closure
operation on hA if one of the following conditions is fulfilled:
(a) fB is an upset in A, (b) fh commutes with g, (c) fhgf = gf.

In these cases the range of g′ is the preimage of Ag under f �hA. In par-
ticular, preimages of closure ranges under injective adjoint maps whose
range is an upset are again closure ranges.

Proof. (1) Since f, j and h are isotone, so is fjh, and idB ≤ j gives the inequal-
ity idA ≤ fh ≤ fjh; and hf ≤ idB yields fjhfjh ≤ fjjh = fjh, so that the
map fjh is idempotent. Further, jhx = ⊥(C∩↑ hx) implies fjhx = ⊥(fC∩↑ x),
whence fC is the range of fjh.
(2) (a) implies (c): if fB is an upset then for y ∈ B there is some z ∈ B with
gfy = fz, whence fhgfy = fhfz = fz = gfy. That (b) implies (c) is also clear
by the equation fhf = f. And if (c) holds then the restriction g′ of hgf to hA
is a closure operation on hA by the following equivalences:

hx ≤ hgfhy ⇔ fhx ≤ fhgfhy = gfhy ⇔ gfhx ≤ gfhy ⇔ hgfhx ≤ hgfhy.

Further,

g′hA = {y ∈ hA |hgfy ≤ y}={y ∈ hA |gfy ≤ fy}= hA ∩ f←Ag. �

Partial completeness properties ensure the existence of g, the least closure
operation above g, or of g◦, the greatest closure operation below g:

Proposition 2.6. Let g be a unary operation on A such that for each x ∈ A the
set Agx has a meet mx.
(1) The so defined map m ∈ AA is a closure operation.
(2) If g is a preclosure operation then m = g.
(3) If g is a weak closure operation then m = g◦.

Proof. (1) is clear by Lemma 2.2.
(2) g ≤ m follows from gx ≤ a = ga for x ≤ a ∈ Ag. And if some j ∈ CA
fulfils g ≤ j then mx ≤ jx, as x ≤ a = jx and ga ≤ ja = jjx = jx = a ∈ Agx.
(3) m ≤ g holds, as a = gx entails x ≤ a = ga ∈ Ag, hence mx ≤ a = gx. And
if some j ∈ CA fulfils j ≤ g then jx ≤ a for all a ∈ Agx, since x ≤ a = ga
entails jx ≤ jga ≤ gga = ga = a. Thus, jx ≤ mx for all x ∈ A. �

We call a map g ∈ AA lower complete, briefly l-complete, if each of the
sets Agx has a meet. Under weak assumptions on A, l-completeness is not only
sufficient but also necessary in order that g resp. g◦ exists.

Theorem 2.7. A preclosure operation g on a topped poset A is l-complete iff
there is a least closure operation g above g, and then gx = ⊥Agx.

Proof. Suppose g is a preclosure operation on A such that g exists. Then
a ∈ Ag implies a ≤ ga ≤ ga = a, that is, a ∈ Ag. Conversely, assume a ∈ Ag.
The map j on A defined by jx = a if x ≤ a and jx = �A if x �≤ a is
easily seen to be a closure operation with g ≤ j. Thus, g ≤ j; in particular,
ga ≤ ja = a ∈ Ag. This proves the equations Ag = Ag and gx = ⊥Agx. �
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Similar constructions of closure operations j ≥ g with ja = a show that
2.7 remains true for ∨- or ∧-semilattices instead of topped posets.

Theorem 2.8. A weak closure operation g on a ∨-semilattice is l-complete iff
there is a greatest closure operation g◦ below g, and then g◦x =

∧
Agx.

Proof. Suppose g is a weak closure operation on a ∨-semilattice A such that
g◦ exists. For any x ∈ A, g◦x is a lower bound of Agx, since x ≤ a = ga
implies g◦x ≤ g◦a ≤ ga = a. Given any lower bound b of Agx, put jy = b∨y if
x ≤ y and jy = y if x �≤ y. Then the so defined map j on A is inflationary and
satisfies j ≤ g (indeed, jy = b ∨ y ≤ gy if x ≤ y and so x ≤ gy ∈ Agx, while
jy = y ≤ gy if x �≤ y). If x ≤ y ≤ jz then x ≤ z (otherwise, x �≤ z = jz, in
contrast to x ≤ y ≤ jz) and so jy = b ∨ y ≤ jz = b ∨ z, while y ≤ jz together
with x �≤ y entails jy = y ≤ jz. Hence, j is a closure operation on A with
j ≤ g◦, and therefore b ≤ b ∨ x = jx ≤ g◦x. Thus, g◦x =

∧
Agx. �

3. Nuclei and their generalizations

A nucleus on a ∧-semilattice is a closure operation that preserves binary
meets (cf. [6,7]). At first glance, the term “nucleus” looks a bit strange,
because nucleus is the latin word for kernel; but it is justified by the one-
to-one correspondence between nuclei and congruence kernels of residuated
∧-homomorphisms (see the end of this section for more details). We reserve
the term interior operation for kernel operations that preserve finite meets
(having in mind the prototypes of topological interior operators).

Example 3.1. A peach P has a kernel K and a hull H, its skin.
Starting from a fixed inner point p of K, the peach P is partially ordered by
x ≤ y if x lies closer to p than y on a radial ray, or x = y. In fact, P is a
∧-semilattice with x∧y = p if x and y are incomparable; but, clearly, P has no
greatest element. Adding a universal upper bound � yields a complete lattice
P� = P ∪ {�}, which however is not implicative. K deserves its name, being
in fact a kernel range in P ; its kernel operation k maps x to the nearest point
of K on the ray from p to x. Whereas H is not a closure range, H ∪ {p} is a
closure range indeed. The closure or hull operation h associated with H ∪ {p}
maps each x distinct from p to the nearest point of H on the ray from p
through x and leaves p fixed. Both k and h preserve binary meets, and so does
the extension h� of h to P� with h�� = �. Thus, h and h� are nuclei, and
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their range is H ∪ {p} resp. H� ∪ {p}, whereas the extension K� = K ∪ {�}
of the kernel K is the range of the interior operation k�.

The pointwise formed meet of two nuclei is again a nucleus, and the
same holds for arbitrary meets, provided they exist (as in the complete case).
Thus, the nuclei always form a ∧-semilattice NA (with idA as bottom, and
the constant map x �−→�A as top if �A exists). It is a challenging task to
find out under what circumstances NA becomes an implicative (or Heyting)
semilattice or lattice when A is one. A thorough analysis of this and related
problems reveals that some major results in the theory of nuclei on semilattices
depend on suitable completeness hypotheses (See [17]). It is our main purpose
to detect where completeness assumptions are indispensable, and where they
may be circumvented by alternate arguments.

We call a closure range C in a ∧-semilattice A a nuclear range if for all
x, y ∈ A and z ∈ C with x ∧ y ≤ z there exists a c ∈ C with x ≤ c and
c ∧ y ≤ z. Recall that by a semilattice we always mean a ∧-semilattice with
top. A nonempty subset C of a semilattice is a nuclear range iff for all x, y ∈ A
and z ∈ C with x ∧ y ≤ z there exists a least c ∈ C with x ≤ c and c ∧ y ≤ z.
The following description of nuclear ranges, justifying our terminology, is due
to Varlet [44], who speaks of multiplicative closure :

Proposition 3.2. Associating with each nucleus on a ∧-semilattice A its range,
one obtains an isomorphism between NA, the ∧-semilattice of nuclei, and NA,
the ∧-semilattice of nuclear ranges, ordered by dual inclusion.

For a categorical treatment of nuclei on semilattices, a suitable morphism
class is formed by so-called r-morphisms, that is, residuated semilattice homo-
morphisms preserving top elements. Their adjoints are called l-morphisms,
having a left adjoint that preserves finite meets, and sometimes referred to as
localizations (Bezhanishvili and Ghilardi [6]). In the category of locales, they
are the localic maps (Johnstone [27], Picado and Pultr [38]).

An injective r- resp. l-morphism will be called an r- resp. l-embedding,
and a surjective r- resp. l-morphism an r- resp. l-surjection. By an r- resp.
l-domain of a semilattice we mean the domain of an inclusion map that is an
r- resp. l-morphism. From basic connections between adjoint maps and closure
operations (see [16, Ch. 3]) and the fact that composites of maps preserve finite
meets if the factors do, one derives the following facts:

Proposition 3.3. Let h : A−→ B be an r-morphism having the range D, and
f : B −→ A its adjoint l-morphism with range C. Then g = fh is a nucleus with
range C, and k = hf is an interior operation whose range D is isomorphic
to C under the restriction i = h0 � C. Thereby, one obtains a factorization
h = k0 ig0 into an r-embedding k0, an isomorphism i and an r-surjection g0.
An analogous mono-iso-epi-factorization f = g0 i−1k0 into l-morphisms holds
in the opposite direction; see Figure 1.

Furthermore, h is a nucleus iff f is an interior operation iff h = fh iff
f = hf.
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Figure 1. Factorization of r- and l-morphisms

Corollary 3.4. The r-surjections are up to isomorphisms the surjective
corestrictions of nuclei on semilattices, and the l-embeddings are up to iso-
morphisms the inclusion maps of nuclear ranges (l-domains) in semilattices.

Corollary 3.5. The poset of all r-morphisms between semilattices A and B is
dual to the poset of all l-morphisms from B to A, but also isomorphic to the
poset of all isomorphisms between l-domains of A and r-domains of B.

The r-domains of frames are the subframes, while the l-domains of locales
are the sublocales in the sense of [38]. In view of Corollary 3.4, afficionados
of category theory alternately refer to the extremal r-epimorphisms, that is,
r-surjections, as sublocales; for the sake of distinction, l-domains of locales are
sometimes called sublocale sets [37].

It is useful to take into account several generalizations of nuclei, some of
which also occur (under other names) in the ample work of Simmons on frames
(see, e.g., [43]). Let A be a ∧-semilattice. By a subnucleus on A we mean an
inflation g on A satisfying

x ∧ gy ≤ g(x ∧ y).

Following Banaschewski [3], we call an isotone subnucleus a prenucleus (some
authors reserve that term for ∧-preserving inflations; Simmons [43] calls pre-
nuclei stable inflators). By a weak nucleus we mean an idempotent subnucleus.
The nuclei are not only the idempotent prenuclei but also the isotone weak
nuclei. Being ∧-preserving and idempotent, any nucleus g satisfies

g(gx ∧ gy) = gx ∧ gy ≤ g(x ∧ y).

We call an inflation fulfilling that condition a pseudonucleus. Pseudonuclei
play a “central” role in the determination of the center (the boolean part) of
the frame of all l-ideals, as demonstrated in the second part [17].

In Figure 2 we display the hierarchy among the operations introduced
before. The bold framed classes are closed under composition and pointwise
meets. The second property also holds for the class of nuclei, which however
is not closed under composition, and jg∈NA is not equivalent to gj ∈NA.

Lemma 3.6. For g, j ∈ NA, the following equivalences and implications hold:

jg∈NA ⇔ jgj =jg ⇔ gjg=jg ⇐ jg=gj ⇒ gj =jgj ⇔ gj =gjg ⇔ gj ∈NA.
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Figure 2. Generalizations of nuclei

On the other hand, if g ∈ NA and j ∈ NAg then g0j g0 ∈ NA.

The last claim and the next proposition follow from Proposition 2.5.

Proposition 3.7. Let h : A−→B be an r-morphism with adjoint f : B −→ A.
(1) For a nucleus j on B with range C, fjh is a nucleus on A with range fC.

Thus, l-morphisms send nuclear ranges to nuclear ranges.
(2) If fB is an upset then for g ∈ NA the restriction g′ of hgf to hA is a

nucleus on hA, and the range of g′ is the preimage of Ag under f � hA.
Thus, the preimage maps of l-embeddings whose range is an upset send
nuclear ranges to nuclear ranges.

Proposition 3.8. Let h : A−→B be an r-morphism with adjoint f : B −→ A.
(1) If A is an implicative semilattice then so is hA � fB, and f � hA is an

l-embedding adjoint to h0 : A−→ hA and preserves the operation →.
(2) If B is an implicative semilattice then so is fB � hA, and h �fB is an

r-embedding coadjoint to f0 : B −→fB but need not preserve →.

Proof. Being surjective, h0 has the injective adjoint f �hA, and dually for f0.
(1) hx ∧ hy ≤ hz ⇔ h(x ∧ y) ≤ hz ⇔ x ∧ y ≤ fhz ⇔ x ≤ y→fhz

⇒ hx ≤ h(y→fhz) ⇒ hx ∧ hy ≤ h((y→fhz) ∧ y) ≤ hfhz = hz.
Thus, h(y→fhz) = hy→hz in hA. As fh is a nucleus, f �hA preserves → :

x ≤ f(hy→hz) ⇔ hx ≤ hy→hz ⇔ x ≤ y→fhz = fhy→fhz.

(2) fx ∧ fy ≤ fz ⇔ hfx ∧ hfy ≤ hfz ⇔ hfx ≤ hfy→hfz
⇒ fx ≤ f(hfy→hfz) ⇒ fx ∧ fy ≤ f((hfy→hfz) ∧ hfy) ≤ fhfz = fz.
Thus, f(hfy→hfz) is fy→fz, the relative pseudocomplement in fB.
An embedding of a three-element chain in a four-element boolean lattice

is an r-embedding that does not preserve → . �
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Let us add a few words about congruences. An equivalence relation R on
A is isotone if x ≤ y implies R↓x ⊆ ↓Ry, a weak closure equivalence if each
equivalence class has a top, and a closure equivalence if both conditions hold.
An equivalence relation R on a ∧-semilattice is a weak congruence if x R y
implies x ∧ z ∈ ↓R(y ∧ z), and a congruence if xR y implies x ∧ z ∈ R(y ∧ z).

Proposition 3.9. Sending each map g to the equivalence relation R defined by
xR y ⇔ gx = gy, one obtains bijective correspondences between
(1) weak closure operations and weak closure equivalences,
(2) closure operations and closure equivalences,
(3) weak nuclei and weak congruences that are weak closure equivalences,
(4) nuclei and congruences that are closure equivalences,
(5) nuclei on frames and frame congruences.

Proof. Except (3), these equivalences are known (see [9,22,38,41]), so we only
prove (3). If g is a weak nucleus and x R y, then t = g(y ∧ z) =�R (y ∧ z)
satisfies x ∧ z ≤ gx ∧ z = gy ∧ z ≤ gt = t and t R y ∧ z, so R is a weak
congruence, and a weak closure equivalence by (1).

Conversely, if R is assumed to be a weak congruence and a weak closure
equivalence then for y, z ∈ A and x = gy = ggy we have gx = gy, that is, xR y,
so there is a t ∈ A satisfying x∧z ≤ tR y∧z, that is, gy∧z ≤ t ≤ gt = g(y∧z).
Thus, g is a subnucleus, and a weak nucleus by (1). �

4. Nuclei, prenuclei and weak nuclei on implicative semilattices

From now on, we assume that

A is an implicative semilattice with top element � and residuation → .

Nuclei on frames play an important role in pointfree topology. A comprehensive
investigation of that concept, also in the non-complete case, is due to Macnab
[4,32,33], who called nuclei on Heyting algebras modal operators and gave a
nice description of them by a single equation, which extends to implicative
semilattices: a map g on A is a nucleus iff

x→gy = gx→gy.

Any nucleus g on A fulfils the inequality (which may fail to be an equality)

g(x→y) ≤ gx→gy,

A subset of A is said to be left residually closed or l-closed if it is
invariant under all the unary residuation operations αa with αax = a → x.
If A is regarded as a general algebra (A,∧,�, α) with α = (αa | a ∈ A) then
the subalgebras are the l-closed subsemilattices. Köhler [31] calls them total
subalgebras, while Picado, Pultr and Tozzi [40] call them merely ideals. In fact,
in a general algebra with a distinguished binary operation (“a multiplication”)
m, a left (m-)ideal is a subalgebra containing m(x, y) whenever it contains y.
In order to avoid ambiguities, we call total subalgebras of implicative semilat-
tices left →-ideals or briefly l-ideals, referring to the binary residuation → . The
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analogy to classical algebra is obvious; for example, the intuitionistic rule
of importation and exportation, (x ∧ y) → z = x → (y → z), mimics the
associative law (xy) ∗ z = x ∗(y ∗ z); however, l-ideals are rarely two-sided.
Order-theoretical filters (i.e. subsemilattices that are upsets) are l-ideals, but
not conversely. Filters of implicative semilattices may be characterized as
nonempty subsets F with y ∈ F whenever x ∈ F and x→y ∈ F .

An l-ideal is said to be nuclear if it is a closure range. This terminology
is justified by the next two propositions. In proofs we often write xy for x→y.

Proposition 4.1. Let g be any unary operation on A.

(1) If g is a subnucleus then g(x→y) ≤ x→gy, and Ag is l-closed.
(2) g is a prenucleus iff g is a preclosure operation with g(x→y) ≤ x→gy.
(3) If g is a prenucleus or a pseudonucleus then Ag is an l-ideal.
(4) g is a nucleus iff Ag is a nuclear l-ideal and gx =

∧
Agx.

Proof. (1) x ∧ g(xy) ≤ xyy ∧ g(xy) ≤ g(xyy ∧ xy) = gy gives g(xy) ≤ xgy. And
for y ∈ Ag, g(xy) ≤ xgy entails g(xy) ≤ xy ≤ g(xy), hence xy ∈ Ag.

(2) If g is a preclosure operation with g(xy) ≤ xgy for all x, y ∈ A then
y ≤ x x∧y yields gy ≤ g(x x∧y) ≤ x g(x∧y), hence x ∧ gy ≤ g(x ∧ y).

(3) By (1), Ag is l-closed. For y, z ∈ Ag we get y ∧ z = y ∧ gz ≤ g(y ∧ z)
≤ gy∧gz = y∧z if g is a prenucleus, and y∧z = gy∧gz = g(gy∧gz) = g(y∧z)
if g is a pseudonucleus. In any case, y ∧ z ∈ Ag, whence Ag is an l-ideal.

(4) We use the bijection between closure operations and closure ranges. By (3),
if g ∈ NA then Ag is a nuclear l-ideal with gx =

∧
Agx. On the other hand,

if that holds then g is a closure operation (Lemma 2.2). For a = g(x ∧ y),
x ∧ y ≤ a ∈ Ag entails xa ∈ Ag, gy ≤ g(xa) = xa and so x ∧ gy ≤ a. Thus, g
is a subnucleus and, being a closure operation, a nucleus. �

We supplement Lemma 2.2 by the following construction of nuclei:

Proposition 4.2. For any l-closed subset C of A such that each of the sets
C ∩↑x has a meet mx, the operation nC = m on A is a nucleus. Every nucleus
g comes in that manner from a unique nuclear l-ideal, namely C = Ag.

Proof. By Lemma 2.2, m is a closure operation. For z ∈ C, x ∧ y ≤ z implies
y ≤ xz ∈ C, my ≤ xz and x∧my ≤ z.
Thus, x∧ my ≤ z for z ∈ C ∩↑(x∧ y), and so x ∧ my ≤ m(x ∧ y). The

rest is clear by Proposition 4.1 (4). �

Let us denote by SlA the (inclusion-ordered) collection of all

l-domains = l-closed closure ranges = nuclear l-ideals = nuclear ranges.

Corollary 4.3. NA is a semilattice dual to SlA, and isomorphic to NA by
virtue of the mutually inverse bijections C �−→nC and g �−→Ag.
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This correspondence was observed by several authors [6,32,33,40,45], at
least in the setting of Heyting algebras or locales. Macnab calls nuclear ranges
in Heyting algebras modal subalgebras, while Picado, Pultr and Tozzi [40] speak
of strong ideals. Note that in implicative semilattices satisfying the descending
chain condition all l-ideals are nuclear.

In a bounded chain A, which is a Heyting lattice anyway, every closure
operation is a nucleus, every weak closure operation is a pseudonucleus, every
subset containing� is an l-ideal, every closure range is nuclear, and the union
of two nuclear ranges is their join in SlA (meet in NA). But SlA resp. NA
need not be a lattice and neither pseudocomplemented nor dually pseudo-
complemented, nor distributive.

Example 4.4. Consider the chain N = ω � {0} of positive integers and the
bounded rational chain

A = {± 1
n |n ∈ N} � ω ⊕ ωop,

a simple example of a non-complete Heyting lattice. In the ∨-semilattice SlA,
which is dual to the semilattice NA of nuclear ranges, the set {B,C} with

B = { 1
n |n ∈ N} ∪ {− 1

2n−1 |n ∈ N}
C = { 1

n |n ∈ N} ∪ {− 1
2n |n ∈ N}

has no greatest lower bound. Indeed, each of the finite nuclear l-ideals

Fk = { 1
n |n ≤ k} (k ∈ N)

is a lower bound of {B,C}, and their union is the filter

F = { 1
n |n ∈ N} = B ∩ C,

which fails to be a closure range. The complementary l-ideal

D = {− 1
n |n ∈ N} ∪ {1}

is nuclear but has no pseudocomplement in SlA, as F contains no greatest
l-domain; and D has no pseudocomplement in NA either: the l-domains

Ck = F ∪ {− 1
n |n ≥ k} (k ∈ N)

fulfil Ck ∪D = A, but there is no least l-domain E satisfying E ∪ D = A.
The semilattice NA = (SlA)op is not distributive: though B is contained in
A = C ∪ D, there are no l-domains C ′ ⊆ C and D′ ⊆ D with B = C ′ ∪ D′.
This example also witnesses that pseudonuclei need not be nuclei, and that
preimages of nuclear l-ideals under injective l-morphisms need not be nuclear.
Indeed, the map g with gx = 1 for x ∈ D and gx = x otherwise is easily seen
to be a pseudonucleus but not a nucleus; and the map f with fx = x for x > 0
and fx = x/2 for x < 0 is an injective l-morphism. The range of g is the filter
F , which is an l-ideal but not a closure range. The range of f is the l-domain
C, and the preimage of the l-domain B under f is the filter F .
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Now, we are in a position to determine for many unary operations the
least nucleus above or the greatest nucleus below them.

Theorem 4.5. For any g ∈ AA such that each of the sets Agx has a meet mx,
the map m ∈ AA is a closure operation on A. Furthermore,

(1) if g is a subnucleus then m is a nucleus,
(2) if g is a prenucleus then m = g is the least nucleus above g,
(3) if g is a weak nucleus then m = g◦ is the greatest nucleus below g.

Proof. The general closure claim holds by Proposition 2.6 (1).

(1) follows from Proposition 4.1 (1) and Proposition 4.2.

(2) By Proposition 2.6 (2), m is the least closure operation above g.

(3) By Proposition 2.6 (3), m is the greatest closure operation below g. �

Corollary 4.6. For each prenucleus on a frame there is a least nucleus above
it, and for each weak nucleus on a frame there is a greatest nucleus below it.

The first of these two results was observed by Banaschewski [3], the sec-
ond by Beazer and Macnab [4]. Combination of Theorem 4.5 with Theorems
2.7 and 2.8 leads to the following conclusions.

Theorem 4.7. (1) A prenucleus g on an implicative semilattice Ais l-complete
iff g exists and is the least nucleus above g; in that case, gx = ⊥Agx.

(2) A weak nucleus g on an implicative lattice A is l-complete iff g◦ exists
and is the greatest nucleus below g; in that case, g◦x =

∧
Agx.

5. The ABC of nuclei and nuclear ranges

As before, A always denotes an implicative semilattice. For a better under-
standing of the relationships between nuclei and their ranges it is helpful to
focus on three specific kinds of l-ideals, called basic open, boolean and basic
closed (cf. [4,19,40], and for the complete case [26,27,32,38,43]).

For a topology O, regarded as a frame (complete Heyting lattice), each
open set U ∈ O gives rise to an induced topology OU = {U ∩ V |V ∈ O},
which is isomorphic to a sublocale (l-domain, nuclear l-ideal) of O, viz.

aU = {U →V = (U c ∪ V )◦ |V ∈ O}
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where c means set-theoretical complementation and ◦ topological interior.
Motivated by these prototypical examples, consider for any element a of A
the unary residuation αa : A−→ A, which is defined by

αax = ax = a→x,

adjoint to the unary meet operation λa = a ∧ −, and a nucleus by the rules
x ≤ ax = aax

and ax∧y = ax ∧ ay. Consequently, its range

aa = {ax |x ∈ A} = {x ∈ A | ax = x} = {x ∈ A | axx =�}

is a nuclear l-ideal. Thus, the surjective corestriction of αa is not only adjoint
to the restriction of λa to aa but also coadjoint to the inclusion map of aa
in A. Moreover, αa preserves → . The following facts are found in [40].

Theorem 5.1. The map aA : A−→SlA, a �−→ aa satisfies a(a∧ b) = aa∩ ab
and is an embedding preserving all existing joins and finite meets (though SlA
need not be a ∧-semilattice). Hence, αA = α is a dual embedding of A in
NA. The sets aa are exactly those nuclear ranges whose nuclei preserve the
operation → and have residual surjective corestrictions.

The second kind of nuclei to be considered are the maps βa ∈ AA with

βax = xaa = (x→a)→a

(denoted by wa in Macnab’s work [4,33,43]). For an early proof that each βa

is a nucleus see Varlet [45]. The range of βa is

ba = {xa |x ∈ A} = {y ∈ A | y = yaa},

which is therefore a nuclear l-ideal. However, the map bA from A to NA with
bAa = ba is not isotone unless A is a boolean lattice (see Theorem 5.9). Nev-
ertheless, bA has a universal property for so-called l-continuous maps, defined
by the requirement that preimages of principal upsets are l-ideals (see [14,16]
for general background). If A has a bottom ⊥ then b⊥ is the booleanization of
A; that it is a boolean lattice is the content of the famous Glivenko-Frink The-
orem [21,24]. Parts of the next more general theorem are known (cf. [9,44,45]),
at least in the complete case [26,27,38].

Theorem 5.2. For any a ∈ A, the range ba of the nucleus βa is the least l-ideal
containing a. The sets ba are exactly those (nuclear) l-ideals which are boolean
lattices. Thus, all l-ideals are unions of boolean ones.

Proof. � = aa is the greatest and a the least element of ba, since a = aaa ∈ ba
and a ≤ xa for all x ∈ A. The join of x and y in ba is x ∨a y = (xa ∧ ya)a;
indeed, x, y ≤ (xa ∧ ya)a, and if x, y ≤ z ∈ ba then za ≤ xa ∧ ya and so
(xa ∧ ya)a ≤ zaa = z. The residuation in ba is induced from that in A. And
as x ∨a xa = (xa ∧ xaa)a = aa =�, xa is the complement of x in ba.

Now let C be an arbitrary l-ideal of A. Then a ∈ C implies xaa ∈ C
for all x ∈ A, which shows that ba is the least (nuclear) l-ideal containing a.
And if C is a boolean lattice with a =⊥C then, for each y ∈ C, the element
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ya ∈ ba ⊆ C coincides with the complement z of y in C, because y ∧ z = a
implies z ≤ ya, and y ∨ z =� (join in C) entails

ya = ya ∧� = (ya ∧ y) ∨ (ya ∧ z) = a ∨ (ya ∧ z) ≤ z,

hence ya = z. As complements in C are unique, we get y = yaa ∈ ba. Thus,
C = ba. �

TA, the closure system of all l-ideals, is always a frame [31,40]; hence,
complements in TA are pseudocomplements. From Theorem 5.2, we deduce:

Corollary 5.3. A subset Y of SlA has a meet in SlA iff
⋂

Y ∈ SlA, and then⋂
Y is that meet. Thus, not only finite joins but also all existing meets and

complements in SlA coincide with those in TA.

The third kind of nuclei to be considered exist only under the proviso
that there are enough binary joins. For each a ∈ A, the principal upset

ca = ↑a

is an l-ideal but need not be nuclear, that is, a closure range. However, in
∨-semilattices, and only in these, each ca is the range of the nucleus γa with
γax = a∨x. Consider the topological case of an open set U , that is, a member
of a topology O, regarded s a frame. Here, the nuclear range aU is isomorphic
to the induced topology OU , while the nuclear range cU is isomorphic to
the induced topology OC on a closed subset C, namely the set-theoretical
complement of U . Therefore, the sets aa are generally called basic open and
the sets ca basic closed ; in the case of frames/locales, the ca’s form a closure
system, and the prefix “basic” is omitted. The letters α and a remind of the
Greek ανoικτoς and the Latin apertus for open, while γενεσις is Greek for
generation, and clusus is Latin for closed, whence we chose the letters γ and
c. (In [4,33,43], v stands for α and u for γ, while in [27] u has the meaning of
α, and c is our γ; in [38] o stands for a).

The complementarity between open and closed sets in spaces is reflected
by the next proposition (for weaker statements see [4,27,33,38,40]).

Proposition 5.4. ca is the complement and so the pseudocomplement of aa in
TA, hence also in SlA and in NA if A is a lattice.

Proof. For the least l-ideal {�}, one obtains aa ∩ ca = {�}, because x lies in
aa ∩ ca iff a ≤ x = ax, which implies x = ax = �. If aa ∪ ca ⊆ C for some
l-ideal C then each x ∈ A satisfies ax ∈ aa ⊆ C, axx ∈ ca ⊆ C, and therefore
x = ax ∧ axx ∈ C. Thus, A is the only upper bound of {aa, ca} in TA. �

Proposition 5.5. For any a ∈ A, the following conditions are equivalent:
(a) a ∨ x exists for all x ∈ A.
(b) ca is a nuclear range.
(c) ca is the complement of aa in SlA resp. in NA.
(d) aa has a complement in SlA resp. in NA.

Thus, A is a lattice iff for all a ∈ A, aa and ca are complementary elements
of SlA, or equivalently, αa and γa are complementary elements of NA.
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Proof. (a)⇔ (b): y is the join of a and x iff y is the least element of ca above x.
(b)⇔ (c)⇔ (d): Use Corollary 5.3 and Proposition 5.4. �

Macnab [33] showed that for any nucleus g on a Heyting algebra the
composite map βag is a boolean nucleus determined by the value ga, and
established a series of interesting equations for the boolean nuclei βa via γ.
In the case of semilattices, the nuclei γa need not exist. Instead, one has the
identities displayed in the next two lemmas.

Lemma 5.6. For a, c ∈ A, the nucleus βc with c = βac fulfils βcx = (xa∧ ca)a.

Proof. Put b = ca. Then ba = c, βcx = (xba)b
a

= ((x ∧ b)a ∧ b)a = (xa ∧ b)a,
since (x ∧ b)a ∧ x ∧ b ≤ a implies (x ∧ b)a ∧ b ≤ xa ≤ (x ∧ b)a. �

Lemma 5.7. Let a be an element of A and g a prenucleus on A. Then:
(1) (gx)a = xa ∧ (ga)a for x ≥ a.
(2) βagβa = βb for b = βaga. Hence, βb = βa ∨ g in NA if g ∈ NA.

Proof. (1) a ≤ x ≤ gx yields ga ≤ gx, (gx)a ≤ xa ∧ (ga)a. On the other hand,
gx∧ xa ≤ g(x ∧ xa) ≤ ga implies gx∧ xa ∧ (ga)a ≤ a, i.e. xa ∧ (ga)a ≤ (gx)a.
(2) By (1) for xaa instead of x and Lemma 5.6 for c = ga, xaa ≥ a yields
βagβax = (g(xaa))aa = (xaaa∧ (ga)a)a = (xa∧ (ga)a)a = βcx = βbx. �

Lemma 5.7 together with Proposition 3.2 leads to a result that was ob-
tained by Macnab [33] for the case of modal operators on Heyting algebras:

Theorem 5.8. Let a ∈ A, g ∈ NA and b = βaga. Then g ≥ βa ⇔ g = βb. The
boolean nuclear ranges of A form an upset in NA, i.e. a downset in SlA.

We finish this part with diverse characterizations of boolean lattices in
terms of basic open, boolean, and basic closed nuclear ranges (cf. [27,39]).

Theorem 5.9. For a Heyting semilattice A, the following are equivalent:
(b0) A is a boolean lattice.
(a1) The nuclear ranges are the basic open l-ideals.
(b1) The nuclear ranges are the boolean l-ideals.
(c1) The nuclear ranges are the basic closed l-ideals.
(a2) aA : A−→ NA is a dual isomorphism.
(b2) bA : A−→ NA is an isomorphism.
(c2) cA : A−→NA is an isomorphism.
(a3) aA is complementary to bA in (NA)A.
(b3) bA is isotone.
(c3) cA coincides with bA.

Proof. (b0)⇒ (c2)⇒ (c1): If A is a boolean lattice then so is each ca; and
conversely, each C ∈ NA satisfies C = cb for b = ⊥C (indeed, for b ≤ a, one
obtains a = a ∨ b = ¬¬ a ∨ b = ¬ a→b ∈ C).
(c1)⇒ (a1): By Proposition 5.5, (c1) entails that A is a lattice, each C in NA
is of the form cb, and its complement ab equals some cc; by uniqueness of
complements, it follows that C = ac. Thus, each C ∈ NA is basic open.
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(a1)⇒ (a2): By Theorem 5.1, aA is an embedding of A in SlA = (NA)op.
(a2)⇒ (c1) is shown by a similar argument as for (c1)⇒ (a1), using Proposition
5.5 and the fact that (a2) forces A to be a lattice, as A and NA are dually
isomorphic semilattices.
(c1)⇒ (c3): ba = cb implies a = ⊥ba = ⊥cb = b, hence ba = ca.
(c3)⇒ (a3) is clear by Proposition 5.4, and (a3)⇒ (b3) is obvious.
(b3)⇒ (b2): ba ⊆ ca holds anyway, and if bA : A−→NA is isotone then a ≤ b
implies b ∈ bb ⊆ ba (NA carries the reverse inclusion order!), whence bA
agrees with the embedding cA. Now, ⊥ ≤ a implies a ∈ ba ⊆ b⊥. Thus,
A = b⊥, and by Theorem 5.8 each nuclear range is boolean, so bA is an
isomorphism.

The trivial implications (b2)⇒ (b1)⇒ (b0) close the circuit
(b0)⇒ (c2) ⇒ (c1)⇒ (a1)⇒ (a2)⇒ (c3)⇒ (a3)⇒ (b3)⇒ (b2)⇒ (b1)⇒ (b0).

�

It is quite surprising that isotonicity of the map bA resp. βA is already
sufficient (and necessary) for A to be a boolean lattice. Many of the above
implications and equivalences remain valid for arbitrary implicative
semilattices (possibly missing a least element).
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[14] Erné, M.: Lattice representations for categories of closure spaces. In: Bentley,
L.H., et al. (eds.), Categorical Topology (Proc. Toledo, 1983), pp. 197–222. Hel-
dermann, Berlin (1984)
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