Skip to main content

Advertisement

Log in

The anti-inflammatory effects of platinum nanoparticles on the lipopolysaccharide-induced inflammatory response in RAW 264.7 macrophages

  • Original Research Paper
  • Published:
Inflammation Research Aims and scope Submit manuscript

Abstract

Objective

Platinum nanoparticles (nano-Pt) have been reported to possess anti-oxidant and anti-tumor activities. However, the biological activity and mechanism of action of nano-Pt in inflammation are still unknown. The present study was designed to determine the in-vitro anti-inflammatory effects of nano-Pt on lipopolysaccharide (LPS)-stimulated RAW 264.7 cells.

Methods

RAW 264.7 macrophages were used for the study. The LPS-induced production of reactive oxygen species (ROS) was determined by flow cytometry. The prostaglandin E2 (PGE2) concentration was measured using a PGE2 assay kit. The protein levels and mRNA expression of the pro-inflammatory cytokines [tumor necrosis factor-α, interleukin (IL)-1β and IL-6], along with cyclooxygenase (COX-2) and inducible nitric oxide synthase, were analyzed by Western blotting and reverse transcription–polymerase chain reaction analysis. The phosphorylation of extracellular signal regulated kinase (ERK1/2) and Akt, and the phosphorylation and degradation of inhibitory kappa B-alpha (IκB-α) was determined by Western blot analysis.

Results

Nano-Pt significantly reduced the LPS-induced production of intracellular ROS and inflammatory mediators. In addition, nano-Pt suppressed the phosphorylation of ERK1/2 and Akt, and significantly inhibited the phosphorylation/degradation of IκB-α as well as nuclear factor kappa-B (NFκB) transcriptional activity.

Conclusion

These results suggest that the anti-inflammatory properties of nano-Pt may be attributed to their downregulation of the NFκB signaling pathway in macrophages, thus supporting the use of nano-Pt as an anti-inflammatory agent.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

Nano-Pt:

Platinum nanoparticles

RT:

Reverse transcription

PGE2 :

Prostaglandin E2

iNOS:

Inducible nitric oxide synthase

MAPK:

Mitogen activated protein kinases

References

  1. Balkwill F, Mantovani A. Inflammation and cancer: back to Virchow? Lancet. 2001;357:539–45.

    Article  PubMed  CAS  Google Scholar 

  2. Lonkar P, Dedon PC. Reactive species and DNA damage in chronic inflammation. Int J Cancer. 2011;128:1999–2009.

    Article  PubMed  CAS  Google Scholar 

  3. Zaidi SF, Ahmed K, Yamamoto T, Kondo T, Usmanghani K, Kadowaki M, Sugiyama T. Effect of resveratrol on Helicobacter pylori-induced interleukin-8 secretion, reactive oxygen species generation and morphological changes in human gastric epithelial cells. Bio Pharm Bull. 2009;32:1931–5.

    Article  CAS  Google Scholar 

  4. Lin WW, Karin M. A cytokine-mediated link between innate immunity, inflammation, and cancer. J Clin Invest. 2007;117:1175–83.

    Article  PubMed  CAS  Google Scholar 

  5. Coussens LM, Werb Z. Inflammation and cancer. Nature. 2002;420:860–7.

    Article  PubMed  CAS  Google Scholar 

  6. Lawrence T, Willoughby DA, Gilroy DW. Anti-inflammatory lipid mediators and insights into the resolution of inflammation. Nat Rev Immunol. 2002;2:787–95.

    Article  PubMed  CAS  Google Scholar 

  7. Zaidi SF, Yamamoto T, Refaat A, Ahmed K, Sakurai H, Saiki I, Kondo T, Usmanghani K, Kadowaki M. Sugiyama T modulation of activation-induced cytidine deaminase by curcumin in Helicobacter pylori-infected gastric epithelial cells. Helicobacter. 2009;14:588–95.

    Article  PubMed  CAS  Google Scholar 

  8. Lee YM, Seon MR, Cho HJ, Kim JS, Park JH. Benzyl isothiocyanate exhibits anti-inflammatory effects in murine macrophages and in mouse skin. J Mol Med. 2009;87:1251–61.

    Article  PubMed  CAS  Google Scholar 

  9. Chaturvedi MM, Sung B, Yadav VR, Kannappan R, Aggarwal BB. NF-κB addiction and its role in cancer: ‘one size does not fit all’. Oncogene. 2011;30:1615–30.

    Article  PubMed  CAS  Google Scholar 

  10. Hoffmann A, Xia Y, Verma IM. Inflammatory tales of liver cancer. Cancer Cell. 2007;11:99–101.

    Article  PubMed  CAS  Google Scholar 

  11. Kajita M, Hikosaka K, Iitsuka M, Kanayama A, Toshima N, Miyamoto Y. Platinum nanoparticle is a useful scavenger of superoxide anion and hydrogen peroxide. Free Radic Res. 2007;41:615–26.

    Article  PubMed  CAS  Google Scholar 

  12. Bhattacharya R, Mukherjee P. Biological properties of “naked” metal nanoparticles. Adv Drug Deliv Rev. 2008;60:1289–306.

    Article  PubMed  CAS  Google Scholar 

  13. Yoshihisa Y, Zhao QL, Hassan MA, Wei ZL, Furuichi M, Miyamoto Y, Kondo T, Shimizu T. SOD/catalase mimetic platinum nanoparticles inhibit heat-induced apoptosis in human lymphoma U937 and HH cells. Free Radic Res. 2011;45:326–35.

    Article  PubMed  CAS  Google Scholar 

  14. Park YM, Won JH, Yun KJ, Ryu JH, Han YN, Choi SK, Lee KT. Preventive effect of Ginkgo biloba extract (GBB) on the lipopolysaccharide-induced expressions of inducible nitric oxide synthase and cyclooxygenase-2 via suppression of nuclear factor-kappaB in RAW 264.7 cells. Biol Pharm Bull. 2006;29:985–90.

    Article  PubMed  CAS  Google Scholar 

  15. Korhonen R, Lahti A, Kankaanranta H, Moilanen E. Nitric oxide production and signaling in inflammation. Cur Drug Targets Inflamm Allergy. 2005;4:471–9.

    Article  CAS  Google Scholar 

  16. Hancock JT, Desikan R, Neill SJ. Role of reactive oxygen species in cell signaling pathways. Biochem Soc Trans. 2001;29:345–50.

    Article  PubMed  CAS  Google Scholar 

  17. Choi SY, Hwang JH, Ko HC, Park JG, Kim SJ. Nobiletin from citrus fruit peel inhibits the DNA-binding activity of NFκB and ROS production in LPS-activated RAW 264.7 cells. J Ethnopharmacol. 2007;113:149–55.

    Article  PubMed  CAS  Google Scholar 

  18. Yoshihisa Y, Honda A, Zhao QL, Makino T, Abe R, Matsui K, Shimizu H, Miyamoto Y, Kondo T, Shimizu T. Protective effects of platinum nanoparticles against UV-light-induced epidermal inflammation. Exp Dermatol. 2010;19:1000–6.

    Article  PubMed  CAS  Google Scholar 

  19. Nomura M, Yoshimura Y, Kikuiri T, Hasegawa T, Taniguchi Y, Deyama Y, Koshiro K, Sano H, Suzuki K, Inoue N. Platinum nanoparticles suppress osteoclastogenesis through scavenging of reactive oxygen species produced in RAW264.7 cells. J Pharmacol Sci. 2011;117:243–52.

    Article  PubMed  CAS  Google Scholar 

  20. Mazza J, Rossi A, Weinberg JM. Innovative uses of tumor necrosis factor alpha inhibitors. Dermatol Clin. 2010;28:559–75.

    Article  PubMed  CAS  Google Scholar 

  21. Jamieson ER, Lippard SJ. Structure, recognition, and processing of cisplatin–DNA adducts. Chem Rev. 1999;99:2467–98.

    Article  PubMed  CAS  Google Scholar 

  22. Asharani PV, Xinyi N, Hande MP, Valiyaveettil S. DNA damage and p53-mediated growth arrest in human cells treated with platinum nanoparticles. Nanomedicine. 2010;5:51–64.

    Article  PubMed  CAS  Google Scholar 

  23. Gehrke H, Pelka J, Hartinger CG, Blank H, Bleimund F, Schneider R, Gerthsen D, Bräse S, Crone M, Türk M, Marko D. Platinum nanoparticles and their cellular uptake and DNA platination at non-cytotoxic concentrations. Arch Toxicol. 2011;85:799–812.

    Article  PubMed  CAS  Google Scholar 

  24. Ma JS, Kim WJ, Kim JJ, Kim TJ, Ye SK, Song MD, Kang H, Kim DW, Moon WK, Lee KH. Gold nanoparticles attenuate LPS-induced NO production through the inhibition of NF-kappaB and IFN-beta/STAT1 pathways in RAW264.7 cells. Nitric Oxide. 2010;23:214–9.

    Article  PubMed  CAS  Google Scholar 

  25. Cargnello M, Roux PP. Activation and function of the MAPKs and their substrates, the MAPK-activated protein kinases. Microbiol Mol Biol Rev. 2011;75:50–83.

    Article  PubMed  CAS  Google Scholar 

  26. Turjanski AG, Vaque JP, Gutkind JS. MAP kinases and the control of nuclear events. Oncogene. 2007;26:3240–53.

    Article  PubMed  CAS  Google Scholar 

  27. Nakano H, Shindo M, Sakon S, Nishinaka S, Mihara M, Yagita H, Okumura K. Differential regulation of I kappa B kinase alpha and beta by two upstream kinases, NF-kappaB-inducing kinase and mitogen-activated protein kinase/ERK kinase kinase. Proc Natl Acad Sci USA. 1998;95:3537–42.

    Article  PubMed  CAS  Google Scholar 

  28. Seo HJ, Huh JE, Han JH, Jeong SJ, Jang J, Lee EO, Lee HJ, Lee HJ, Ahn KS, Kim SH. Polygoni Rhizoma inhibits inflammatory response through inactivation of nuclear factor-kappaB and mitogen activated protein kinase signaling pathways in RAW264.7 mouse macrophage cells. Phytother Res. 2012;26:239–45.

    Article  PubMed  Google Scholar 

  29. Wan F, Lenardo MJ. The nuclear signaling of NF-kappaB: current knowledge, new insights, and future perspectives. Cell Res. 2010;20:24–33.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by a Grant-in-Aid for Scientific Research (No. 20591337) from the Japan Society for the Promotion of Science.

Conflict of interest

The authors declare no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tadamichi Shimizu.

Additional information

Responsible Editor: Graham Wallace.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rehman, M.U., Yoshihisa, Y., Miyamoto, Y. et al. The anti-inflammatory effects of platinum nanoparticles on the lipopolysaccharide-induced inflammatory response in RAW 264.7 macrophages. Inflamm. Res. 61, 1177–1185 (2012). https://doi.org/10.1007/s00011-012-0512-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00011-012-0512-0

Keywords

Navigation