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Algebra Universalis

Many-sorted and single-sorted algebras

Anna Mućka, Anna B. Romanowska, and Jonathan D. H. Smith

Abstract. This paper specifies a detailed, fully type-based general method for trans-
lating the class of all pure, many-sorted algebras of a given constant-free type into an
equivalent variety of single-sorted algebras of defined, constant-free type. The com-
plexity of the identities defining the variety is a linear function of the number of sorts
and the arity of the fundamental operations.

1. Introduction

Many-sorted or heterogeneous algebras were initially studied as generaliza-
tions of classical single-sorted or homogeneous algebras [3, 10, 11]. Categorical
methods based on monads were used subsequently, often in connection with
applications to computer science [2, 7]. There is also a categorical approach us-
ing algebraic theories, including explicit discussion of heterogeneous algebraic
formulations of stacks, directed graphs, and sequential automata [1]. Certain
many-sorted algebras were also employed in model theory [6, 12]. Recent ap-
plications include quasigroup homotopies and web geometry [8, 9, 22], fibred
automata and continued fractions [13, 14, 15, 16, 21], and conformal and vertex
algebras [23].

Despite their utility, many-sorted algebras have a tendency towards nota-
tional awkwardness, and their theory does not always extend without caveats
from the theory of single-sorted algebras [5, 7]. Particularly troublesome are
the many-sorted algebras that are not “pure,” mixing empty and non-empty
sorts. Against this background, a monadicity observation of Barr [2, Thm 5],
refined by Goguen and Meseguer [7, p. 331], shows that the class of all pure
heterogeneous algebras of a given type, or of all pure heterogeneous algebras
in a certain variety, is equivalent to a variety of single-sorted algebras. It is
important to note that the types or defining identities for the single-sorted va-
rieties are not given explicitly by this general monadic approach, although they
have been determined in specific cases [22, 23]. The current paper is concerned
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with the general problem of determining good sets of explicit defining identi-
ties and quasi-identities for the variety of single-sorted algebras equivalent to
a class of all pure heterogeneous algebras of a given type.

Translation from certain many-sorted to single-sorted algebras has been
discussed in the model-theoretic literature with specific types and identities
(compare [6, 12]). These discussions have taken place within restricted con-
texts (a universally pseudorecursive class in [6], or a strongly Abelian class in
[12]), always excluding any consideration of the empty set, or even insisting
that the sets underlying different sorts be disjoint [12, Defn 11.1(2)]. Never-
theless, admission of the empty set is crucial in many applications (to fibred
automata, for instance), as is the possibility of a common underlying set for
the different sorts (in the treatment of quasigroup homotopies, for example).

Motivated by the increasing range of applications of many-sorted algebras,
the philosophy of the current paper seeks to combine the general applica-
bility of the categorical approach with the specificity of the model-theoretic
approach. The goal is to give a detailed, fully type-based treatment of the
equivalence between the class of all pure heterogeneous algebras of a given
type and a variety of single-sorted algebras. At such a level of detail, the
actual equivalence depends on properties of the types involved, since they in-
fluence the specific way in which many-sorted operations may be encoded as
single-sorted operations. Here, we concentrate on the case where there are
no constants in the many-sorted or single-sorted types (the case considered in
[6, §2.3]). This case corresponds to the quasigroup-homotopy example [22],
although that example exploited specific features to encode three many-sorted
operations into one single-sorted operation, and is thus not subsumed by the
current work. The case with constants is also amenable to a general treatment,
along somewhat different lines from those adopted in this paper, instead track-
ing the methods used for conformal and vertex algebras in [23].

The plan of the paper is as follows. Section 2 presents the notation used
for handling many-sorted sets and functions between them, including the key
concept of a pure many-sorted set (Definition 2.1). Section 3 treats the diag-
onal algebras (generalizations of rectangular bands) that encode product sets
as single-sorted algebras. Our conventions for many-sorted algebras are intro-
duced in Section 4. Section 5 gives a new and concise treatment of words,
absolutely free algebras, and derived types for many-sorted algebras along the
lines of the comparable treatment of single-sorted algebras in [24, IV.1.3]. This
treatment avoids tiresome recursive definitions by means of an algebraic tech-
nique. Section 6 covers a limited notion of satisfaction of identities within pure
many-sorted algebras, including fibred and reversible automata as examples.
For the constant-free case, Section 7 deals with the process of homogeniza-
tion that is used to convert from many-sorted or heterogeneous algebras to
single-sorted or homogeneous algebras. Section 8 offers a brief digression on
the transfer of identities during the process of homogenization. The converse
process of heterogenization is the topic of Section 9. In order to create a
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many-sorted type from a single-sorted type, combinatorial constructs known
as input and output functions are required (Definitions 9.1, 9.4). The single-
sorted algebras corresponding to pure many-sorted algebras are described in
Definition 9.1 as being heterogenizable, characterized by simple new identi-
ties and quasi-identities involving only a small number of variables that is a
linear function of the number of sorts and the arity of a fundamental opera-
tion. Although Proposition 9.8 shows that these quasi-identities are equivalent
to identities (as the monadicity results [2, 7] predict), we consider the quasi-
identities to be more fundamental in our general context, because of their
simpler form. (This by no means precludes the existence of nice identities in
particular cases such as [22].) The main equivalence results (Theorem 10.1
going from pure many-sorted algebras of a given type to a variety of single-
sorted algebras, and Corollary 10.3 reversing the process) are summarized in
Section 10.

For algebraic and categorical concepts not otherwise given explicitly within
the paper, readers are referred to [20, 24].

2. Many-sorted sets

Let n be a positive integer. Consider the set

n = {i ∈ N | i < n} (2.1)

of natural numbers less than n, so that |n| = n. The set (2.1) will also be
considered as the object set of a small discrete category n. The category of
n-sorted sets is the functor category Setn. Thus an object A of Setn involves
a set Ai (a sort) as the image of i, for each i < n. Each such functor A has a
limit

lim←−A =
∏
i<n

Ai , (2.2)

the product of the sets Ai, and a colimit

lim−→A =
∑
i<n

Ai , (2.3)

the disjoint union of the sets Ai. (Readers who are unfamiliar with limits may
simply regard (2.2) and (2.3) as convenient notations.) If S is a set, then the
constant n-sorted set S is defined by Si = S for i < n.

Definition 2.1. An n-sorted set A is pure if there is a function lim−→A → lim←−A.
In other words, the condition (∃ i < n . Ai = ∅) ⇒ (∀ j < n , Aj = ∅) holds.

A morphism f : A → B of Setn is a natural transformation. Since n is
discrete, the naturality conditions are trivial, and one just has the component
functions fi : Ai → Bi for each i < n. If these components are subset inclu-
sions, A is said to be a (many-sorted) subset of B. The (n-sorted) power set
2B of an n-sorted set B is defined by (2B)i = 2Bi for i < n. Given n-sorted
sets X and Y , their product X×Y is the componentwise product functor with
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(X × Y )i = Xi × Yi for i < n. The graph of a morphism f : A → B is the
subset gr f of A × B with (gr f)i = {(a, afi) | a ∈ Ai} for i < n.

3. Diagonal algebras

This section provides a summary of the relationship between products of
sets and diagonal algebras (compare [17, 18, 19], [20, Example 5.2.2]). Let n

be a positive integer.

Definition 3.1. A diagonal algebra (of degree n) is an algebra (D, d) with an
idempotent n-ary operation d satisfying

(x0,0 · · ·x0,n−1d) · · · (xn−1,0 · · ·xn−1,n−1d)d = x0,0 · · ·xn−1,n−1d ,

an identity known as the diagonal identity.

Proposition 3.2. Let A be an n-sorted set. Define an operation d on the
product lim←−A—compare (2.2)—by

(x0
0, . . . , x

n−1
0 ) · · · (x0

n−1, . . . , x
n−1
n−1)d = (x0

0, . . . , x
n−1
n−1) . (3.1)

Then
(
lim←−A, d

)
is a diagonal algebra of degree n.

Proof. It is straightforward to verify the idempotence and diagonal identity
for the operation (3.1). �

Proposition 3.3. Let (D, d) be a diagonal algebra of degree n. For i < n,
define a relation θi on D by

(x, y) ∈ θi ⇔ ∀ x0, . . . , xi−1, xi+1, . . . , xn−1 ∈ D , (3.2)

x0 · · ·xi−1xxi+1 · · ·xn−1d = x0 · · ·xi−1yxi+1 · · ·xn−1d .

(a) For each i < n, the relation θi is an equivalence relation on D.
(b) There is a pure n-sorted set

Dθ : i 
→ Dθi .

(c) For xj ∈ D and i < n, one has

xi θi x0 · · ·xi · · ·xn−1d .

(d) There is an isomorphism

p : (D, d) → (
lim←−Dθ, d

)
; x 
→ (xθ0 , . . . , xθn−1) (3.3)

of diagonal algebras.

Proof. (a): This is immediate from the definition of θi.
(b): If D is (non-)empty, so is each quotient Dθi .
(c): For elements yk of D, idempotence and the diagonal identity yield

y0 · · · (x0 · · ·xi · · ·xn−1d) · · · yn−1d

= (y0 · · · y0d) · · · (x0 · · ·xi · · ·xn−1d) · · · (yn−1 · · · yn−1d)d

= y0 · · ·xi · · · yn−1d ,
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so x0 · · ·xi · · ·xn−1d θi xi.
(d): For elements xi of D with i < n, the diagonal identity gives

x0p · · ·xn−1pd = (xθ0
0 , . . . , x

θn−1
0 ) · · · (xθ0

n−1, . . . , x
θn−1
n−1 )d

= (xθ0
0 , . . . , x

θn−1
n−1 )

=
(
(x0 · · ·xn−1d)θ0 , . . . , (x0 · · ·xn−1d)θn−1

)
= (x0 · · ·xn−1d)p ,

the penultimate equality holding by (c). Thus, p is a homomorphism of diag-
onal algebras. Now suppose that for elements x and y of D, one has xp = yp.
Then

x = xx · · ·xd = yx · · ·xd = yy · · ·xd = · · · = yy · · · yd = y

by successive application of the relationships (x, y) ∈ θ0, θ1, . . . , θn−1. This
means that p injects. Finally, consider the problem of showing that p surjects.
Consider an element (xθ0

0 , . . . , x
θn−1
n−1 ) of lim←−Dθ. It will be shown by induction

that for each j < n, there is an element yj of D such that

(yθ0
j , . . . , y

θj

j , x
θj+1
j+1 , . . . , x

θn−1
n−1 ) = (xθ0

0 , . . . , x
θj

j , x
θj+1
j+1 , . . . , x

θn−1
n−1 ) . (3.4)

For j = 0, take y0 = x0. Now suppose that (3.4) holds. Define

yj+1 = yj · · · yjxj+1 · · ·xn−1d .

By (c), one then has

xi θi yj θi yj · · ·
slot i︷︸︸︷
yj · · · yjxj+1 · · ·xn−1d = yj+1

for i ≤ j and xj+1 θj+1 yj · · · yjxj+1 · · ·xi · · ·xn−1d = yj+1 . This completes
the induction step. �

Theorem 3.4. Let Pn be the full subcategory of Setn consisting of pure
n-sorted sets. Let Dn be the variety of diagonal algebras of degree n, con-
sidered as a category with homomorphisms as morphisms. Then the categories
Pn and Dn are equivalent.

Proof. In view of Proposition 3.3(d), it remains to be shown that for a pure
n-sorted set A, there is an isomorphism A ∼= (lim←−A)θ, or in other words a set
isomorphism Ai

∼= (lim←−A)θi for each i < n. This set isomorphism is achieved
through the well-defined and mutually inverse maps

xi 
→ (x1, . . . , xi, . . . , xn−1)θi

and
(x1, . . . , xi, . . . , xn−1)θi 
→ xi .

Indeed, (3.1) and the definition of θi imply

(x0, . . . , xi, . . . , xn−1) θi (y0, . . . , xi, . . . , yn−1)

for elements xj and yj of Aj , with j < n. �
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4. Many-sorted algebras

Definition 4.1. Let n be a positive integer. An n-sorted type τ is a function

τ : Ω → N
n × n ; ω 
→ (i 
→ iωτ, ιω) . (4.1)

The set Ω is known as the operator domain, and its elements ω are known as
operators. The type is said to be constant-free if for all ω ∈ Ω, there exists an
i < n such that iωτ > 0.

Definition 4.2. A τ -algebra or n-sorted algebra (A, Ω) of (n-sorted) type τ is
an n-sorted set A equipped with an operation

ω :
∏
i<n

Aiωτ
i → Aιω ; (4.2)

(a0
1, . . . , a

0
0ωτ , . . . , an−1

1 , . . . , an−1
(n−1)ωτ )


→ a0
1 · · · a0

0ωτ · · · an−1
1 · · · an−1

(n−1)ωτω

for each operator ω in the operator domain Ω.

Remark 4.3. The notation of (4.2) is to be understood with the convention
that when kωτ = 0 for some 0 ≤ k < n, then no arguments ak

1 , ak
2 , . . . appear

in the operation ω.

Example 4.4. Consider the n-sorted set n with n i = {i} for i < n. The
trivial τ -algebra is defined to be

(
n, Ω

)
in which the image of an operation ω

is {ιω}.
A subset B of an n-sorted algebra (A, Ω) is said to be a (many-sorted)

subalgebra if B is closed under the operations (4.2).

Example 4.5. Let X be an n-sorted set. Consider (lim←− 2X) × n, the n-
sorted product of the constant n-sorted set lim←− 2X with the n-sorted set n of
Example 4.4. Define the n-sorted set 2Xn by (2Xn)i = (lim←− 2X) × {i} for
i < n. Then a τ -algebra (2Xn, Ω) is defined by the operation

ω :
(
(S0,0,1, . . . , Sn−1,0,1, 0), . . . , (S0,0,0ωτ , . . . , Sn−1,0,0ωτ , 0),

. . . , (S0,n−1,(n−1)ωτ , . . . , Sn−1,n−1,(n−1)ωτ , n − 1)
)


→ (
S0,0,1 ∪ · · · ∪ S0,0,0ωτ ∪ · · · ∪ S0,n−1,(n−1)ωτ , . . . ,

Sn−1,0,1 ∪ · · · ∪ Sn−1,0,0ωτ ∪ · · · ∪ Sn−1,n−1,(n−1)ωτ , ιω
)

for each operator ω. This algebra is known as the (n-sorted) power (τ -)algebra
of the n-sorted set X. Now let 2X

<∞n be the subset of 2Xn determined by the
finite subsets of X. Then (2X

<∞n, Ω) forms a subalgebra of (2Xn, Ω).

Intersections of subalgebras are subalgebras (compare, e.g., [4, Prop. 1(2)0]).
For a subset S of (the underlying n-sorted set A of) an n-sorted algebra (A, Ω),
the subalgebra 〈S〉 generated by S is the intersection of all the subalgebras
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containing S. Now consider n-sorted algebras (A, Ω) and (B,Ω). The product
(algebra) (A × B,Ω) is defined by the componentwise structure∏

i<n

(Aiωτ
i , Biωτ

i ) → (Aιω
, Bιω

);(
(a0

1, b
0
1), . . . , (a

n−1
(n−1)ωτ , bn−1

(n−1)ωτ )
)


→ (a0
1 · · · an−1

(n−1)ωτω, b0
1 · · · bn−1

(n−1)ωτω)

for each operator ω. A (Setn)-morphism f : A → B is a (many-sorted) (al-
gebra) homomorphism f : (A, Ω) → (B,Ω) if its graph gr f is a subalgebra of
(A × B,Ω). The image im f or Af of f is the projection of gr f onto B. It
forms a subalgebra of (B,Ω).

5. Derived types

Fix a positive integer n, and let X be an n-sorted set. Consider the free
monoid (Ω + lim−→X)∗ over the disjoint union of the sets Ω and Xi for i < n

(compare (2.3)). For i < n, define a subset

Ai = Xi ∪
⋃{(Ω + lim−→X)∗ω | ιω = i}

of (Ω+ lim−→X)∗. For each operator ω, (4.2) defines an operation yielding an n-
sorted algebra (A, Ω). Note that X is a subset of A. Then the τ -word algebra
or absolutely free τ -algebra over X is defined to be the subalgebra (XΩ, Ω)
of (A, Ω) generated by X. Elements of the disjoint union lim−→XΩ are known
as Ω-words over X. In particular, elements of XΩi are known as i-flavored
Ω-words over X.

Example 5.1. Consider the constant-free two-sorted type

τ =
{(

f, ({0 
→ 1, 1 
→ 0}, 1)
)
,
(
g, ({0 
→ 0, 1 
→ 1}, 0)

)}
.

Thus, an algebra (B,Ω) of type τ has operations f : B0 → B1 and g : B1 → B0.
Consider the two-sorted set X with X0 = {x} and X1 = {y}. Let M be the
free monoid over the alphabet {f, g, x, y}. Then A0 = {x} ∪ {wg | w ∈ M}
and A1 = {y} ∪ {wf | w ∈ M}. Finally, XΩ0 = {x, yg, xfg, ygfg, . . . } and
XΩ1 = {y, xf, ygf, xfgf, . . . }.

The absolutely free τ -algebra (XΩ, Ω) over an n-sorted set X has the fol-
lowing universality property.

Proposition 5.2. Let (B,Ω) be a τ -algebra. For each given (Setn)-morphism
f : X → B, there is a unique algebra homomorphism f : (XΩ, Ω) → (B,Ω) that
extends f : X → B.

Proof. The graph of f is the subalgebra of (XΩ×B,Ω) generated by the graph
of f : X → B. �
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The next definition makes immediate use of Proposition 5.2. For each i < n,
write the ordered set of positive integers as

Pi = {xi
1 < xi

2 < xi
3 < · · · } (5.1)

and define a corresponding n-sorted set P . Using say xi
1 instead of the numeral

1 will have typographical advantages in what follows.

Definition 5.3. Let s : P → 2P n be the singleton embedding with component

si : Pi → (2P n)i; xi
k 
→ (∅, . . . ,

slot i︷︸︸︷
{xi

k}, . . . , ∅, i) for each i < n.

Proposition 5.2 gives a homomorphic extension s : (PΩ, Ω) → (2P n, Ω) of s

into the power set algebra (compare Example 4.5), and the co-restriction
s̃ : (PΩ, Ω) → (2P

<∞n, Ω) of s to the n-sorted subalgebra 2P
<∞n. Then the

argument map is defined to be the disjoint union arg : lim−→PΩ → lim−→ 2P
<∞n of

the components s̃i of s̃ for i < n.

Example 5.4. Consider the two-sorted type

τ =
{(

f, ({0 
→ 1, 1 
→ 1}, 0)
)
,
(
g, ({0 
→ 1, 1 
→ 1}, 1)

)}
.

The argument of the word x0
1x

1
1fx1

2g is ({x0
1}, {x1

1, x
1
2}, 1).

Definition 5.5. Consider the function max: lim−→ 2P
<∞n → N

n × n restricting
to

(2P
<∞n)i → N

n × n ; (S0, . . . , Sn−1, i) 
→ (max S0, . . . ,max Sn−1, i) (5.2)

for each i < n. Note that the sets Si (for i < n) appearing in (5.2) are
finite (possibly empty) subsets of the set (5.1) of positive integers. As such,
the maximum max Si is a natural number, 0 if Si is empty. Then given an
n-sorted type (4.1), the composite

lim−→PΩ
arg−−−→ lim−→ 2P

<∞n
max−−−−→ N

n × n (5.3)

is called the derived type τ ′ : lim−→PΩ → N
n × n.

Note that a type τ ′, derived from a constant-free type τ , is itself constant-
free.

Example 5.6. In the context of Example 5.4, the word x01x11fx12g has
derived type (1, 2, 1).

The codomain N
n × n of the derived type (5.3) carries a componentwise

order, as the product of copies of the ordered set of natural numbers and the
antichain n. For a function f : A → B to an ordered codomain (B,≤), the
epigraph epi f of f is the subset {(a, b) | a ∈ A , af ≤ b} of A × B.

Definition 5.7. Let τ : Ω → N
n × n be an n-sorted type. Define Ω = epi τ ′,

the epigraph of the derived type (5.3). Then the n-sorted type

τ : Ω → N
n × n ;

(
w, (r0, . . . , rn−1, i)

) 
→ (r0, . . . , rn−1, i)

is called the closure of τ .
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Again, note that the closure τ of a constant-free type τ is itself constant-free.

6. Identities

Let (B,Ω) be a τ -algebra. Let
(
w, (r0, . . . , rn−1, i)

)
be an i-flavored Ω-word,

an element of the operator domain Ω of the closure of τ . Let X be the subset
of P with Xj = {xj

k | 1 ≤ k ≤ rj} for each j < n. Note that w ∈ (XΩ)i. Now
define an operation (

w, (r0, . . . , rn−1, i)
)
:

∏
j<n

B
rj

j → Bi (6.1)

as follows. For an element

(b0
1, . . . , b

0
r0

, . . . , bn−1
1 , . . . , bn−1

rn−1
) (6.2)

of
∏

j<n B
rj

j , consider the (Setn)-morphism f : X → B that has components
fj : Xj → Bj ; xj

k 
→ bj
k for j < n. Let f : (XΩ, Ω) → (B,Ω) be the homomor-

phic extension of f given by Proposition 5.2. Then the effect of the operation
(6.1) on (6.2) is defined to be wf . With this definition, the following proposi-
tion is obtained.

Proposition 6.1. An n-sorted algebra (B,Ω) of type τ augments to an n-
sorted algebra (B,Ω) of type τ .

Definition 6.2. Let τ : Ω → N
n × n be an n-sorted type. Then for i < n,

an (i-flavored) identity of type τ is a pair (u, v) of i-flavored Ω-words over a
set X.

Remark 6.3. An identity (u, v) as in Definition 6.2 is usually written in
the form u = v. Furthermore, i-flavored words

(
w, (r0, . . . , rn−1, i)

)
appear-

ing in identities are often abbreviated as w, with the corresponding elements
(r0, . . . , rn−1, i) from the epigraph of the derived type (5.3) being understood
implicitly.

Definition 6.4. Let u = v be an i-flavored identity of type τ over a set X.
Then a pure τ -algebra (B,Ω) is said to purely satisfy the identity u = v if the
operations u and v coincide on the augmented algebra (B,Ω).

Remark 6.5. Fuller discussions of the satisfaction of identities in many-sorted
algebras, including the critical role of quantifiers, may be found in references
such as [5, 7]. Definition 6.4 is introduced for the limited purposes of the
current paper, chiefly the presentation of the following examples, and Propo-
sition 8.2 below.

Example 6.6 ([13, 14, 21]). A fibred automaton is a 2-sorted algebra (A, Ω)
with a maternal operation δ : A0 → A0, a paternal operation ε : A0 → A1,
and an action μ : A0 × A1 → A0. A pure fibred automaton purely satisfies
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the 0-flavored identities x0
1δx

0
1εμ = x0

1 = x0
1x

1
1μδ and the 1-flavored identity

x0
1x

1
1με = x1

1. Note that the latter identity is formally written as the pair((
x0

1x
1
1με, (1, 1, 1)

)
,
(
x1

1, (1, 1, 1)
))

if the abbreviation of Remark 6.3 is not used. Since τ ′ : x1
1 
→ (0, 1, 1), one has(

x1
1, (1, 1, 1)

)
in the epigraph Ω of τ ′.

Example 6.7 ([8, 9, 22]). A reversible automaton (of quasigroup type) is a
3-sorted algebra (A, Ω) equipped with a multiplication μ : A1 × A2 → A0, a
right division ρ : A0 × A2 → A1, and left division λ : A1 × A0 → A2. A pure
reversible automaton purely satisfies the 0-flavored identities x0

1x
2
1ρx2

1μ = x0
1 =

x1
1x

1
1x

0
1λμ, the 1-flavored identity x1

1x
2
1μx2

1ρ = x1
1, and the 2-flavored identity

x1
1x

1
1x

2
1μλ = x2

1.

7. Homogenization

Let n be a positive integer. The topic of this section is the passage from
n-sorted (heterogeneous) algebras to single-sorted (homogeneous) algebras, a
process known as homogenization.

Definition 7.1. Let τ : Ω → N
n × n ; ω 
→ (i 
→ iωτ, ιω) be an n-sorted type.

Then its pre-homogenization or pre-homogenized type is

τ �′ : Ω → N; ω 
→
∑
i<n

iωτ , (7.1)

a single-sorted type.

Definition 7.2. Let τ be a constant-free n-sorted type, with operator domain
Ω. For an operator ω from Ω, define the socle

sω = min{i | 0 < iωτ}
and the top

tω = max{i | 0 < iωτ} .

Note that these numbers are well defined, since τ is constant-free.

Definition 7.3. Let τ be a constant-free n-sorted type, with operator do-
main Ω. Let (A, Ω) be a τ -algebra. Its pre-homogenization is the τ �′ -algebra
(lim←−A, Ω) equipped with an operation

ω� : (lim←−A)ωτ�′ → lim←−A; (7.2)(
(asω

0,1, . . . , a
sω
n−1,1), . . . , (a

sω
0,sωωτ , . . . , asω

n−1,sωωτ ), . . .

. . . , (atω
0,1, . . . , a

tω
n−1,1), . . . , (a

tω
0,tωωτ , . . . , atω

n−1,tωωτ )
)


→ (
asω
0,1, . . . ,

slot ιω︷ ︸︸ ︷
asω

sω,1 · · · asω
sω,sωωτ · · · atω

tω,1 · · · atω
tω,tωωτω, . . . , asω

n−1,1

)
for each operator ω.
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Remark 7.4. Note that in (7.2), the superscripts placed on the arguments
of the homogeneous operation ω� track the sorts that actually appear in the
domain of the heterogeneous operation ω.

Definition 7.5. Let τ : Ω → N
n × n ; ω 
→ (i 
→ iωτ, ιω) be an n-sorted type.

Then its homogenization or homogenized type is the disjoint union

τ � = τ �′ + {(d, n)} (7.3)

of the pre-homogenized type (7.1) with the type (d, n) of a diagonal algebra
of degree n.

Definition 7.6. Let τ be a constant-free n-sorted type, with operator domain
Ω. Let (A, Ω) be a τ -algebra. Its homogenization is the τ �-algebra (lim←−A, Ω, d),
equipped with the operation (7.2) for each operator ω, such that the reduct
(lim←−A, d) is a diagonal algebra.

Proposition 7.7. Let τ be a constant-free n-sorted type, with operator domain
Ω. Let (A, Ω) be a τ -algebra. Then the homogenization (lim←−A, Ω, d) satisfies
the quasi-identity

∀ i < n , ∀ 1 ≤ j ≤ iωτ , z0 · · ·xi
j · · · zn−1d = z0 · · · yi

j · · · zn−1d

⇒ z0 · · ·
slot ιω︷ ︸︸ ︷(

xsω
1 · · ·xtω

tωωτω�
) · · · zn−1d = z0 · · ·

slot ιω︷ ︸︸ ︷(
ysω
1 · · · ytω

tωωτω�
) · · · zn−1d

for each operator ω in Ω.

Proof. Let ω be an operator in Ω. In (7.2), the ιω slot of the value of the
operation ω� only depends on the component ai

i,j of the argument

(ai
0,j , . . . , a

i
i,j , . . . , a

i
n−1,j) ,

for each i < n and 1 ≤ j ≤ iωτ . Thus,

∀ i < n , ∀ 1 ≤ j ≤ iωτ ,

(xi
j , y

i
j) ∈ θi ⇒ (

xsω
1 · · ·xtω

tωωτω�, ysω
1 · · · ytω

tωωτω�
) ∈ θιω

in the homogenization (lim←−A, Ω, d). By (3.2), this implication translates to
the quasi-identity of the proposition. �
Proposition 7.8. Let τ be a constant-free n-sorted type, with operator domain
Ω. Let (A, Ω) be a τ -algebra. Then the homogenization (lim←−A, Ω, d) satisfies
the identity

z0 · · ·
slot i︷ ︸︸ ︷(

xsω
1 · · ·xtω

tωωτω�
) · · · zn−1d = z0 · · ·

slot i︷︸︸︷
xi

1 · · · zn−1d

for each operator ω in Ω and index ιω �= i < n.

Proof. Let ω be an operator in Ω, and suppose ιω �= i < n. In (7.2), the i-slot
of the value of the operation ω� is asω

i,1, which is the i-slot of the first argument.
Thus,

(
xsω

1 · · ·xtω
tωωτω�, xi

1
) ∈ θi in the homogenization (lim←−A, Ω, d). By (3.2),

this implication translates to the identity of the proposition. �
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8. Homogenized identities

Consider homogenization of a pure many-sorted algebra having constant-
free type. Proposition 7.7 gave quasi-identities satisfied by the homogenization.
Proposition 7.8 gave identities satisfied by the homogenization. These quasi-
identities and identities, which are the main concern of the current paper,
depend only on the type of the many-sorted algebra. However, the original
pure many-sorted algebra may purely satisfy various identities itself. This brief
section (which is incidental to the remainder of the paper, and may therefore
be skipped if desired) illustrates one approach to the transfer of such identi-
ties from the many-sorted algebra to its homogenization. An examination of
alternative approaches, and the relationships between them, is deferred to a
later paper (cf. [6, Prop. 2.8]).

Lemma 8.1. As in Definition 7.6, the augmentation (A, Ω) of (A, Ω) given by
Proposition 6.1 will homogenize to a τ �-algebra (lim←−A, Ω, d). Each operator(
w, (r0, . . . , rn−1, i)

)
from Ω thus yields an operation

(
w, (r0, . . . , rn−1, i)

)� on
(lim←−A, Ω, d).

Proposition 8.2. Let τ be a constant-free n-sorted type, with operator domain
Ω. Let (A, Ω) be a pure τ -algebra. Suppose that for i < n, the n-sorted algebra
(A, Ω) purely satisfies an i-flavored identity u = v. Then the identity

x0 · · ·
slot i︷︸︸︷
u� · · ·xn−1d = x0 · · ·

slot i︷︸︸︷
v� · · ·xn−1d

is satisfied by the homogenization (lim←−A, Ω, d).

Proof. Apply Proposition 7.7 to the τ -algebra (A, Ω). �

Example 8.3. Let ((A0, A1), {δ, ε, μ}) be a pure fibred automaton, as defined
in Example 6.6. The homogenization of the automaton ((A0, A1), {δ, ε, μ}) is
the algebra (lim←−A = A0 × A1, {δ�, ε�, μ�, d}) with

δ� : lim←−A → lim←−A; (a0
0,1, a

0
1,1) 
→ (a0

0,1δ, a
0
1,1) ,

ε� : lim←−A → lim←−A; (a0
0,1, a

0
1,1) 
→ (a0

0,1, a
0
0,1ε) ,

μ� :
(
lim←−A

)2 → lim←−A; ((a0
0,1, a

0
1,1), (a

1
0,1, a

1
1,1)) 
→ (a0

0,1a
1
1,1μ, a0

1,1)

and d as a binary diagonal operation. Now the augmentation of the automaton
has operations (

x0
1x

1
1με, (1, 1, 1)

)
: (x0, x1) 
→ x0x1με

and (
x1

1, (1, 1, 1)
)
: (x0, x1) 
→ x1 .

Operations of the homogenized augmentation are thus defined by(
x0

1x
1
1με, (1, 1, 1)

)� :
(
lim←−A

)2 → lim←−A;

((a0
0,1, a

0
1,1), (a

1
0,1, a

1
1,1)) 
→ (a0

0,1, a
0
0,1a

1
1,1με)



 Many-sorted algebras 183

and (
x1

1, (1, 1, 1)
)� :

(
lim←−A

)2 → lim←−A;

((a0
0,1, a

0
1,1), (a

1
0,1, a

1
1,1)) 
→ (a0

0,1, a
1
1,1) .

Since the pure fibred automaton ((A0, A1), {δ, ε, μ}) purely satisfies the iden-
tity x01x11με = x11, it follows by Proposition 8.2 that the identity

x1

(
x2x3

(
x0

1x
1
1με, (1, 1, 1)

)�
)
d = x1

(
x2x3

(
x1

1, (1, 1, 1)
)�

)
d

is satisfied by the homogenization of the fibred automaton.

9. Heterogenization

Let n be a positive integer. The topic of this section is the passage from
single-sorted (homogeneous) algebras to n-sorted (heterogeneous) algebras, a
process known as heterogenization.

Definition 9.1. Let τ : Ω → N be a single-sorted type. Then an algebra
(A, Ω, d) is said to be (monotonically) heterogenizable if the following hold:

(a) The type τ is constant-free, i.e., 0 /∈ Ωτ .
(b) The reduct (A, d) is a diagonal algebra of degree n.
(c) For each ω in Ω, there is a selection function fω : {1, . . . , ωτ} → n and a

natural number gω < n such that the identities

z0 · · ·
slot i︷ ︸︸ ︷

(x1 · · ·xωτω) · · · zn−1d = z0 · · ·
slot i︷︸︸︷
x1 · · · zn−1d

for each gω �= i < n, and the quasi-identity

∀ i < n , ∀ j ∈ f−1
ω {i} ,

z0 · · ·
slot i︷︸︸︷
xj · · · zn−1d = z0 · · ·

slot i︷︸︸︷
yj · · · zn−1d

⇒ z0 · · ·
slot gω︷ ︸︸ ︷

(x1 · · ·xωτω) · · · zn−1d = z0 · · ·
slot gω︷ ︸︸ ︷

(y1 · · · yωτω) · · · zn−1d

are satisfied.
(d) The selection function fω : {1 < · · · < ωτ} → {0 < · · · < n − 1} is

monotone for each ω in Ω.

For a monotonically heterogenizable algebra (A, Ω, d) as above, the input func-
tion is defined to be the function

k : Ω → N
n; ω 
→ (|f−1

ω {0}|, . . . , |f−1
ω {n − 1}|) .

The output function is defined to be the function g : Ω → n; ω 
→ gω .

Example 9.2. For a positive integer n, note that diagonal algebras of degree
n are heterogenizable, since the conditions (c) and (d) of Definition 9.1 are
satisfied vacuously.
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Using Propositions 7.7 and 7.8, one easily checks the following.

Proposition 9.3. Suppose σ : Ω → N
n × n; ω 
→ (i 
→ iωσ, ιω) is an n-

sorted type. Let (B,Ω) be a σ-algebra. Then the homogenization (lim←−B,Ω, d)
is monotonically heterogenizable, with input function

k : ω 
→ (
0ωσ, . . . , (n − 1)ωσ

)
and output function g : ω 
→ ιω.

Definition 9.4. Let τ : Ω → N be a single-sorted type.

(a) An output function (of degree n) is a function h : Ω → n ; ω 
→ hω .
(b) Define the sum function Σ: N

n → N; (l0, . . . , ln−1) 
→ l0 + · · · + ln−1 .
Then an input function (of degree n) is a function

l : Ω → N
n; ω 
→ (lω0 , . . . , lωn−1)

such that lΣ = τ . (In other words, lω0 + · · · + lωn−1 = ωτ for each ω.)

Definition 9.5. Let τ : Ω → N be a single-sorted type, with given input
function l and output function h of degree n. Then the function

τ �
lh : Ω → N

n × n ; ω 
→ (i 
→ lωi , hω)

is the corresponding heterogenization or heterogenized type. If the input and
output functions are clear from the context, the heterogenized type will be
denoted simply by τ �.

Lemma 9.6. Let τ : Ω → N be a constant-free single-sorted type, with given
input function l and output function h of degree n. Then the heterogenized
type τ �

lh is also constant-free.

Proof. If τ �
lh were not constant-free, there would be an operator ω from Ω

with lωi = 0 for each i < n. Then 0 =
∑

i<n lωi = ωτ would contradict the
constant-freedom of τ . �

In the context of Lemma 9.6, the socle and top of an operator ω within the
heterogenized type τ �

lh will be written as s�
ω and t�ω, respectively. Thus,

s�
ω = min{i < n | lωi �= 0} (9.1)

and
t�ω = max{i < n | lωi �= 0} (9.2)

for each operator ω.

Definition 9.7. Let τ : Ω → N be a single-sorted type, with given input
function l and output function h of degree n. A monotonically heterogenizable
algebra (A, Ω, d) is compatible if l is its input function and h is its output
function.

Proposition 9.8. Let τ : Ω → N be a single-sorted type, with given input
function l and output function h of degree n. Then the class of monotonically
heterogenizable, compatible algebras (A, Ω, d) forms a variety.
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Proof. An algebra (A, Ω, d) is monotonically heterogenizable and compatible
if and only if:

(a) The following identities are satisfied for each ω ∈ Ω and hω �= i < n:

z0 · · ·
slot i︷ ︸︸ ︷

(x1 · · ·xωτω) · · · zn−1d = z0 · · ·
slot i︷︸︸︷
x1 · · · zn−1d (9.3)

(b) The following quasi-identities are satisfied for each ω ∈ Ω:

∀ i < n , ∀ lω0 + · · · + lωi−1 < j ≤ lω0 + · · · + lωi ,

z0 · · ·
slot i︷︸︸︷
xj · · · zn−1d = z0 · · ·

slot i︷︸︸︷
yj · · · znd (9.4)

⇒ z0 · · ·
slot hω︷ ︸︸ ︷

(x1 · · ·xωτω) · · · zn−1d = z0 · · ·
slot hω︷ ︸︸ ︷

(y1 · · · yωτω) · · · zn−1d

(c) The reduct (A, d) is a diagonal algebra.

It will be shown below that (b) is equivalent to the following:

(b′) The following identities are satisfied for each ω ∈ Ω:

u0 · · ·uhω−1
((

z0 · · ·
slot s�

ω︷︸︸︷
x1 · · · zn−1d

)
· · ·

· · ·
(
z0 · · ·

slot t�
ω︷︸︸︷

xωτ · · · zn−1d
)
ω

)
uhω+1 · · ·un−1d

= u0 · · ·uhω−1(z0 · · · zhω−1 (x1 · · ·xωτω) zhω+1 · · · zn−1d
)
uhω+1 · · ·un−1d

Note the use of the notation (9.1) and (9.2) in (b′). The conditions (a), (b′),
and (c) will then specify the class of monotonically heterogenizable, compatible
algebras as a variety.

(b)⇒ (b′): If the quasi-identity (9.4) holds for a certain operator ω, then
the congruences

∀ i < n , ∀ lω0 + · · · + lωi−1 < j ≤ lω0 + · · · + lωi , xj θi yj

imply the congruence x1 · · ·xωτω θhω y1 · · · yωτω. Now for i < n and

lω0 + · · · + lωi−1 < j ≤ lω0 + · · · + lωi ,

take yj = z1 · · · zi−1xjzi+1 · · · zn−1d, so that xj θi yj by Proposition 3.3(c).
The quasi-identity (9.4) then yields the congruence

x1 · · ·xωτω θhω

(
z0 · · ·

slot s�
ω︷︸︸︷

x1 · · · zn−1d
)
· · ·

(
z0 · · ·

slot t�
ω︷︸︸︷

xωτ · · · zn−1d
)
ω .

Proposition 3.3(c) in turn gives the congruence

z0 · · · zhω−1 (x1 · · ·xωτω) zhω+1 · · · zn−1d θhω
x1 · · ·xωτω ,
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so

z0 · · · zhω−1 (x1 · · ·xωτω) zhω+1 · · · zn−1d θhω

(
z0 · · ·

slot s�
ω︷︸︸︷

x1 · · · zn−1d
)
· · ·

(
z0 · · ·

slot t�
ω︷︸︸︷

xωτ · · · zn−1d
)
ω

follows by transitivity. By (3.2), the identity of (b′) holds for the operator ω.

(b′)⇒ (b): Suppose the identity of (b′) holds for a certain operator ω, and

∀ i < n , ∀ lω0 + · · · + lωi−1 < j ≤ lω0 + · · · + lωi ,

z0 · · ·
slot i︷︸︸︷
xj · · · zn−1d = z0 · · ·

slot i︷︸︸︷
yj · · · znd .

Then

u0 · · ·uhω−1(z0 · · · zhω−1 (x1 · · ·xωτω) zhω+1 · · · zn−1d
)
uhω+1 · · ·un−1d

= u0 · · ·

uhω−1
((

z0 · · ·
slot s�

ω︷︸︸︷
x1 · · · zn−1d

)
· · ·

(
z0 · · ·

slot t�
ω︷︸︸︷

xωτ · · · zn−1d
)
ω

)
uhω+1

· · ·un−1d

= u0 · · ·

uhω−1
((

z0 · · ·
slot s�

ω︷︸︸︷
y1 · · · zn−1d

)
· · ·

(
z0 · · ·

slot t�
ω︷︸︸︷

yωτ · · · zn−1d
)
ω

)
uhω+1

· · ·un−1d

= u0 · · ·uhω−1(z0 · · · zhω−1 (y1 · · · yωτω) zhω+1 · · · zn−1d
)
uhω+1 · · ·un−1d ,

so that

z0 · · · zhω−1 (x1 · · ·xωτω) zhω+1 · · · zn−1d

θhω z0 · · · zhω−1 (y1 · · · yωτω) zhω+1 · · · zn−1d

by (3.2). Now by Proposition 3.3(c),

x1 · · ·xωτω θhω
z0 · · · zhω−1 (x1 · · ·xωτω) zhω+1 · · · zn−1d,

z0 · · · zhω−1 (y1 · · · yωτω) zhω+1 · · · zn−1d θhω y1 · · · yωτω .

Transitivity of θhω
then yields x1 · · ·xωτω θhω

y1 · · · yωτω, which by (3.2)
translates to the desired conclusion

z0 · · ·
slot hω︷ ︸︸ ︷

(x1 · · ·xωτω) · · · zn−1d = z0 · · ·
slot hω︷ ︸︸ ︷

(y1 · · · yωτω) · · · zn−1. �

Proposition 9.9. Let τ : Ω → N be a single-sorted type, with given input
function l and output function h of degree n. Let (A, Ω, d) be a monotoni-
cally heterogenizable, compatible algebra. Then there is an n-sorted τ �

lh-algebra
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(Aθ, Ω) with well-defined operation

ω� :
∏
i<n

(Aθi)iωτ� → Aθhω ; (9.5)

(
aθ0
0,1, . . . , a

θ0
0,0ωτ� , . . . , a

θn−1
n−1,1, . . . , a

θn−1

n−1,(n−1)ωτ�

) 
→ as�
ω,1 · · · at�

ω,t�
ωωτ�ω

θhω

for each operator ω in Ω.

Proof. Suppose that for all i < n and all 1 ≤ j ≤ iωτ �, (ai,j , bi,j) ∈ θi for
elements ai,j , bi,j of A. Then for i < n and 1 ≤ j ≤ iωτ �, the identities

z0 · · ·
slot i︷︸︸︷
ai,j · · · zn−1d = z0 · · ·

slot i︷︸︸︷
bi,j · · · zn−1d

are satisfied. Since (A, Ω, d) is a monotonically heterogenizable, compatible
algebra, the identity

z0 · · ·
slot hω︷ ︸︸ ︷

(as�
ω,1 · · · at�

ω,t�
ωωτ�ω) · · · zn−1 = z0 · · ·

slot hω︷ ︸︸ ︷
(bs�

ω,1 · · · bt�
ω,t�

ωωτ�ω) · · · zn−1

is satisfied. Thus, as�
ω,1 · · · at�

ω,t�
ωωτ�ω and bs�

ω,1 · · · bt�
ω,t�

ωωτ�ω are related by
θhω

, as required for the operation (9.5) to be well defined. �

Definition 9.10. The n-sorted τ �-algebra (Aθ, Ω) of Proposition 9.9 is called
the heterogenization of the single-sorted algebra (A, Ω, d).

10. Equivalence

Let n be a positive integer. The results of this section describe the equiv-
alence between classes of pure n-sorted algebras and classes of single-sorted
algebras.

Theorem 10.1. Let τ : Ω → N
n × n ; ω 
→ (i 
→ iωτ, ιω) be a constant-free

n-sorted type, with homogenization τ �. Consider the input function

k : ω 
→ (
0ωτ, . . . , (n − 1)ωτ

)
and output function g : ω 
→ ιω. Then the following classes are equivalent:

(a) the class of pure n-sorted τ -algebras,
(b) the variety of single-sorted τ �-algebras (D,Ω, d) that are monotonically

heterogenizable and compatible with the input function k and the output
function g.

Proof. Let (A, Ω) be a pure τ -algebra. By Proposition 9.3, the homogeniza-
tion (lim←−A, Ω, d) is monotonically heterogenizable, with input function k and
output function g. Proposition 9.9 then furnishes an n-sorted (τ �)�

kg-algebra(
(lim←−A)θ, Ω

)
. Let ω be an operator from Ω, giving an operation of (A, Ω) that

may be written as follows:

ω : (asω
sω,1, . . . , a

tω
tω,tωωτ ) 
→ asω

sω,1 · · · atω
tω,tωωτω (10.1)



188 A. Mućka, A. B. Romanowska, and J. D. H. Smith Algebra Univers.

—compare with (4.2). (The apparently redundant indexing prepares for sub-
sequent padding.) The corresponding operation (7.2) of the homogenization
(lim←−A, Ω, d) may be summarized as

ω� :
(
(a0

sω,1, . . . , a
sω
sω,1, . . . , a

n−1
sω,1), . . . , (. . . , a

tω
tω,tωωτ , . . . , an−1

tω,tωωτ )
)


→ (a0
sω,1, . . . ,

slot ιω︷ ︸︸ ︷
asω

sω,1 · · · atω
tω,tωωτω, . . . , an−1

sω,1) .

In turn, (9.5) provides an operation (ω�)� of
(
(lim←−A)θ, Ω

)
that may be written

briefly as:

ω�� :
(
(a0

sω,1, . . . , a
sω
sω,1, . . . , a

n−1
sω,1)

θsω , . . . , (. . . , atω
tω,tωωτ , . . . , an−1

tω,tωωτ )θtω
)


→ (a0
sω,1, . . . ,

slot ιω︷ ︸︸ ︷
asω

sω,1 · · · atω
tω,tωωτω, . . . , an−1

sω,1)
θιω . (10.2)

Comparing (10.1) with (10.2), it becomes apparent that the n-set isomorphism
A ∼= (lim←−A)θ of Theorem 3.4 serves to yield an n-sorted algebra isomorphism
(A, Ω) ∼= (

(lim←−A)θ, Ω
)
.

Conversely, let (D,Ω, d) be a τ �-algebra that is monotonically heterogeniz-
able and compatible with the input function k and output function g. Propo-
sition 9.9 gives an n-sorted (τ �)�

kg-algebra (Dθ, Ω). Let ω be an operator from
Ω, giving an operation

ω : (d1, . . . , dωτ ) 
→ d1 · · · dωτω (10.3)

of (D,Ω, d). The operation (9.5) of the heterogenization (Dθ, Ω) may be writ-
ten as

ω� :
(
(d1)θsω , . . . , (dωτ )θtω

) 
→ (d1 · · · dωτω)θgω .

In turn, (7.2) provides an operation

ω�� :
(
(dθ0

1 , . . . , d
θn−1
1 ), . . . , (dθ0

ωτ , . . . , dθn−1
ωτ )

)
(10.4)


→ (
dθ0
1 , . . . , (d1 · · · dωτω)θgω , . . . , d

θn−1
1

)
of

(
lim←−Dθ, Ω

)
. Comparing (10.3) with (10.4), and recalling that (D,Ω, d) sat-

isfies the identities and quasi-identities of Definition 9.1(c), it then becomes
apparent that the diagonal algebra isomorphism (3.3) yields a τ �-algebra iso-
morphism (D,Ω, d) ∼= (

lim←−Dθ, Ω, d
)
. �

The form of (10.4) suggests identities that are equivalent to the identities
and quasi-identities of Definition 9.1(c) (cf. [6, (2.5)]).

Corollary 10.2. Let n be a positive integer, and let d be a diagonal operation
of degree n. Suppose that τ : ω → N is a single-sorted type, with input function
k : Ω → N

n and output function g : Ω → n. Then the identities

x0
1 · · ·

slot gω︷ ︸︸ ︷(
x1 · · ·xωτω

) · · ·xn−1
1 d = (x0

1 · · ·xn−1
1 d) · · · (x0

ωτ · · ·xn−1
ωτ d)ω (10.5)
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are equivalent to the identities and quasi-identities of Definition 9.1(c) for each
operator ω ∈ Ω.

Note that the complexity of the identities and quasi-identities of Defi-
nition 9.1(c), as determined by the number of variables, is linear, namely
ωτ +n− 1 for arity ωτ and degree n. (Even the equivalent identities of (b′) in
the proof of Proposition 9.8 still only have linear complexity ωτ +2n− 2.) By
contrast, the superficially elegant identities (10.5) have quadratic complexity
n × ωτ .

Theorem 10.1 was stated in terms of a many-sorted type τ and its homog-
enization τ �. It may be reformulated in terms of a single-sorted type σ (with
input function l and output function h) and its heterogenization σ�

lh.

Corollary 10.3. Let σ : Ω → N be a constant-free single-sorted type, with
given input function l and output function h of degree n. Then the following
classes are equivalent:

(a) the variety of σ+{(d, n)}-algebras (B,Ω, d), monotonically heterogenizable
and compatible with the input function l and output function h,

(b) the class of pure σ�
lh-algebras.

Acknowledgments. We are grateful to Ross Willard for bringing to our at-
tention the discussion of heterogeneous algebras within the model-theoretic
literature.
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[13] Mućka, A.: The lattice of varieties of fibered automata. Discuss. Math. Gen. Algebra
Appl. 27, 87–107 (2007)
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