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Abstract. We study the computational complexity of the satisfiability
problem and the complement of the equivalence problem for comple-
mented (orthocomplemented) modular lattices L and classes thereof. Con-
cerning a simple L of finite height, NP-hardness is shown for both prob-
lems. Moreover, both problems are shown to be polynomial-time equiva-
lent to the same feasibility problem over the division ring D whenever L
is the subspace lattice of a D-vector space of finite dimension at least 3.
Considering the class of all finite dimensional Hilbert spaces, the equiv-
alence problem for the class of subspace ortholattices is shown to be
polynomial-time equivalent to that for the class of endomorphism ∗-rings
with pseudo-inversion; moreover, we derive completeness for the com-
plement of the Boolean part of the nondeterministic Blum-Shub-Smale
model of real computation without constants. This result extends to the
additive category of finite dimensional Hilbert spaces, enriched by ad-
junction and pseudo-inversion.
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1. Introduction

Given a class A of algebraic structures, the equational theory Eq(A) of A
consists of all identities valid in all members of A, and so in the variety V(A)
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generated by A. The associated decision problem asks, for any given identity,
whether or not it is in Eq(A). This problem is also known as the equivalence
problem for A. The triviality problem for A is to decide for each given finite
presentation whether the associated freely generated member of V(A) is trivial
or not. For a survey of decision problems in Universal Algebra see [6].

Generalizing the well known Boolean case, in [16] the following decision
problems have been considered. Refutability (corresponding to “weak satisfia-
bility” in [16]) REFA: Given terms t(x̄), s(x̄) is there A ∈ A and ā in A such
that A |= t(ā) �= s(ā). Satisfiability (corresponding to “strong satisfiability” in
[16]) SATA: Given terms ti(x̄), si(x̄), i = 1, . . . , n, is there A ∈ A and ā in A
such that A |= ti(ā) = si(ā) for all i and such that the entries of ā generate
a non-trivial subalgebra (this is to exclude trivial assignments when dealing
with lattices). These decision problems are polynomial-time (shortly “p-time”)
equivalent to the complement of the decision problem for the equational theory
and the triviality problem for A, respectively. We write SATA and REFA if
A = {A}.

According to Proposition 1.16 and the proof of Theorem 2.11 in [16],
SATL and REFL are p-time equivalent and NP-hard whenever L is a simple
modular ortholattice of finite height. We are going to derive in Section 3 NP-
hardness of SATL and REFL for simple complemented modular lattices L
(bounds 0, 1 in the signature or not) of finite height. The key is the case of the
2-element lattice 2. NP-completeness of REFL for L = 2 and even any finite
lattice L is Theorem 3.3 in Bloniarz, Hunt, and Rosenkrantz [5]. For L = 2 we
rely on a simple proof due to Ross Willard.

For the subspace lattice L(VF ) of an F -vector space, we show in Section 4
that both SATL(VF ) and REFL(VF ) are p-time equivalent to FEASZ,R provided
that 3 ≤ dim VF < ∞. Here, for a ring R, the problem FEASZ,R is to decide,
for any finite list of terms pi(x̄), in the signature of rings with 0, 1, +,−, ·,
whether there is a common zero within R. In case of commutative R, the pi(x̄)
can be replaced by multivariate polynomials pi in commuting variables and
with integer coefficients.

Focus of [16] was on the class H of all finite dimensional real and com-
plex Hilbert spaces (that is, Euclidean and unitary spaces) and the class L of
subspace ortholattices L(H), H ∈ H; that is, L(H) is the lattice of all linear
subspaces of H, with constants 0 and H, and orthocomplementation U �→ U⊥,
the orthogonal of U . Here, for any fixed H ∈ H, REFL(H) and SATL(H) are
both decidable due to Tarski’s decision procedure for R; for dimH ≥ 3, the
complexity has been determined, in [16, Theorem 2.7], within the Blum-Shub-
Smale model of non-deterministic computation over the reals: both problems
are complete for BPNP0

R
, the part of the model which allows only integer con-

stants and binary instances. This class contains NP and is, within this model,
polynomial-time equivalent to the problem FEASZ,R, see [16] for references.

The decision problem for Eq(L) was shown solvable in [9,12] with REFL ∈
BPNP0

R
in [16, Theorem 4.4]. On the other hand, SATL was shown undecid-

able in [17], as well as SATC for any class C of (expansions of) modular lattices
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containing some subspace lattice L(VF ) of a vector space VF where dim VF is
infinite or contains all L(VF ) where F is of characteristic 0 and dim(VF ) finite.

The main objective of the present note was to answer [16, Question 4.5],
namely to show (in Section 6) that REFL is p-time equivalent to FEASZ,R.
In Section 7, FEASZ,R is also shown p-time equivalent to REFR, where R is
the class of all ∗-rings (with pseudo-inversion) End(H) of endomorphisms of
H, H ∈ H. This result extends to the additive category of finite dimensional
Hilbert spaces, enriched by adjunction and pseudo-inversion.

As general references for lattice theory we refer to [3,4,8,26,29], for deci-
sion problems to [7]. Non-determinism in real computation will not enter into
our discussion, explicitly. That is, decision problems are understood in the
sense of Logic and related by p-time reductions, given by translations of for-
mulas to be carried out by a Turing machine in polynomial-time. In particular,
this applies when considering FEASZ,R.

Thanks are due to referees and editor for detailed corrections and valu-
able suggestions, in particular the hint to [5]. Thanks are also due to Martin
Ziegler for introduction to and collaboration on complexity of decision problem
concerning subspace ortholattices of Hilbert spaces.

Best wishes go to Bill, J.B., and Ralph; also sincere thanks for hospitality,
inspiring discussions, and excellent refereeing.

2. Preliminaries

2.1. Basic equations and unnested terms

Translation from one equational language into another means, in essence, to
translate basic equations. Also, reducing a problem first to one formulated
via basic equations avoids possible exponential blowup in translations. This
technique is well known, compare [7].

A basic equation is of the form y = x or y = f(x̄) where f is a fundamental
operation symbol and x̄ a string of variables, the length of which is the arity
of f . A simple formula φ(x̄) in (a string of free) variables x̄ is of the form
∃ū φ0(x̄, ū) where φ0(x̄, ū) is a conjunction of basic equations in variables x̄, ū.

Given a first order language, the set Ω(x̄) of circuits in input variables x̄
and output variables ȳ (here, x̄ and ȳ are lists without repetition) consists of
pairs (φ, ȳ), where φ is a formula, according to the following inductive defini-
tion:

• (∅, x̄) ∈ Ω(x̄) for the empty conjunction ∅.
• Assume that (φ, ȳ) ∈ Ω(x̄) and that ψ is an equation y = f(y1, . . . , ym)

where f is an m-ary fundamental operation, each yi occurs in ȳ, and y is
a new variable; then (φ′, ȳ′) ∈ Ω(x̄) where φ′ is the conjunction of φ and
ψ and where ȳ′ is obtained from ȳ by possibly omitting some of the yi

occurring in ψ and by adding y.
This is just a variant of the concept of algebraic circuit. Let the set Θ(x̄)
of unnested terms consist of the (∅, xi) and the (φ, y) ∈ Ω(x̄), that is, those
with singleton output variable y. For T = (φT , yT ) ∈ Θ(x̄), that is with input
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variables x̄ and output variable yT , let ūT denote the variables occurring in φT

which are distinct from yT and the xi. Then φT is of the form φ(x̄, yT , ūT ) and
for any algebraic structure A (of the relevant similarity type) and assignment
x̄ �→ ā in A there is a unique b ∈ A such that A |= φT (ā, b, c̄) for some (also
unique) c̄ in A. Accordingly, we write T = T (x̄) and T (ā) = b and use T (x̄) = y
as an abbreviation for the simple formula ∃yT ∃ūT . φT (x̄, yT , ūT )∧yT = y. The
length of terms t(x̄) and unnested terms T (x̄) will be denoted by |t(x̄)| and
|T (x̄)|. Let o(t(x̄)) and o(T (x̄)) denote the number of occurrences of variables
from x̄ in t(x̄) and T (x̄), respectively. Observe that all variables listed in x̄ are
considered to occur in t(x̄).

Fact 2.1. There is a map θ, associating in p-time with a term t(x̄) an unnested
term T (x̄), of length linear in that of t(x̄), such that t(x̄) = y is equivalent to
T (x̄) = y and such that o(T (x̄)) = o(t(x̄)). For any unnested term T (x̄) there
is a term t(x) such that θ(t(x̄)) = T (x̄).

Thus, REFA reduces in p-time to its analogue uREFA for unnested terms:
to decide for any T (x̄) and S(x̄) whether T (ā) �= S(ā) for some A ∈ A and ā
in A.

The decision problem sSATA is to decide for any conjunction φ0(x̄, ū) of
basic equations whether there are A ∈ A and ā in A such that the members
of ā generate a non-trivial subalgebra of A and such that A |= ∃ū. φ0(ā, ū).

Fact 2.2. The decision problem SATA reduces in p-time to sSATA. In the pres-
ence of constants 0 �= 1 the problems are p-time equivalent.

2.2. Feasibility

We consider rings with basic operations multiplication, addition, and sub-
traction and constants 0, 1. For a ring R, the decision problem FEASZ,R is
to decide, for any finite list of terms pi(x̄), whether there is a common zero
within R, that is r̄ ∈ R such that R |= ∧

i pi(r̄) = 0. Thus, unless R is a zero
ring, this is just the problem SATR.

According to [16, Observation 1.9], this decision problem is p-time equiv-
alent to the analogous decision problem where the pi(x̄) are multivariate poly-
nomials in non-commuting variables (commuting variables in case of commuta-
tive R) and with integer coefficients, each polynomial given as list of monomials
and coefficients.

The reduction is first from a list of terms pi(x̄), via Fact 2.1, to the
existentially quantified sentence obtained from the formula

∧
i(φi(x̄, yi, z̄i) ∧

yi = 0) where the φi(x̄, yi, z̄i) are unnested terms, each with separate auxiliary
variables; and then replacing in the latter each equation of the form u = f(v̄),
f a fundamental operation symbol, by u − f(v̄) = 0.

2.3. Retractive terms

The hardness results to be derived here rely on the technique for reducing
word problems to free word problems, as developed by Ralph Freese [11] (in
a much more sophisticated context). Denote by F (A;π) the A-algebra freely
generated within V(A) under the presentation π = (ḡ, R), that is with system
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ḡ = (g1, . . . , gn) of generator symbols and set R of relations. Let π+ be obtained
by extending R to a set R+ of relations in the same generator symbols ḡ.
Now, consider the canonical homomorphism φ : F (A;π) → F (A;π+). φ is a
retraction with section homomorphism ρ : F (A;π+) → F (A;π) if and only if
there is a system of terms ti(x̄) such that for any system ā = (a1, . . . , an) in
any A ∈ A, one has the following:

• if ā satisfies the relations R, then (t1(ā), . . . , tn(ā)) satisfies the relations
R+;

• if ā satisfies the relations R+, then ti(ā) = ai for all i.
Here, ρ and the ti are related by ρφgi = ti(ḡ) for i = 1, . . . , n. Such system
of terms will be called retractive for (π, π+) within V(A). Retractions can be
composed in steps: If π′ is obtained from π+ by adding relations and if the
si(x̄) are retractive for (π+, π′) within V(A) then so are the si(t1(x̄), . . .) for
(π, π′).

As an illustration consider generator symbols ḡ = (g1, g2, g3, g4), A the
variety of modular lattices, and R the relations g1 ≤ g2 and g3 ≤ g4. Obtain
R+ by adding the relation g2 · g4 ≤ g1 · g3. Retractive terms for passing from
R to R+ are given by t1 = x1 + x2 · x4, t2 = x2, t3 = x3 + x2 · x4, and t4 = x4.

2.4. Complemented modular lattices

We consider lattices L with bounds 0, 1. The complexity results to be derived
are valid if the bounds are considered constants in the signature as well if they
are not. L is modular if a ∩ (b + c) = a ∩ b + c for all a, b, c with c ≤ a – we
write a + b for joins, a ∩ b for meets and ∩ has binding priority over +. Also,
we use

∑
i ai and

⋂
i ai for multiple joins and meets. Elements a1, . . . , an of

an interval [u, v] are independent in [u, v] if ai ∩ ∑
j �=i aj = u for all i; in this

case, we write
∑

i ai = a1 ⊕u . . . ⊕u an and, if u = 0,
∑

i ai = a1 ⊕ . . . ⊕ an. A
lattice L is complemented if for any a ∈ L there is b ∈ L such that a⊕ b = 1. A
modular lattice has height d if some (every) maximal chain has d+1 elements.

Any complemented modular lattice L of finite height is isomorphic to a
direct product of simple ones. Thus, the decision problems SATL and REFL

break down to the case of simple L. Up to isomorphism, the latter are the
subspace lattices of irreducible (d − 1)-dimensional projective spaces. With
exceptions for d ≤ 2, these lattices are isomorphic to lattices L(VF ) of all
subspaces of (left) F -vector spaces VF , dim VF = d, the case of most interest
for us. Thus, one may read all of the following in the context of Linear Algebra.

2.5. Frames

Reducing arithmetic to modular (ortho-)lattices is most conveniently done via
von Neumann frames and their coordinate rings, in particular if generators
and relations may be used on the lattice side; cf. [25].

A d-frame ā in a modular lattice consists of elements a⊥ ≤ a� and
a1, aj , a1j(1 < j ≤ d) in the interval [a⊥, a�] such that a� = a1⊕a⊥ · · · ⊕a⊥ ad

and a1 ⊕a⊥ a1j = aj ⊕a⊥ a1j = a1 + aj for 1 < j ≤ d.
Given a d-frame ā in a modular lattice L of height d, if ai > a⊥ for some i,

then aj > a⊥ for all j, whence [a⊥, a�] has height at least d and so a⊥ = 0 and
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a� = 1. In this case the frame is called spanning ; the ai are independent atoms
and L is simple and complemented. On the other hand, if ai = a⊥ for one i
then aj = a⊥ for all j and a⊥ = a�; such frame is called trivial. To summarize,
a d-frame in a height d modular lattice is either spanning or trivial. Also, if
L is complemented and simple then any atom a1 is part of some (many, in
general) spanning d-frame. Indeed, the ai can be chosen so that a1, . . . , ad are
independent atoms and the a1j are axes of perspectivity.

For dim VF = d, the non-trivial d-frames in L(VF ) have a⊥ = 0, a� = V ;
and ā is a non-trivial d-frame if and only if there is a basis e1, . . . , ed of VF

such that ai = eiF , and a1j = (e1 − ei)F . Thus, the automorphism group of
L(VF ) acts transitively on the set of such d-frames. The following is well known
and easy to prove.

Fact 2.3. For any d-frame ā and a⊥ ≤ b1 ≤ a1, the bj := (b1 + a1j) ∩ aj,
b1j: = (b1 + bj) ∩ a1j, form a d-frame b̄ with b⊥ := a⊥ and b� :=

∑
i bi and

such that b̄ = ā if b1 = a1.

Retractive terms for constructing (equivalent variants of) d-frames in
modular lattices have been provided by Huhn [20] and Freese [10]; here, using
a list z̄ of variables for the elements of the d-frame to be obtained, we denote
such terms by ai(z̄), a1j(z̄), a⊥(z̄), a�(z̄). The following is a special case of [18,
Fact 5.2]. For convenience, we provide a proof.

Lemma 2.4. For any d there is a term δd(x, z̄) such that for any spanning d-
frame ā in a height d modular lattice L and any b ∈ L one has δd(b, ā) = 1 if
b �= 0; moreover δd(0, ā) = 0.

Proof. Define the lattice terms z′
ii(x, z̄) = (x +

∑
k �=i zk) ∩ zi and z′

ij(x, z̄) =
(z′

ii(x, z̄) + zij) ∩ zj for j �= i. Observe that for any b and spanning frame ā
in L one has z′

ij(b, ā) = aj if b �≤ ∑
k �=i ak, z′

ij(b, ā) = 0 otherwise. Now, put

δd(x, z̄) =
∑d

i,j=1 z′
ij(x, z̄). �

2.6. Coordinate ring

Fix d ≥ 3. For each operation symbol +,−, ·, 0, 1 in the signature of rings
and each term t(ȳ) defining the associated operation, there is a lattice term
t̃(ȳ, z̄) such that each variable yi occurs only once in t̃(ȳ, z̄) and such that the
following holds: For each vector space VF and d-frame ā in L(VF ) the set

R(ā) = {r ∈ L(VF ) | r ⊕a⊥ a2 = a1 + a2, r ∩ a2 = a⊥}
becomes a ring, the coordinate ring of ā, with operations defined by t̃(ȳ, ā), cf.
[10,11]. For example, for t(y1, y2) = y1 ·y2 one can choose t̃(y1, y2, z̄) = y1⊗z̄ y2
given as

[(y2 + z23) ∩ (z1 + z3) + (y1 + z13) ∩ (z2 + z3)] ∩ (z1 + z2).

Moreover, if a⊥ = 0 then there is a (unique) linear isomorphism εā : a1 → a2

such that a12 = {v−εāv | v ∈ a1} as well as a ring isomorphism ωā : End(a1) →
R(ā) given by f �→ {v − εāfv | v ∈ a1}. If a⊥ = a� then R(ā) is a zero ring.
If ā is non-trivial and dimVF = d, then R(ā) is isomorphic to F . We write ⊗ā
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and �ā for multiplication and subtraction. In particular, the zero is a1, the
unit is a12, and r ∈ R(ā) is invertible if and only if r ⊕a⊥ a1 = a1 + a2. Due to
the above mentioned unique occurrence of variables one has the following.

Fact 2.5. With any ring term p(x̄) one associates in p-time a lattice term
p̃(x̄, z̄) such that for any d-frame ā in any L(VF ) one has p̃(r̄, ā) = p(r̄) for all
r̄ in R(ā).

3. NP-hardness in complemented modular lattices

We will deal with simple complemented modular lattices L of finite height
d ≥ 1 (that is, L isomorphic to the subspace lattice of a (d − 1)-dimensional
irreducible projective space) and varieties generated by such lattices. Here,
the requirement that ā generates a non-trivial sublattice amounts to ā being
non-constant.

Observe that, for fixed finite L, evaluating lattice terms can be done in
time polynomial in the length of the terms. On the other hand, any n-generated
sublattice of L of height at most 2 is isomorphic to 2 or, for some m ≤ n, to
the height 2-lattice Mm with m atoms. Thus, if L is finite or of height 2 then
both SATL and REFL are in NP.

For lattices L, the case where the bounds are constants and the case where
they are not will not be distinguished in notation, so that all results may be
read both ways. Observe in this context that the decision problems SAT and
REF associated with the latter are subproblems of the former, obviously.

3.1. Distributive lattices

Theorem 3.1 [5,30]. For the 2-element lattice 2, both SAT2 and REF2 are
NP-complete. In particular, the decision problem for the equational theory of
distributive lattices is coNP-complete.

Proof. We include the proof, due to Ross Willard, for NP-hardness of REF2 in
the case without constants. The claim for SAT2 follows from Proposition 3.2,
below. Given a string x̄ = (x1, . . . , xn) of variables, choose new variables yi, z
and put ȳ = (y1, . . . , yn). Define the lattice terms λi(x̄, ȳ, z) by recursion:
λ0 = z, λi+1 = λi ∩ (xi + yi) + xi ∩ yi. Observe that in 2 the polynomial
function λn(ā, b̄, z) is identity if ai �= bi for all i, constant otherwise. Also
observe that λn has length linear in n and a single occurrence of z.

Now, consider a boolean term t(x̄) without constants 0, 1 and in negation
normal form. Replacing each occurrence of x⊥

i (where ⊥ denotes negation) by
yi, one obtains a lattice term t#(x̄, ȳ) such that t(ā) = t#(ā, b̄) holds in 2 if
bi = a⊥

i for all i. Consider the lattice equation ε = ε(x̄, ȳ) given as

λn(x̄, ȳ, t#(x̄, ȳ)) = λn(x̄, ȳ, x1 ∩ y1).

Thus, ε has length linear in that of t(x̄). We claim that t(ā) = 1 for some
ā in 2 if and only if ε(ā, b̄) fails for some ā, b̄ in 2. Indeed, given ā, b̄ such
that ai �= bi, that is bi = a⊥

i , for all i, one has λn(ā, b̄, t#(ā)) = t(ā) while
λn(ā, b̄, a1 ∩ b1) = a1 ∩ b1 = 0. Thus, if there is ā such that t(ā) = 1 choose
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bi = a⊥
i for all i to refute ε. Conversely, assume t(ā) �= 1, that is t(ā) = 0 for

all ā. Then 2 |= ε(ā, b̄) for all b̄: giving both sides value 0 if ai �= bi for all i,
the constant value of λn(ā, b̄, z), otherwise. �

3.2. Reduction of REFL to SATL

Proposition 3.2. For fixed d, there is a p-time reduction of REFL to SATL,
uniform for all modular lattices L of height d and admitting a non-trivial d-
frame.

Proof. The proof is the same with and without constants 0, 1. It suffices to
consider t(x̄), s(x̄) such that ∀x̄. t(x̄) ≤ s(x̄) holds in all lattices (replace t by
t ∩ s and s by t + s). Let φ(z̄) be the conjunction of equations defining a
d-frame. Now consider the following conjunction ψ(x̄, z̄) of lattice equations
(where x ≤ y means x + y = y)

φ(z̄) ∧ z1 ≤ s(x̄) ∧ z1 ∩ t(x̄) = z⊥ ∧
n∧

i=1

z⊥ ≤ xi ≤ z�.

Given b̄ in L such that t(b̄) < s(b̄), there is an atom a1 ≤ s(b̄), a1 �≤ t(b̄)
(since L is geometric) and that extends to a spanning d-frame ā; thus L |=
∃x̄∃z̄. ψ(x̄, z̄). Conversely, given non-constant b̄, ā in L such that L |= ψ(b̄, ā)
one must have a⊥ �= a�, whence ā is spanning; it follows that t(b̄) < s(b̄). �

3.3. NP-hardness

Theorem 3.3. For any non-trivial modular lattice L of height d and admitting
a nontrivial d-frame, the decision problems REFL and SATL are NP-hard;
these problems are NP-complete if L is finite or of height 2.

Proof. To prove hardness, in view of Proposition 3.2 it remains to consider
REFL for L of fixed height d. Again, the proof is the same whether the
bounds 0, 1 are considered constants or not. Given a lattice term t(x̄), let
x̄′ = (x′

1, . . . , x
′
n) where

x′
i := δd(z⊥ + z� ∩ xi, z̄)

(from Lemma 2.4) and put t′(x̄, z̄) = t(x̄′). Observe that for any assignment
γ for x̄, z̄ in L one has either γz̄ trivial and γx′

i = γz⊥ or γz̄ spanning and
γx′

i ∈ {0, 1}; also, in the latter case, γx′
i = γxi if γxi ∈ {0, 1}.

Now, consider a second term s(x̄). Then there is an assignment γ for x̄ in
{0, 1} such that t(γx̄) �= s(γx̄) if and only if there is an assignment γ′ for x̄z̄ in
L such that s′(γ′x̄z̄) �= t′(γ′x̄z̄). Namely, given γ choose γ′z̄ any spanning frame
and γ′x̄ = γx̄. Conversely, given γ′ choose γxi := δd(γ′z⊥ + γ′z� ∩ γ′xi, γz̄).
This provides a reduction of REF2 to REFL. NP-hardness of the latter and of
SATL follows by Theorem 3.1 and Proposition 3.2. For finite L, both problems
are in NP, as observed at the beginning of Section 3. For L of height 2 one
uses the fact that k-generated sublattices have at most k + 2 elements. �
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4. Relating feasibility to lattices

Recall from Section 3.1 the remark on constants.

Theorem 4.1. For fixed 3 ≤ d ≤ ∞ and d-dimensional F -vector space VF , both
SATL(VF ) and REFL(VF ) are p-time equivalent to FEASZ,F .

This follows from Proposition 3.2, Fact 2.2, and Sections 4.1 and 4.2 below.

4.1. Reduction of sSATL(VF ) to FEASZ,F

The reduction of sSATL(VF ) to FEASZ,F via non-determinism and BSS-
machines is contained in [16, Proposition 2.1]. We sketch a direct proof. One
has to consider existentially quantified conjunctions of equations of the form
x = y + z, x = y ∩ z, x = 0, x = 1, and x = y. Using the partial order on
L(VF ), each of these can be obtained as a conjunction of formulas of the form
x ≤ y, x ≤ 0, 1 ≤ x, x ≤ y + z, and y = z ∩ u. Thus, each of the latter has to
be translated into a feasibility condition.

Dealing with L(VF ) for fixed dimVF = d < ∞, we may assume VF = F d.
Associate with 0 and 1 the d × d zero and unit matrices O and I, and with
each variable ξ a d × d-matrix ξ̂ of new variables to be interpreted in the ring
F ; namely, ξ̂ �→ A corresponding to ξ �→ Span(A) where Span(A) denotes the
subspace of F d spanned by the columns of A. In our translation, quantifications
over matrices of variables always are with new variables (that is, specific to the
formula translated). Observe that Span(A) ≤ Span(B) if and only if A = BU
for some matrix U . Thus, x ≤ y translates into

∃U. x̂ = ŷU ;

and, if 0, 1 are considered constants, x ≤ 0 into x̂ = O and 1 ≤ x into
∃U. I = x̂U . Also observe that Span(A) ≤ Span(B) + Span(C) if and only if
A = BU1 + CU2 for suitable matrices U1, U2. Thus, we translate x ≤ y + z
into

∃U1∃U2 x̂ = ŷU1 + ẑU2.

Meets are dealt with using the idea underlying the Zassenhaus algorithm:
y = z ∩ u is translated into

∃X∃Y ∃Z∃U.

(
ẑ û
ẑ 0

)

X =
(

Z 0
U ŷ

)

∧
(

Z 0
U ŷ

)

Y =
(

ẑ û
ẑ 0

)

with 2d×2d-block matrices. Observe that all these translations yield conjunc-
tions of at most quadratic equations in non-commuting variables; for com-
mutative F , these can be converted in p-time into such conjunctions with
commuting variables.

4.2. Reduction of FEASZ,F to REFL

This does not require the bounds 0, 1 to be considered constants. Consider
L(VF ) where dim VF = d and recall that spanning d-frames ā exist and that
any non-spanning d-frame is trivial. Also observe that Fact 2.3 allows one to
pass from a d-frame to a new one, given a⊥ ≤ b1 ≤ a1; given a⊥ ≤ b2 ≤ a2

first form b1 := a1 ∩ (b2 +a12). We will apply this reduction procedure to force
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relations. In doing so, we will either have ā = b̄ spanning or b̄ trivial. Also, if
ā is trivial then ā = b̄. Thus, we may think of a fixed but arbitrary spanning
d-frame ā� to deal with in each step.

Given ring terms pk(x̄), we may consider the xi as lattice variables, too.
We start with the d-frame ā1. Given an assignment ri ∈ L(VF ) for the xi, put
r1i := (a1

⊥+ri)∩(a1
1+a1

2) to achieve a1
⊥ ≤ r1i ≤ a1

1+a1
2. Applying the reduction

step with b2 := a1
2 ∩ ∑

i r1i one obtains a frame ā2 and r2i = r1i ∩ a2
� such that

r2i ∩a2
2 = a2

⊥. Forcing via b1 := a2
1∩⋂

i(r
2
i +a2

2) one obtains ā3 and r3i such that
r3i ⊕a3

⊥
a3
2 = a3

1 + a3
2, that is r3i ∈ R(ā3). Forcing via b1 := a3

1 ∩ ⋂
k p̃k(r̄3, ā3)

one obtains ā4 such that a4
1 = p̃k(r̄4, ā4) for all k, that is R(ā4) |= pk(r̄4) = 0.

(This strongly relies on the fact that ā = b̄ or b̄ trivial. In general, reduction
of frames will preserve only very special relations, as in the ingenious work of
Ralph Freese [10,11].)

In order to implement the reduction of FEASZ,F to REFL, recall the
retractive terms ā = ā(z̄) for d-frames to start with. The forcing process de-
scribed above can be captured by a sequence of tuplets of lattice terms, obvi-
ously. The result is a pair of (tuplets of) lattice terms ā#(x̄, z̄) and r̄#(x̄, z̄)
such that, for any substitution γ in L(VF ) for the variables x̄ and z̄, one has
that ā# = ā#(γx̄, γz̄) is a d-frame and that, with r#i := r#i (γx̄, γz̄), either ā#

is trivial and r#i = a#
⊥ for all i or that ā# is spanning and r̄# is a common zero

of the pk in R(ā#). Moreover, if γz̄ is a spanning d-frame and γx̄ a common
zero of the pk(x̄) in R(γz̄), then ā#(γx̄, γz̄) = γz̄ and r̄#(γx̄, γz̄) = γx̄. Sum-
marizing, the pk have a common zero in F if and only if there is a substitution
γ̄ in L(VF ) such that a#

⊥(γx̄, γz̄) �= a#
�(γx̄, γz̄).

4.3. Varieties generated by complemented modular lattices

Fact 4.2. Given an atomic complemented modular lattice L and lattice terms
s(x̄), t(x̄) such that L |= ∀x̄. s(x̄) ≤ t(x̄), if ∃x̄. s(x̄) < t(x̄) holds in L then it
does so in a section [0, u] of L where the height of u is at most the number of
occurrences of variables in t(x̄).

Proof. One shows by structural induction for any atom p and term t(x̄): if
p ≤ t(b̄), then there is c̄ such that p ≤ t(c̄), ci ≤ bi for all i and, for u :=

∑
i ci,

[0, u] is of height at most the number of occurrences of variables in t(x̄). Indeed,
if t = t1+t2, then there are atoms pj ≤ tj(b̄) such that p ≤ p1+p2. By inductive
hypothesis there are c̄j such that pj ≤ tj(c̄j), cj

i ≤ bi, and the height of
∑

i cj
i

is at most the number of occurrences of variables in tj(x̄). Put ci := c1i + c2i .
Similarly for t = t1 ∩ t2, given p ≤ t(b̄), by inductive hypothesis there are
c̄j ≤ b̄ such that p ≤ tj(c̄j) and one has p ≤ t(c̄) where ci = c1i ∩ c2i . Now, if
s(b̄) < t(b̄), choose an atom p ≤ t(b̄), p �≤ s(b̄). Then p ≤ t(c̄) but p �≤ s(c̄).

�

For c, c prime or 0, let Vc be the smallest lattice variety containing all
L(VF ) over division rings of characteristic p. Observe that for a division ring
F ′ embedded into F , L(VF ) is a sublattice of L(VF ′) if V is considered a vector
space over F ′ and that L(WF ′) is embedded into L(VF ) if dimWF ′ = dim VF .
It follows from Fact 4.2 that, for each F of characteristic c, Vc is generated
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by any class of L(VF ) where dim VF is finite and unbounded. For each c, the
equational theory of Vc is decidable [13,21]. An upper bound on the complexity
is given by the following (though, it remains open to establish a lower bound,
say NP).

Corollary 4.3. Given a field F of characteristic c, there is a p-time reduction
of REFVc

to FEASZ,F . In particular, REFVc
is in NP for any prime c.

Proof. By Fact 4.2, if an equation fails in some member of Vc, then it does
so in L(VF ) where dim VF is the number of occurrences of variables in the
equation. Now apply Sections 3.2 and 4.1 for reduction to FEASZ,F . �

5. Preliminaries: part II

5.1. Inverses in coordinate rings

Continuing with Sections 2.5 and 2.6 we consider the lattice L(VF ) of subspaces
of an F -vector space and a 3-frame ā such that a⊥ = 0 and a� = V . We extend
ā adding the elements a23 = (a2 + a3) ∩ (a12 + a13) and aji = aij for i < j.
Observe that, by modularity, one has

(ai + aj) ∩ (aik + akj) = aij for {i, j, k} = {1, 2, 3}. (+)

Thus, one obtains a normalized frame of order 3 in the sense of von Neumann.
Also, we introduce corresponding variables z23 and zji and the perspectivity
terms

πz̄
ijk(x) := (x + zjk) ∩ (zi + zk)

which define the isomorphism u �→ πā
ijk(u) of [0, ai + aj ] onto [0, ai + ak]; in

particular ai �→ ai, aj �→ ak, and aij �→ aik.
For given i �= j and linear map f : ai → aj , define

Γā
ij(f) = {v − f(v) | v ∈ ai},

the (negative) graph of f ; this establishes a 1-1-correspondence between linear
maps f : ai → aj and subspaces U such that U ⊕aj = ai +aj . Invertible f are
characterized by the additional condition U ⊕ ai = ai + aj ; here, Γā

ji(f
−1) =

Γā
ij(f).

In particular, one has the linear isomorphisms εā
ij : ai → aj such that

Γā
ij(ε

ā
ij) = aij . From aji = aij it follows that εā

ji = εā
ij . (Observe that εā

12 = εā

and εā
21 = ε−1

ā .) For pairwise distinct i, j, k and linear maps f : ai → aj ,
g : aj → ak one has

Γā
ik(gf) = (Γā

ij(f) + Γā
jk(g)) ∩ (ai + ak). (++)

In particular, from (+) it follows that εā
jkεā

ij = εā
ik. Define the lattice term

s(x, z̄) := πz̄
231π

z̄
312π

z̄
123(x).

Fact 5.1. For L(VF ) and ā as above and f ∈ End(a1) one has

s(ωā(f), ā) = {fεā
21(w) − w | w ∈ a2}.

In particular, s(ωā(f), ā) = ωā(f−1) if f is invertible.
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Proof. Observe that ωā(f) = Γā
12(ε

ā
12f). Applying (++) three times we get

s(ωā(f), ā) = Γā
21(g) where g = (εā

21((ε
ā
12f)εā

23))ε
ā
31 = fεā

21. If f is invertible,
then εā

12f
−1 is an isomorphism of a1 onto a2 and with w = εā

12f
−1(v) one gets

{fεā
21(w) − w | w ∈ a2} = ωā(f−1). �

5.2. Modular ortholattices

An ortholattice is a lattice L with bounds 0, 1 as constants in the signature as
well as a map, called orthocomplementation, a �→ a⊥ such that for all a, b ∈ L

a ≤ b ⇔ b⊥ ≤ a⊥, (a⊥)⊥ = a, a ⊕ a⊥ = 1.

We write
∑

i ai = a1 ⊕⊥ · · · ⊕⊥ an iff ai ≤ a⊥
j for all i �= j. A MOL is a

modular ortholattice. Let H denote the class of all finite dimensional real or
complex Hilbert spaces and HR the class of those H ∈ H which are over R.
The lattice of all linear subspaces of a given H ∈ H is a MOL L(H) with X⊥

the orthogonal complement of X w.r.t. the inner product.
In a modular ortholattice L, every section [0, u] is again a MOL with

x �→ x⊥ ∩ u. Moreover, [0, u] ∈ HS(L) via the homomorphism x �→ x ∩ u
defined on the sub-ortholattice [0, u]∪ [u⊥, 1] of L. For a subspace U of H, the
ortholattice so obtained is L(U).

Fact 5.2. Within the class of MOLs any conjunction of identities is equivalent
to a single identity of the form t = 0.

Indeed, any identity s = t is equivalent to (s + t) ∩ (s ∩ t)⊥ = 0 and∧
i ti = 0 is equivalent to

∑
i ti = 0. Thus, for a class C of MOLs, REFC and

SATC both amount to the following: Given a term t(x̄), is there a non-trivial
L ∈ C and an assignment ā in L such that t(ā) �= 0 (respectively, t(ā) = 1)?
Similarly, for uREFC and sSATC .

5.3. Dimension bounds in REFL
Lemma 5.3. Given an unnested ortholattice term T (x̄) and H ∈ HR such that
L(H) |= ∃x̄. T (x̄) �= 0, there is H ′ ∈ HR, dim H ′ = o(T (x̄)) such that L(H ′) |=
∃x̄. T (x̄) �= 0. Analogously, in the complex case.

Proof. The analogue for terms follows from [12, Lemma 2.2] and the fact
L(H) ∈ HS(L(H ′)) for any extension H ′ of H. In view of Fact 2.1 this proves
the Lemma. �

5.4. Orthogonal frames

Recall Section 2.5. A d-frame in a MOL is orthogonal if a⊥ = 0 and
∑

i ai =
⊕⊥

i ai. For a Hilbert space H =
⊕⊥

i Hi with isomorphisms εj : H1 → Hj one
obtains an orthogonal d-frame in L(H) with ai = Hi and a1j = {x − εjx | x ∈
H1}; and all orthogonal d-frames in L(H) with a� = H, H ∈ H, arise this
way. Observe that ā is an orthogonal d-frame if and only it is so in the section
[0, a�]. Fact 2.3 reads now as follows.

Fact 5.4. For any orthogonal d-frame ā in a modular ortholattice L and b1 ≤
a1, the bj := (b1 + a1j) ∩ aj, b1j := (b1 + bj) ∩ a1j, form an orthogonal d-
frame b̄ with b⊥ := a⊥ = 0 and b� :=

∑
i bi and such that b̄ = ā if b1 = a1.
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Figure 1. Reduction of frames.

Moreover, if L = L(H) and if b1 is invariant for a given f ∈ End(a1), then
ωb̄f = (b1 + b2) ∩ ωāf .

Existence of retractive terms for orthogonal d-frames within the variety of
MOLs is due to Mayet and Roddy [27]. More easily it is seen as follows. We will
need only the case d = 3 and L = L(H). Given ā in the modular ortholattice
L, let u :=

⋂
i�=j(ai + aj) and a1

i := u + ai. Then a1
1, a

1
2, a

1
3 is independent in

[u, 1]. Thus, a1
1
⊥

, a1
2
⊥

, a1
3
⊥ is dually independent in [0, u⊥] and defining a2

i :=
a1

j
⊥ ∩ a1

k
⊥, {i, j, k} = {1, 2, 3}, one has a2

� := u⊥ = a2
1 ⊕⊥ a2

2 ⊕⊥ a2
3. Put

a2
12 := a12∩(a2

1+a2
2). For {i, j} = {1, 2} put ci = ai∩(aj+a12) and di = ai∩a12

to obtain the sublattice in Figure 1. Now, with a3
i = ci ∩d⊥

i for i = 1, 2 one has
a3
1 + a3

2 a complement of d1 + d2 in [0, c1 + c2] and with a3
12 = (a3

1 + a3
2) ∩ a12

it follows that a3
i ⊕ a3

12 = a3
1 + a3

2. Put a3
� := a3

1 ⊕⊥ a3
2 ⊕⊥ a3

3. Similarly, one
obtains ā4 such that a4

� := a4
1 ⊕⊥ a4

2 ⊕⊥ a4
3 and a4

13 ⊕ a4
j = a4

1 + a4
3 for j = 1, 3.

Finally, put a5
j := a4

j for j = 1, 3, a5
13 := a4

13, a5
2 := (a5

1 + a4
12) ∩ a4

2, and
a5
12 := a4

12 ∩ (a5
1 + a5

2) to obtain an orthogonal 3-frame ā5.

5.5. Coordinate ring

Consider d ≥ 3 and an orthogonal d-frame ā in L(H), H ∈ H. Recall the
coordinate ring R(ā) from Section 2.6. In the ortholattice setting, elements of
the coordinate ring can be forced via the following where #(x, y, z) is a term
defining the relative orthocomplement of z in the interval [x, y],

#(x, y, z) := x + y ∩ z⊥.

Observe that, by modularity, #(x, y, z) = (z⊥ + x) ∩ y if x ≤ y. Now, define

#”(x, y, z) := #(z ∩ (x ∩ z)⊥, y, x + z)
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Figure 2. Forcing elements of the coordinate ring.

Lemma 5.5. In a MOL, if a, c ≤ b, then #”(a, b, c) ⊕ a = b. Moreover, if
b = c ⊕ a then #”(a, b, c) = c.

Proof. See Figure 2. Let c′ = c ∩ (a ∩ c)⊥ and c” = #(c′, b, a + c). From
c = c′ ⊕ a ∩ c follows a + c = c′ ⊕ a. Now, c” is a complement of a + c in [c′, b],
whence of a in [0, b]. Clearly, if b = c ⊕ a, then c = c′ = c”. �

5.6. Orthonormal frames

Recall that for any subspaces U,W of H ∈ H and any linear map f : U → W
there is a unique linear map g : W → U such that 〈x | g(y)〉 = 〈f(x) | y〉
for all x ∈ U , y ∈ W . g is called the adjoint of f and in case U = W = H
we write g = f∗. An isomorphism f : U → W is an isometry if and only if
the inverse is the adjoint. If U ⊆ W⊥ then g is the adjoint of f if and only if
{v + fv | v ∈ U} is orthogonal to {w − gw | w ∈ W}.

Lemma 5.6. Given an orthogonal 3-frame ā in L(H), H ∈ H one has εā an
isometry if and only if

a⊥
12 ∩ (a1 + a2) = a1 �ā a12. (∗)

Proof. Observe that a1 �ā a12 = ωā(− ida1). Thus, (∗) holds if and only if
ωā(− ida1) ≤ a⊥

12 if and only if 〈v + εā(v) | w − ε−1
ā (w)〉 = 0 for all v ∈ a1 and

w ∈ a2 if and only if 〈v | ε−1
ā (w)〉 = 〈εā(v) | w〉 for all v ∈ a1 and w ∈ a2 if

and only if ε−1
ā and εā are adjoints of each other. �

An orthogonal 3-frame ā is called an ON-3-frame if and only if (*) holds.
In particular, any H1 ∈ H occurs as a1 for some ON-3-frame ā in some H,
dim H = 3dim H1. Also, the automorphism group of L(H) acts transitively on
the set of ON-3-frames.

In order to construct retractive terms for passing from orthogonal 3-
frames to ON-3-frames we use Fact 5.4. Here, we have f = −id and put
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b1 := (a⊥
12 ∩ωāf +a2)∩a1. Summarizing Sections 5.4 and 5.6 and Lemma 5.5,

we have retractive terms for passing from ā and r̄ with no relations to ON-3-
frames and elements of the coordinate ring. More precisely,

Lemma 5.7. Given variables z̄ = (z⊥, z�, z1, z2.z3, z12, z13) and xi there are
ortholattice terms ā(z̄) = (a⊥, a�, a1, a2, a3, a12, a13)(z̄) and ri(xi, z̄), such that
for any H ∈ H and substitution z̄ → ū and xi → vi in L(H), one has ā(ū)
an ON-3-frame and ri(vi, ū) ∈ R(ā); moreover, if ū is an ON-3-frame and
vi ∈ R(ū) then ā(ū) = ū and ri(vi) = vi.

5.7. Capturing adjoints in coordinate ∗-rings
The endomorphism ring End(H) of H ∈ H is also a ∗-ring : A ring with invo-
lution, namely the involution f �→ f∗, the adjoint of f . Given subspaces U ,
W with orthogonal projections πU , πW and a linear map f : U → W , one has
πUf∗|W the adjoint of f where f∗ refers to f considered a map f : U → H.
In particular, End(U) becomes a ∗-ring End∗(U) where f �→ πUf∗|U . In order
to capture the involution in the coordinate ring of an ON-3-frame we use the
following ortholattice term (where s(x, z̄) is from Section 5.1):

x†z̄ := s((z1 �z̄ x)⊥ ∩ (z1 + z2), z̄).

Lemma 5.8. Given H ∈ H, an ON-3-frame ā in L(H), f ∈ End(a1), and
r = ωā(f), one has r†ā = ωā(g) where g = πUf∗|U is the adjoint of f in the
Hilbert space U = a1. In particular, ωā is an isomorphism of ∗-rings End∗(a1)
and R(ā), the latter with involution r �→ r†ā .

Proof. Write U = a1 and consider f, g ∈ End(U). Then, as observed above, g is
adjoint to f if and only if g = πUf∗|U . Now, one has πUf∗ε−1

ā = πUf∗πUε−1
ā =

πUf∗πU (εā)∗ = πU (εāπUf)∗ = πU (εāf)∗. Thus, g is adjoint to f if and only
if gε−1

ā is adjoint to εāf if and only if Γā
12(−εāf) is orthogonal to Γā

21(gε−1
ā ),

that is, Γā
21(gε−1

ā ) = Γā
12(−εāf)⊥ ∩ (a1 + a2). The latter is equal to r′ :=

(a1 �ā r)⊥ ∩ (a1 + a2). In view of Fact 5.1, g is adjoint to f if and only if
s(r′, ā) = ωā(g). �

In the sequel, we will consider adjoints only within the space a1 where ā
is an ON-3-frame in some L(H), H ∈ H, and use f∗ to denote the adjoint of
f ∈ End(a1) within a1.

6. Complexity of the equational theory of L
Recall that L is the class of subspace ortholattices L(H), H ∈ H, where H
is the class of all finite dimensional real or complex Hilbert spaces. Our main
result is the following.

Theorem 6.1. The decision problems REFL, uREFL, and FEASZ,R are p-time
equivalent to each other.
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6.1. Outline

By Fact 6.2 below, V(L) is generated by the L(H), H ∈ HR, where HR denotes
the class of all finite dimensional real Hilbert spaces. Thus, to reduce to REFL,
our task is the following (recall Fact 5.2 and that for r̄ ∈ R one has pi(r̄) = 0
for i = 1, . . . , m if and only if

∑
i pi(r̄)2 = 0).

(∗) Given a term p(x̄) in the language of rings, construct (in p-time)
a conjunction φp(x̄, z̄) of ortholattice identities such that p(r̄) �= 0
for all r̄ from R if and only if L(H) |= ∀x̄∀z̄. φp(x̄, z̄) for all H ∈ HR.

In [16, Proposition 4.9] the commutativity relations required by the Spec-
tral Theorem have been encoded in a conjunction of equations (to be viewed
as a system of generators and relations) to prove that FEASZ,R reduces to
SATL. Though, dealing with REFL, we have to force such relations by Ralph
Freese’s technique of retractive terms. The first step is to construct elements
in a coordinate ∗-ring of an ON-3-frame, via Lemma 5.7. This is used in Sec-
tion 6.3 to reduce from FEASZ,R to REFL. The reduction from REFL is in [16,
Theorem 4.4] via non-deterministic BSS-machines. We give a direct proof: In
Sections 6.4–6.6, we reduce REFL in fixed dimension via SATL(H) to FEASZ,R;
to combine these to the required reduction, we use the dimension bound (from
[12]) for failure of equations. For later use, we describe these reductions for
uREFL in place of REFL.

Lemma 8.3, below, gives the reduction from FEASZ,R to REFR, R the
class of the End(H) (considered as ∗-rings with pseudo-inversion), H ∈ H. Not
requiring retractive terms, the proof is much simpler and might be read first.
Though, in the converse direction, we reduce (in Subsection 8.3) REFR to
FEASZ,R via uREFL in polynomial time; that we have to employ the latter is
due to multiple occurrence of variables in the term translating, to the language
of L, the fundamental operation of pseudo-inversion. It remains open whether
there is a direct p-time reduction of REFR to REFL.

6.2. Varieties generated by ortholattices L(H)
Fact 6.2. For every C ⊆ L, the variety V(C) either is generated by one or two
members of C or is equal to L and is generated by any family in L having
unbounded dimensions.

We mention that V(L) con tains all projection ortholattices of finite
Rickart C∗-algebras [14].

Proof. Recall that for any d there is, up to (isometric) isomorphism, just one
real (respectively complex) Hilbert space of dimension d. Also, if H1,H2 are
both real (respectively complex) and d1 ≤ d2 then L(H1) is a homomorphic
image of a sub-ortholattice of L(H2), namely L(U)×L(U⊥) embeds into L(H2)
where U ∈ L(H2) with dim U = d1. Recall, finally, that L(H), H ∈ HR, embeds
into the subspace ortholattice of the complex Hilbert space C⊗R H; and recall
that for H over C, considering H as the complexification of the R-vector space
H0, L(H) embeds into L(H0) where H0 is endowed with the real part of the
scalar product on H. �
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6.3. Reducing FEASZ,R to REFL
We have to prove (*) from Section 6.1. In view of Lemma 5.7 we may continue
from an ON-3-frame ā and r1, . . . , rn ∈ R(ā). Now, recall that for f ∈ End(a1)
one has

ker f = a1 ∩ ωāf.

Thus, with ri := ωāfi, i = 1, . . . , n, and X := {ri, r
†ā
i | i = 1, . . . , n} put

u := k(r̄, ā) :=
⋂

r,s∈X

a1 ∩ (r ⊗ā s �ā s ⊗ā r).

Denoting by c the set of all vectors v ∈ a1 on which any two of fi, f
∗
i , fj , f

∗
j

commute, we have c = u. Let x+̃z̄y denote the lattice term defining addition
in R(ā) and 2̃−1

z̄ the one for the inverse of a12+̃āa12 (cf. Fact 5.1). Define

si := 2̃−1
ā

(
(ri ∩ (u + a2) + u⊥)+̃ā(ri ∩ (u + a2) + u⊥)†ā)

,

that is si = ωā
1
2 (f̂i + f̂∗

i ) where f̂i is fi on u and 0 on u⊥. In particular, the
f̂i are self-adjoint and commute on a1. Moreover, if the ri, respectively fi,
commute and are self-adjoint then a1 = k(r̄, ā), fi = f̂i and ri = si.

Of course, these definitions work uniformly for all H ∈ H and ON-3-
frames ā and ri ∈ R(ā) in L(H). Thus, we have achieved terms tj(z̄), t1j(z̄),
and si(x̄, z̄) which are retractive from no relations to ON-3-frames ā with r̄ in
R(ā) consisting of commuting self-adjoints. Given a term p(x̄) in the language
of rings, let p̃(x̄, z̄) the associated lattice term, that is, for any frame ā

ωāp(f1, . . . , fn) = p̃(ωāf1, . . . , ωāfn) for fi ∈ End(a1).

Observe that, due to uniqueness of occurrences of variables x̄ (Sections 2.6
and 5.6 and Lemma 5.8), p̃(x̄, z̄) is constructed from p(x̄) in p-time. Let the
ortholattice term p̂(x̄, z̄) be obtained from p̃(x̄, z̄) substituting first si(x̄, z̄) for
xi, then tj(z̄) for zj and t1j(z̄) for z1j . Let p#(x̄, z̄) = 0 be the ortholattice
identity equivalent to the conjunction of p̂(x̄, z̄) ∩ z1 = 0 and p̂(x̄, z̄) + z1 =
z1 + z2 (see Fact 5.2). Observe that this is still obtained in p-time from p(x̄).
Then the following are equivalent

(i) p#(x̄, z̄) = 0 is valid in L.
(ii) For all H ∈ HR, ON-3-frames ā of L(H) and commuting self-adjoint

r1, . . . , rn ∈ R(ā) one has p̃(r1, . . . , rn) invertible in R(ā).
(iii) For all H ∈ HR and commuting self-adjoint endomorphisms f1, . . . , fn of

H one has p(f1, . . . , fn) invertible.
(iv) p(ρ1, . . . , ρn) �= 0 for all ρ1, . . . , ρn ∈ R.
The equivalence of (i), (ii), and (iii) is obvious by the above, that of (iii) and
(iv) by the Spectral Theorem: the fi have a common basis of eigenvectors.
Thus, we have obtained (∗).

6.4. Reducing SATL(H ) to FEASZ,R

We continue the proof in Section 4.1 to include orthocomplementation in the
reduction from SATL(H) to FEASZ,R for the case of fixed dimension of VR = H.
Here, we may assume H = R

d with the canonical inner product. Observe that
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Span(B)⊥ = Span(C) if and only if CtB = 0 and BY + CZ = I for suitable
Y,Z. Here Ct denotes the transpose of C. Thus, we translate y = z⊥ into

ẑtŷ = 0 ∧ ∃Y ∃Z. ŷY + ẑZ = I.

In view of Fact 2.2 we have a polynomial pτ (x, y) over Z and for each d the
reduction τd in time pτ (x, d) from SATL(H) to FEASZ,R, where H ∈ HR and
dim H = d.

6.5. Reducing uREFL(H ) to SATL(H )

Given d, let φd(z̄) be the conjunction of equations defining d-frames ā such
that a⊥ = 0 and a� = 1. Recall the term δd(x, z̄) from Lemma 2.4. Now, given
an unnested term T (x̄) in the language of ortholattices, define σd(T )(x̄) as

∃z̄∃y. T (x̄) = y ∧ δd(y, z̄) = 1 ∧ φd(z̄)

the prenex equivalent of which is an existentially quantified conjunction of
equations. Then the following holds.

For any H ∈ HR, dim H = d, one has L(H) |= ∃x̄. T (x̄) �= 0 if and only if
L(H) |= ∃x̄ σd(T )(x̄).

Hence, there is a polynomial pσ(x, y) over Z such that σd is a pσ(x, d)-time
reduction from uREFL(H) to SATL(H), for each d and H ∈ HR, dim H = d.

6.6. Reducing uREFL to FEASZ,R and proof of Theorem 6.1

Combining Sections 6.4 and 6.5, the reduction ρd from uREFL(H) to FEASZ,R

given by ρd(T ) = τd(σd(T )) is carried out in time pτ (pσ(x, d), d). And, in view
of Lemma 5.3, a p-time reduction of uREFL to FEASZ,R is obtained applying
ρd to T where d = o(T ). Since o(T ) ≤ |T |, obviously, a polynomial bound in
terms of |T | is given by pτ (pσ(x, x), x).

By Fact 2.1 we derive a p-time reduction from REFL to FEASZ,R via
uREFL. The converse reduction is Section 6.3.

6.7. Equivalences for arbitrary L(H)

Corollary 6.3. Any two of the following decision problems are p-time equiva-
lent: FEASZ,R, REFL(H), SATL(H) where H ∈ H, dim H ≥ 3, arbitrary.

Using non-deterministic BSS-machines, this has been derived in Corol-
laries 2.8 and 2.12 in [16].

Proof. The reduction from REFL(H) via SATL(H) to FEASZ,R is given by Sec-
tions 6.5 and 6.4 (in the complex case one has to use real and imaginary parts
for the encoding into R). Conversely, for fixed H ∈ H, the equivalence of (iv)
and of the statements in (ii) and (iii) in Section 6.3 is valid (since ON-3-frames
in lower sections of L(H) exist). �
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6.8. 2-Distributive modular ortholattices

A (ortho)lattice L is 2-distributive if the identity

x ∩
2∑

i=0

xi =
∑

j �=k

x ∩ (xj + xk)

holds in L. Examples of such are, for any cardinal n > 0, the MOLs MOn of
height 2 with n pairs a, a⊥ of atoms. Put M0 = 2.

Fact 6.4. (i) Any finite MOL is 2-distributive.
(ii) A 2-distributive MOL is subdirectly irreducible if and only if it is isomor-

phic to some MOn.
(iii) For any class C of 2-distributive MOLs, V(C) is generated by some MOn,

n ≤ ω.

Proof. Recall that in MOLs congruences are the same as lattice congruences.
Thus, if L is a finite MOL, it is isomorphic to a direct product of subspace
lattices Li of finite irreducible projective spaces, and the Li are MOLs. Thus,
according to Baer [2], the Li are of height ≤ 2. Now let L be a 2-distributive
subdirectly irreducible MOL. According to Jónsson [22], any complemented
modular lattice L embeds into a direct product of subspace lattices Li of
irreducible projective spaces, Li ∈ V(L). Being a subdirectly irreducible lattice,
L embeds into some Li which is of height ≤ 2 by 2-distributivity. Thus, L is of
height ≤ 2, whence isomorphic to some MOn. (iii) follows from the fact that
MOn embeds into MOm for n ≤ m and that any variety is generated by its at
most countable subdirectly irreducibles. �

Proposition 6.5. If C consists of 2-distributive MOLs, then SATC and REFC
are NP-complete.

Proof. That both are in NP is [16, Proposition 1.19]. NP-hardness of SATC
is [16, Proposition 1.16]. Now, Eq(C) = Eq(MOn) for some n by (iii) of Fact
6.4, whence its decision problem is coNP-hard by [16, Theorem 1.20]. �

7. Preliminaries: part III

7.1. Translations

Consider the quantifier free parts Λ1 and Λ2 of two first order languages with
equality (also denoted by =). Let z̄ be a string of variables in Λ2. Suppose
that for each variable x in Λ1 there is given a term τ(x)(z̄) in Λ2 and, for each
operation symbol f in Λ1 and term f(x̄), a term τ(f(x̄))(τ(x̄), z̄) where τ(x̄)
denotes the string of τ(xi)’s. Then there is a unique extension to a map (also
denoted by τ) from Λ1 to Λ2 such that for any n-ary operation symbol f and
terms ti(ȳi) in Λ1,

τ(f(t1(ȳ1), . . . , f(tn(ȳn)))
= τ(f)(τ(ti(ȳ1))(τ(ȳ1), z̄), . . . , τ(tn(ȳn))(τ(ȳn), z̄), z̄),
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(equality of terms) and such that an equation t(x̄) = s(x̄) is translated into
the equation τ(t(x̄)) = τ(s(x̄)), and, finally, such that τ is compatible with the
propositional junctors.

Fact 7.1. The translation τ(T (x̄)) of unnested terms T (x̄) is carried out in
p-time.

Recall the translation θi (Fact 2.1) within Λi of terms into unnested
terms. Structural induction yields the following.

Fact 7.2. For any term t(x̄) in Λ1, τ(t(x̄)) = y is logically equivalent to
τ(θ1(t(x̄))) = y.

In view of Fact 2.1, as an immediate consequence one obtains the follow-
ing for classes Ai of algebraic structures in the signature of Λi.

Fact 7.3. If τ restricts to a reduction of REFA1 to REFA2 then θ2 ◦ τ yields a
p-time reduction of uREFA1 to uREFA2 .

7.2. ∗-Regular rings

A ∗-ring is a ring (with unit) having as additional operation an involution
a �→ a∗. This involution is proper if aa∗ = 0 only for a = 0. A ring R with
proper involution is ∗-regular if, for any a ∈ R, there is x ∈ R such that
axa = a; equivalently, for any a ∈ R there is a [Moore-Penrose] pseudo-inverse
(or Rickart relative inverse) a+ ∈ R, that is,

a = aa+a, a+ = a+aa+, (aa+)∗ = aa+, (a+a)∗ = a+a;

cf. [23, Lemma 4]. In this case, a+ is uniquely determined by a and will be
considered an additional unary fundamental operation q(a) = a+ of the ∗-
regular ring R. Thus, ∗-regular rings form a variety. An element e of a ∗-regular
ring is a projection if e = e2 = e∗. For such e, one has e = e+; also, each aa+

is a projection.

Lemma 7.4. Within the class of ∗-regular rings with pseudo-inversion, any
conjunction of equations is equivalent to a single one of the form t = 0, to be
obtained in p-time.

Proof. Let R be any ∗-regular ring. If e2 = e and 1 = er for some r, then
e = e2r = er = 1. Thus, by induction, if

∏n
i=1 ei = 1 with idempotents ei

then ei = 1 for all ei. Now, the given equations may be assumed to have the
form ti(x̄) = 0. Put t(x̄) = 1 − ∏

i(1 − tit
+
i ). Then t(ā) = 0 if and only if

1 − tit
+
i (ā) = 1 for all i, that is tit

+
i (ā) = 0 which means ti(a) = 0. �

The endomorphisms of a finite dimensional Hilbert space H over F ∈
{R,C} form a ∗-regular ring End(H) where f∗ is the adjoint of f and where the
projections are the orthogonal projections πU onto subspaces U . Moreover, f+

is given by f+|W ⊥ = 0 and f+|W : W → U being the inverse of f |U : U → W
where U = (ker f)⊥ and W = im f . End(H)+ will denote End(H) endowed
with this additional operation.
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7.3. Ortholattices of projections

The projections of a ∗-regular ring R form a modular ortholattice L(R) where
the partial order is given by e ≤ f ⇔ fe = e ⇔ ef = e, least and greatest
elements as 0 and 1, join and meet as

e ∪ f = f + (e(1 − f))+e(1 − f), e ∩ f = (e⊥ ∪ f⊥)⊥

and the orthocomplement as e⊥ = 1 − e. Moreover, for a finite dimensional
Hilbert space H, e �→ im e is an isomorphism of L(End(H)) onto L(H). Thus,
associating with each ortholattice variable x a ring variable x̂ and replacing
each occurrence of x by x̂x̂+ one obtains an (EXP-time) interpretation of L(R)
within R, uniformly for all ∗-regular rings.

7.4. Capturing pseudo-inverse

Recall from Sections 5.6 and 5.7 the concept of an ON-3-frame ā in L(H)
and its associated coordinate ring R(ā) with involution r �→ r†ā , isomorphic
to End(a1) as a ∗-ring via ωā. We have to capture the additional operation
f �→ f+ of pseudo-inversion on End+(H1), H1 a subspace of H such that
dim H ≥ 3 dim H1. Indeed, for any ON-3-frame ā of L(H) (and there is one
such that a1 = H1) and for any r = ωāf , f ∈ End(a1), one has kerf = ker(r, ā)
and imf = im(r, ā) where

ker(x, z̄) := x ∩ z1 and im(x, z̄) := ((x + z1) ∩ z2 + z12) ∩ z1.

Indeed, ωā(f) ∩ a1 = {v − εāf(v) | v ∈ a1, εāf(v) = 0} = {v ∈ a1 | f(v) = 0}
and (ωā(f)+a1)∩a2 = {εāf(v) | v ∈ a1} whence one has im(ωā(f), ā) = {x−
εā(x) + εāf(v) | x, v ∈ a1} ∩ a1 = {x ∈ a1 | ∃v ∈ a1. εā(x) = εāf(v)} = im f .

Thus, with s(x, z̄) from Fact 5.1 one obtains an ortholattice term captur-
ing pseudo-inversion, uniformly for all H1 ∈ H. Define

im+(x, z̄) := (z1 ∩ ker(x, z̄)⊥ + z12) ∩ (z1 + z2)

ψ0(x, z̄) := s(x, z̄) ∩ (im(x, z̄) + im+(x, z̄))

ψ(x, z̄) := ψ0(x, z̄) + z1 ∩ (im(x, z̄))⊥.

Lemma 7.5. For each ON-3-frame ā in L(H), H ∈ H, and all f ∈ End(a1) one
has ωā(f+) = ψ(ωā(f), ā).

Proof. Put r = ωā(f). Then im+
2 (r, ā) = εā

12(im f+) and, in view of Fact 5.1,
ψ0(r, ā) consists of the fε−1

ā (w) − w where w ∈ a2 and w = εāf+(v2) for
some v2 ∈ im f and fε−1

ā (w) = f(v1) for some v1 ∈ im f+. It follows that
f(v1) = ff+(v2) = v2 and fε−1

ā (w) − w = v2 − (εāf+)(v2), that is, ψ0(r, ā) =
{v2 − εāf+(v2) | v2 ∈ im f}. �

8. Complexity of the equational theory of R
For finite dimensional real or complex Hilbert spaces H, let End+(H) denote
the endomorphism ∗-ring with pseudo-inversion; let R denote the class of all
these. In analogy to Fact 6.2 we have the following.



5 Page 22 of 28 C. Herrmann Algebra Univers.

Fact 8.1. For any C ⊆ R, the variety V(C) either is generated by one or two
members of C or it equals R and is generated by any family in R having
unbounded dimensions.

We mention that V(R) contains all finite Rickart C∗-algebras [14, Theo-
rem 2]. According to [17, Theorem 22], SATR is undecidable. Our main result
is as follows.

Theorem 8.2. The decision problems REFL, uREFL, REFR, uREFR, and
FEASZ,R are pairwise p-time equivalent; in particular, the equational theory
of R is decidable.

Decidability of the equational theory is also shown in unpublished joint
work with Marina Semenova by reduction to decidability of the reals.

8.1. Outline

The reduction from FEASZ,R to REFR is established in Section 8.2, directly.
Concerning the reduction in the converse direction, recall that the reduction
of REFL to FEASZ,R relied on the fact that t(x̄) = 0 fails in L if it does so in
some L(H), dim H polynomially bounded by the length of t(x̄). We make use
of this, reducing via REFL. Though, expressing pseudo-inversion within the
coordinate ring of an ON-3-frame requires multiple occurrences of the principal
variable causing exponential blowup when translating terms. Therefore, we
reduce REFR via uREFR to uREFL in Section 8.3. The Theorem then follows
from Section 6.6.

A term for quasi-inversion is essential for the above hardness result and
similar ones in fixed finite dimension. Considering polynomial identities for
matrix rings in fixed dimension, lower bounds on proof complexity have been
established by Tzameret et al. [24].

8.2. Reduction from FEASZ,R to REFR
Recall from Section 7.2 that, for any f ∈ End(H), ff+ is a projection such that
im f = im ff+. Thus, according to Section 7.3, there is a binary term x ∩ y in
the language of ∗-rings with pseudo-inversion such that f ∩g is the orthogonal
projection onto im f ∩ im g, for all f, g ∈ End(H) and H ∈ H. Similarly, the
term k(x) := 1 − x∗x∗+ is such that k(f) is the orthogonal projection onto
ker f = (im f∗)⊥.

Lemma 8.3. For all C ⊆ R, containing a non-zero member, there is a uniform
p-time reduction of FEASZ,R to REFC.

Proof. Given a multivariate polynomial p(x̄) with integer coefficients, choose
new variables yi and define the following term in the language of ∗-rings with
pseudo-inversion (considering p(x̄) a ring term):

p◦(x̄, ȳ) := k(p(x1q + (1 − q), . . . , xnq + (1 − q))

where

q := q(x̄, ȳ) := k(p(x̄)) ∩
⋂

i

k(xi + xi − (yi + y∗
i )) ∩

⋂

i,j

k(yiy
∗
j − y∗

j yi)
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and where
⋂

stands for suitable iterations of ∩. Observe that for any substitu-
tion x̄ �→ f̄ , ȳ �→ ḡ within End(H), the fiq(f̄ , ḡ)+ (1− q(f̄ , ḡ)) are self-adjoint,
equal to 1

2 (giq(f̄ , ḡ) + g∗
i q(f̄ , ḡ)) + 1 − q(f̄ , ḡ), and commute pairwise. On the

other hand, given any self-adjoint and pairwise commuting fi = gi one has
q(f̄ , ḡ) = id and it follows that p◦(f̄ , ḡ) is the projection onto ker p(f̄) and
that p◦(f̄ , ḡ) = 0 if and only if p(f̄) is invertible. Now, in view of the Spectral
Theorem as in the proof of Theorem 6.1, given H ∈ C, one has p◦(f̄ , ḡ) = 0
for all f̄ , ḡ in End(H) if and only if p(x̄) has no zero in R. �

8.3. Reducing REFR via uREFR to uREFL and proof of Theorem 8.2

In view of Sections 2.6, 5.6, and 7.4, for each operation symbol g (with asso-
ciated basic equation y = g(x̄)) in the language of R, there is an ortholattice
term ĝ(x̄, z̄) such that for any H ∈ H and ON-3-frame ā of L(H) one has, for
all fi ∈ End(a1) and ri = ωāfi in R(ā),

End(a1) |= g(f̄) = f0 ⇔ R(ā) |= ĝ(r̄, ā) = r0.

Recall Lemma 5.7 and the retractive terms ā(z̄) for ON-3-frames ā and ri(xi, z̄)
for elements of R(ā). For each operation symbol g in the language of R define

τ(g(x̄)) := ĝ(r̄(x̄, ā(z̄)), ā(z̄)),

where r̄(x̄, ā(z̄)) is the string of the ri(xi, ā(z̄)). According to Section 7.1, this
defines a translation τ from the language of R to that of L. Since any H1 ∈ H
occurs as a1 for some ON-3-frame ā of L(H), for some extension H in H, τ
provides a (EXP-time) reduction of the equational theory of R to that of L;
that is, of REFR to REFL. Thus, by Facts 2.1 and 7.3, τ provides a p-time
reduction from REFR (via uREFR) to uREFL.

Together with Section 6.6 one obtains a p-time reduction from REFR to
FEASZ,R via uREFR and uREFL. The converse reduction is Lemma 8.3. The
reduction of FEASZ,R to REFL is Section 6.3.

8.4. Dimension bounds in REFR
With Lemma 5.3, Section 8.3 yields the following.

Corollary 8.4. There is a polynomial p(x) such that an equation t(x̄) fails in
R if and only if it does so in End+(H) for some H with dim H ≤ p(|t|).

9. The category of finite dimensional Hilbert spaces

Finite dimensional Hilbert spaces have a prominent rôle in the approach to
Quantum Mechanics in terms of Category Theory, see e.g. Abramsky and
Coecke [1] and, for equational aspects, Selinger [28].

Let H denote the additive category of finite dimensional Hilbert spaces,
enriched by the contravariant functor of adjunction, cf. [1,19,28]. Let H+ arise
from H by endowing each endomorphism ∗-ring End(H) also with the operation
of pseudo-inversion. Both H and H+ shall be considered as two-sorted partial
algebraic structures: one sort for objects, one for morphisms. Also, we require
unary operations δ and ρ from morphisms to objects yielding domain and
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codomain as well as ι associating the identity on H with the object H. Also,
we have the map ω associating with objects H1,H2 the zero map from H1

to H2. Speaking about subcategories we require closure under the additive
structure and these operations.

Terms are built from morphism variables xi and expressions ι(vi) and
ω(vi, vj) with object variables vi, vj , subject to rules which grant evaluation in
H respectively H+. Namely, with each term t we associate object variables for
domain and codomain, denoted by δ(t) and ρ(t). We require δ(ι(vi)) = vi =
ρ(ι(vi)), δ(ω(vi, vj)) = vi, ρ(ω(vi, vj)) = vj ; moreover, t = t2 ◦ t1 is defined
if and only if δ(t2) = ρ(t1) and then δ(t) = δ(t1) and ρ(t) = ρ(t2); similarly,
for the other symbols for operations on the sort of morphisms. Compare [28,
Section 5].

Defining unnested terms T = (φT , yT ) in analogy to Section 2.1, the
conditions on δ and ρ are included as conjuncts into φT . An assignment γ
admissible for a term t (unnested term T ) assigns a morphism γ(z) and an
object γ(v) to each morphism variable z and object variable v occurring in t
(T ) such that γ(z) ∈ Hom(γ(δ(z)), γ(ρ(z))) for each z, ι(v) ∈ End(γ(v)), and
γ(ω(vi, vj)) ∈ Hom(γ(vi), γ(vj)) for all v, vi, vj (and such that φT is satisfied).
Such γ provides a unique evaluation γ(t) (γ(T )); in particular, γ(x) = γ(x1) ◦
γ(x2) if x = x1 ◦ x2 occurs in φT .

Satisfiability and refutability of (unnested) equations are defined w.r.t.
admissible assignments in analogy to Section 2.1. Observe that within H (H+)
any equation is equivalent to one where one side is a zero. This yields the
decision problems SATC , REFC and their unnested variants uSATC and uREFC
for subcategories C of H and H+. Observe the p-time reductions of SATC to
uSATC and REFC to uREFC .

Fact 9.1. With any equation η in the language of ∗-rings one associates in p-
time an equation η′ in the language of H such that, for any subcategory C of
H one has η′ satisfiable respectively refutable in C if and only if η is so in the
class of End(H), H ranging over objects of C; similarly, with the language of
R, H+, and End+(H). Also, the analogues hold for unnested equations.

Proof. Choose a single object variable v and put δ(t) = ρ(t) = v for all sub-
terms t occurring in η. �

Theorem 9.2. (i) Let C be a subcategory of H+ respectively H with finitely
many objects including some non-zero H. In case of H+, the decision
problems SATC, uSATC, REFC, and uREFC are each p-time equivalent to
FEASZ,R; in case of H so are SATC and uSATC. In particular, decidability
holds in all cases.

(ii) SATC and uSATC are undecidable for C = H, H+.
(iii) REFH+ and uREFH+ are both decidable and each is p-time equivalent to

FEASZ,R.
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Proof. Lemma 8.3 and Fact 9.1 provide, for any subcategory C of H+, a p-time
reduction of FEASZ,R to REFC .

In (i), given C with finitely many objects, let d be the maximal dimen-
sion of an object in C. Introducing coordinates one obtains a p-time reduc-
tion of uSATC to FEASZ,R. A p-time reduction of REFC to SATC (and, sim-
ilarly, for the unnested variants) can be based on the observation that for
f ∈ Hom(H ′,H) one has f �= ω(H ′,H) if and only if there are gi ∈ End(H)
such that idH =

∑d
i=1 gi ◦ f where dim H ≤ d.

Now, let H ∈ C with d = dim H. FEASZ,R reduces to SATC requiring,
in a conjunction of equations with unique object variable v, a system of d × d
∗-matrix units eij such that ι(v) evaluates to

∑
ii eii and interpreting R as the

set of r ∈ End(H) such that r = r∗ = e11re11 cf. [16, Theorem 4.4].
Undecidability in (ii) follows from Fact 9.1 and [17, Theorem 22].
In order to prove in (iii) the reduction to FEASZ,R, we relate subcategories

C with n objects to (End+(H); π̄) where H is a finite dimensional Hilbert space
and π̄ an n-tuple of orthogonal projections in End(H). Given H and π̄, let
CHπ̄ have objects Hi = imπi; then Hom(Hi,Hj) consists of the π′

j ◦ f ◦ εi,
f ∈ End(H), where π′

j ∈ Hom(H,Hj) is the orthogonal projection onto Hj

and εi the identity embedding of Hi into H. Given C with objects Hi let HC
be given by H =

⊕⊥
i Hi and πi the orthogonal projection onto the summand

corresponding to Hi. Observe that C is isomorphic to CHC .
To translate an unnested equation η in the language of H+ into an

unnested equation τ(η) in the language of R, consider both morphism and
object variables as variables for R. Delete the side conditions on domain and
range and read ◦,+,−,∗ ,+ as operation symbols for R. Replace any ω(v1, v2)
by 0 and ι(v) by vv+. Replace any morphism variable z in the resulting formula
by the R-term ẑ given as

ρ(z) ◦ ρ(z)+ ◦ z ◦ δ(z) ◦ δ(z)+.

Now, assume that η fails in H+; then it does so in some subcategory C with
finitely many objects and τ(η) fails in HC : Given a failing assignment obtain
one in HC , namely associate with z �→ f ∈ Hom(Hi,Hj), v �→ Hk in C the
assignment z �→ εj ◦ f ◦ π′

i, v �→ πk. Conversely, assume a failing assignment
for τ(η) in End+(H) with values πi for the terms viv

+
i , vi an object variable

occurring in η. Form C = CHπ̄ to obtain a failing assignment for η where
vk �→ Hk = imπk and z �→ πj ◦ f ◦ εi if ẑ is evaluated to π′

j ◦ f ◦ πi. This
provides a p-time reduction of uREFH+ via uREFR to FEASZ,R according to
Section 8.3. �

Omitting pseudo-inversion, any term is equivalent to one where ∗ occurs
only in the form x∗

i . Thus, a polynomial dimension bound for refutation can be
established, directly. Namely, for any such term t, f̄ in End(H), and a ∈ H one
has t(f̄)(a) = t(ḡ)(a) where gi = πU ◦ fi ◦ εU and U is the subspace spanned
by the s(f̄)(a), s a subterm of t. This gives the upper complexity bound.

Similarly, consider the category H and such term t(x̄), admissible sub-
stitution f̄ of morphisms, and a such that t(f̄)(a) is defined. By recursion,
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one defines a subspace Htf̄a of H for each H ∈ H to obtain the objects of a
category Htf̄a in which t(f̄)(a) evaluates the same as in H; here, one has a
polynomial bound on the sum of the dimensions of objects. Again, this gives
the complexity of FEASZ,R as an upper bound for deciding identities.
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