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A note on homomorphisms between products
of algebras

Ivan Chajda, Martin Goldstern and Helmut Länger

Abstract. Let K be a congruence distributive variety and call an alge-
bra hereditarily directly irreducible (HDI) if every of its subalgebras is
directly irreducible. It is shown that every homomorphism from a finite
direct product of arbitrary algebras from K to an HDI algebra from K is
essentially unary. Hence, every homomorphism from a finite direct prod-
uct of algebras Ai (i ∈ I) from K to an arbitrary direct product of HDI
algebras Cj (j ∈ J) from K can be expressed as a product of homo-
morphisms from Aσ(j) to Cj for a certain mapping σ from J to I. A
homomorphism from an infinite direct product of elements of K to an
HDI algebra will in general not be essentially unary, but will always fac-
tor through a suitable ultraproduct.
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1. Introduction

Let Ai, i ∈ I, and Bj , j ∈ J, be algebras of the same type and f a homomor-
phism from

∏
i∈I Ai to

∏
j∈J Bj . For every k ∈ J let pk denote the projection

from
∏

j∈J Bj onto Bk and fk := pk ◦ f . More generally, for any J0 ⊆ J we
let pJ0 :

∏
j∈J Bj → ∏

j∈J0
Bj be the canonical projection map. It is evident

that f = (fj : j ∈ J). Hence, the task of describing f is reduced to the task of
describing the homomorphisms fk from

∏
i∈I Ai to Bk.
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In [3] the authors solve this problem for the case that the algebras Ai

and Bj are conservative median algebras and the index sets are finite. More
generally, Couceiro et al. [2] considers the case that the Ai are median algebras
and theBj are tree-median algebras. It turns out that the method developed in
[2,3] can be further generalized to lattices. Let us note that every distributive
lattice is a median algebra (but not conversely). We are even able to extend this
result to arbitrary lattices Ai provided the Bj are chains. For lattice concepts
used in the rest of the paper the reader is referred to the monographs [1,5].

We call a mapping f :
∏

i∈I Ai → C essentially unary if there exists an
i0 ∈ I and a mapping g : Ai0 → C with g ◦ pi0 = f . In this case we say that
“f depends only on the i0-th coordinate”, or that “f factors through pi0”.

From f = g ◦ pi0 it easily follows that g is a homomorphism if and only
if f is.

2. Fraser–Horn property and HDI algebras

Definition 2.1. A class K of algebras has the Fraser–Horn property if there
are no skew congruences on any product A1 × A2 with A1,A2 ∈ K, or more
explicity:

For all A1,A2 ∈ K, for every congruence θ ∈ Con(A1 × A2) there
are congruences θ1 ∈ Con(A1), θ2 ∈ Con(A2) such that θ = θ1 ×θ2,
i.e. θ = {((x1, x2), (y1, y2)) | x1θ1y1, x2θ2y2}.
The following lemma is known from [4].

Lemma 2.2. Let K be a congruence distributive (CD) variety. Then K has the
Fraser–Horn property.

For the rest of the paper we fix a variety K with the Fraser–Horn property.
We call an algebra non-trivial if its universe contains at least two ele-

ments.

Definition 2.3. We call an algebra A hereditarily directly irreducible (HDI) if
every subalgebra B ≤ A is directly irreducible, i.e., is not isomorphic to a
direct product of two non-trivial factors.

Fact 2.4. (1) The variety of lattices is congruence distributive.
(2) A lattice is HDI if and only if it is a chain.

Theorem 2.5. Let K be a variety with the Fraser–Horn property. If n is a
positive integer, A1, . . . ,An are in K and C ∈ K is HDI, then every homo-
morphism f from A1 ×· · ·×An to C is essentially unary, i.e., factors through
one of the projections pi.

Proof. Let θ = ker(f). By a straightforward generalization of the Fraser–Horn
property we know that θ = θ1 × · · ·× θn, where each θi is a congruence on Ai.

The homomorphism theorem tells us that B′ := f(A1 × · · · × An) is
isomorphic to the direct product (A1/θ1)×· · ·× (An/θn). By our assumption,
B′ is directly irreducible, so at most one of these factors can be non-trivial,
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so there is at most one i such that Ai/θi has more than one element. So f
depends only on the i-th coordinate. �

Remark 2.6. If f : A1 × A2 → C is not constant, then there is at most one
i ∈ {1, 2} such that f factors through pi.

As a consequence of the above theorem we obtain the following statement.

Theorem 2.7. If n is a positive integer, A1, . . . ,An ∈ K, where K has the
Fraser–Horn property, (Cj ; j ∈ J) is a non-empty family of HDI algebras
in K, and f is a homomorphism from A1 × · · · × An to

∏
j∈J Cj then there

exists a mapping σ : J → {1, . . . , n} and for every j ∈ J a homomorphism gj

from Aσ(j) to Cj such that

f(x1, . . . , xn) = (gj(xσ(j)); j ∈ J)

for all (x1, . . . , xn) ∈ A1 × · · · × An.

Proof. Apply Theorem 2.5 to the mappings fj := pj ◦ f , j ∈ J . �

Theorem 2.8. Let K be a variety with the Fraser–Horn property. Let n, k be
positive integers and let A1, . . . ,An,C1, . . . ,Ck be non-trivial HDI algebras
in K and assume A1 × · · ·×An

∼= C1 × · · ·×Ck. Then n = k and there exists
a permutation σ ∈ Sn such that Ci

∼= Aσ(i) for all i = 1, . . . , n.

Proof. Let f denote an isomorphism from A1 × · · · × An to C1 × · · · × Ck.
According to Theorem 2.7, there exist mappings σ from {1, . . . , k} to {1, . . . , n}
and τ from {1, . . . , n} to {1, . . . , k}, for every j ∈ {1, . . . , k} a homomorphism
gj from Aσ(j) to Cj and for every i ∈ {1, . . . , n} a homomorphism hi from
Cτ(i) to Ai such that

f(x1, . . . , xn) = (g1(xσ(1)), . . . , gk(xσ(k)))

for all (x1, . . . , xn) ∈ A1 × · · · × An and

f−1(y1, . . . , yk) = (h1(yτ(1)), . . . , hn(yτ(n)))

for all (y1, . . . , yk) ∈ C1 × · · · × Ck. The injectivity of f implies k ≥ n and the
injectivity of f−1 implies n ≥ k. This shows n = k. Moreover, again since f is
injective we have σ ∈ Sn. Finally, the injectivity of f implies the injectivity of
g1, . . . , gn and the surjectivity of f implies the surjectivity of g1, . . . , gn. This
shows that g1, . . . , gn are isomorphisms, i.e. Ci

∼= Aσ(i) for all i = 1, . . . , n. �

Corollary 2.9. If an algebra in K is isomorphic to a finite product of non-
trivial HDI algebras, then these factors are uniquely determined up to order
and isomorphisms.

Proof. This follows from Theorem 2.8. �

We can generalize this to infinite direct products as follows. Recall that
an ultrafilter on a set I is a family U of subsets of I which is upwards closed
and also closed under intersections such that for all I0 ⊆ I exactly one of I0,
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I\I0 is in U . For any family (Ai : i ∈ I) of sets and any ultrafilter U on I we
define the equivalence relation ∼U on

∏
i Ai by

(xi : i ∈ I) ∼U (yi : i ∈ I) ⇔ {i ∈ I | xi = yi} ∈ U,

and we write
∏

i Ai/U for the set of equivalence classes, the “ultraproduct of
the Ai modulo U”. The canonical map from

∏
i Ai to

∏
Ai/U is denoted by

κU . If (Ai)i∈I is a family of algebras of the same type, then the relation ∼U

is a congruence relation on the product
∏

i Ai.

Theorem 2.10. Let K be a variety with the Fraser–Horn property. Let I be a
non-empty set, and for each i ∈ I let Ai be an algebra in K. Let C be an
HDI algebra in K, and let h :

∏
i∈I Ai → C be a homomorphism which is not

constant. Then there is a unique ultrafilter U on I such that h factors through
κU , i.e., there is a homomorphism h′ :

∏
i∈I Ai/∼U → C such that h = h′◦κU .

In particular: If there is no i ∈ I such that h factors through pi, then U
will be a non-principal ultrafilter.

Proof. Let U be defined as the set of all M ⊆ I such that h factors through
pM , i.e., such that there exists fM :

∏
i∈M Ai → C with h = fM ◦ pM .

It is clear that U is upwards closed, and from Theorem 2.5 and Remark 2.6
we get: If M1 ⊆ I and M2 := I\M1, then M1 ∈ U and M2 /∈ U or conversely.
As h is not constant, we have ∅ /∈ U .

We now show that U is closed under intersections: Given M1,M2 ∈ U ,
then we can write

∏
i∈I Ai as the direct product of four factors:

B11 =
∏

i∈M1∩M2

Ai, B10 =
∏

i∈M1\M2

Ai, B01 =
∏

i∈M2\M1

Ai, B00 =
∏

i/∈M1∪M2

Ai,

with corresponding projections p11, p10, p01, p00.
Since none of the sets M1\M2, M2\M1, and I\(M1 ∪ M2) are in U , h

cannot factor through any of p10, p01, or p00. Hence (by Theorem 2.5), h must
factor through p11, so M1 ∩ M2 ∈ U . So we have shown that U is a filter, and
even an ultrafilter.

We now check that h factors through the canonical map κU :
∏

i Ai →∏
i Ai/U . All we have to show is that for all x ∼U y ∈ ∏

i Ai we have h(x) =
h(y). Now x ∼U y implies that the set M := {i | x(i) = y(i)} is in U ;
by definition of U , there is some fM with h = fM ◦ pM , so we get h(x) =
f(pM (x)) = f(pM (y)) = h(y).

Finally, we show that U is unique. So let U ′ be an ultrafilter such that h
factors through κU ′ . It is enough to show U ′ ⊆ U :

Let M ∈ U ′, and let U ′�M := {N ∩ M | N ∈ U ′} be the restriction of U ′

to M . The map κU ′ can be written as κU ′ = κU ′�M ◦ pM ; as h factors through
κU ′ , h also factors through pM , so M ∈ U . �

Remark 2.11. Theorem 2.5 was used in the proof of Theorem 2.10; but we can
also view Theorem 2.5 as a special case of Theorem 2.10, as any ultrafilter on
a finite index set must be principal.
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3. Lattices

Theorem 2.10 is in some sense best possible, in the sense that homomorphisms
from an infinite product

∏
i Ai into an HDI algebra will in general not factor

through any single projection pj , as the following example shows.

Example 3.1. Let U be an ultrafilter on the infinite index set I, and for each
i ∈ I let Ai be the 2-element lattice {0, 1}. Then the ultraproduct

∏
i∈I Ai/U

is again the 2-element lattice.
Identifying

∏
i Ai with the power set lattice (P (I),∪,∩), the canonical

map κU : P (I) → {0, 1} maps each element of U to 1 and everything else
to 0. If U is a non-principal ultrafilter, then hU does not factor through any
projection.

This example can be generalized to any Fraser–Horn variety where the
class of HDI algebras is described by a set of first order formulas: If

∏
i Ai

is a product of algebras, and (hi : i ∈ I) is a family of homomorphisms
hi : Ai → Ci, where each Ci is HDI, then the family (hi : i ∈ I) naturally
defines a homomorphism h :

∏
i Ai → ∏

i Ci.
If U is an ultrafilter on I, then the algebra C :=

∏
i Ci/U is again

HDI (as C satisfies all first order statements that are true in each Ci). Let
κC

U :
∏

i Ci → ∏
i Ci/U and κA

U :
∏

i Ai → ∏
i Ai/U be the canonical maps.

Then the map h̄ := κC
U ◦ h :

∏
i Ai → C trivially factors through κA

U , i.e.,
there is h′ :

∏
i Ai/U → C with h̄ = h′ ◦ κA

U . By the uniqueness claim in
Theorem 2.10, we see that U is the set of all M ⊆ I such that h̄ factors
through pM . So if U is non-principal, then h̄ does not factor through any pi.

Fact 3.2. Let A be a lattice. Then the following are equivalent:
• There is a non-constant homomorphism from A into a chain.
• There is a non-constant homomorphism from A into the 2-element chain.
• The lattice A has a prime ideal.

The following corollary can be seen as a weak version of Theorem 2.5.

Corollary 3.3. The class of lattices without a prime ideal is closed under finite
direct products.

The following example shows that even this weak version cannot be gen-
eralized to infinite products, not even if all factors are equal.

Example 3.4. (a) There are non-trivial lattices M such that no (finite or
infinite) direct power of M has a prime ideal.

(b) On the other hand, there are lattices A without a prime ideal such that
any infinite direct power AI will contain a prime ideal.

Proof of (a). Let M be the class of all lattices of height 3 with at least 5
elements, i.e., the class of all bounded lattices M in which all elements except
for supM and infM are incomparable. It is clear that no lattice in M has a
prime ideal. The class M is closed under ultraproducts, since the property of
being in M can be expressed by a first order statement.
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If M =
∏

i∈I Mi is an arbitrary direct product with factors Mi ∈ M,
and h : M → C is a homomorphism into a chain, then h factors through an
ultraproduct

∏
i∈I Mi → ∏

i∈I MI/U → C, h = h′ ◦ κU . The map h′ and
therefore also h must be constant. �

Proof of (b). LetA be the lattice obtained from N = {0, 1, 2, . . . } by replacing
each odd number 2k + 1 by a 3-element antichain ak, bk, ck, and each even
number 2k by a new element dk. It is easy to see that A has no prime ideal.

We will show that every infinite power AI contains a prime ideal. Clearly
it is enough to show this for the case of countable I, say I = N.

For any ultrafilter U on N the following set JU is an ideal on
∏

i∈I Ai:

JU := {(xn : n ∈ N) | ∃k ∃C ∈ U ∀n ∈ C : xn ≤ dk}
We now show that JU is a prime ideal. If

x̄ = (xi : i ∈ N), ȳ = (yi : i ∈ N), z̄ = (zi : i ∈ N), x̄ ∧ ȳ = z̄ ∈ JU ,

then there is some set C ∈ U and some natural number k ∈ N such that
zn ≤ dk holds for all n ∈ C. Now the two sets

{n : xn ≥ dk+1}, {n : yn ≥ dk+1}
cannot both belong to U , as their intersection D is disjoint to C. (Since n ∈ D
implies xn ∧ yn ≥ dk+1.)

Without loss of generality we have {n : xn ≤ dk+1} ∈ U , so x̄ ∈ JU . �
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