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1. Introduction

By R we denote the set of reals, Q are rationals, Z are integers, N = {1, 2, . . .}
and N0 = N ∪ {0}. If I ⊆ R is an interval and k ∈ N0, then Ck(I) is the
space of real-valued functions on I that are k-times continuously differentiable
on the interior of I. If k = 0, then we write simply C(I). The space Ck(I) is
furnished with the standard pointwise algebraic operations and hence it is a
real commutative algebra.

Definition. (e.g. Kuczma [12, page 391]) Assume that Q is a commutative
ring and P is a subring of Q. A function f : P → Q is called derivation if it is
additive:

f(x + y) = f(x) + f(y), x, y ∈ P (1)

and it satisfies the Leibniz rule:

f(xy) = xf(y) + yf(x), x, y ∈ P. (2)

The following theorem describes derivations over fields of characteristic
zero.
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Theorem 1. [12, Theorem 14.2.1] Let K be a field of characteristic zero, F be
a subfield of K, S be an algebraic base of K over F if it exists, and let S = ∅

otherwise. If f : F → K is a derivation, then, for every function u : S → K
there exists a unique derivation g : K → K such that g = f on F and g = u
on S.

From this theorem it follows in particular that nonzero derivations f : R →
R exist. It is well known they are discontinuous and very irregular mappings.
For an exhaustive discussion of the notion of derivation and related functional
equations the reader is referred to Gselmann [5,6], Gselmann, Kiss, Vincze
[7] and the references therein. Recently Ebanks [2,3] studied derivations and
derivations of higher order on rings.

The “model” example of a derivation is the operator of derivative on the
space Ck(I) for k > 0 . Indeed, if we define T : Ck(I) → C(I) as T (f) = f ′

for f ∈ Ck(I), then clearly Ck(I) is a subring of C(I), T is additive and it
satisfies the Leibniz rule:

T (f · g) = f · T (g) + g · T (f). (3)

Crucial results about equation (3) on the space Ck(I) are due to H. König
and V. Milman. We refer the reader to their recent monograph [11]. They stud-
ied several operator equations and inequalities that are related to derivatives
on the spaces of smooth functions. Later on, we will utilize their elegant result
[11, Theorem 3.1] regarding (3). Briefly, if I is an open set, then the general
solution of (3) for all f, g ∈ Ck(I) is of the form

T (f) = c · f · ln |f | + d · f ′, f ∈ Ck(I) (4)

for some continuous functions c, d ∈ C(I), if k > 0, and

T (f) = c · f · ln |f |, f ∈ Ck(I) (5)

if k = 0 (in formulas (4) and (5) the convention that 0 · ln 0 = 0 is adopted).
Note that no additivity is assumed.

It is a natural question to characterize real-to-real derivations among addi-
tive functions with the aid of a relation which is weaker than (2). In particular,
the very first article published in the first volume of Aequationes Mathemat-
icae by Nishiyama and Horinouchi [14] addresses this question. The authors
studied the following relations, each of which is a direct consequence of (2)
alone and together with (1) implies (2):

f(x2) = 2xf(x), x ∈ R, (6)
f(x−1) = −x−2f(x), x ∈ R, x �= 0, (7)

and

f(xn) = axn−mf(xm), x ∈ R, x �= 0, (8)
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where a �= 1 and n,m are integers such that am = n �= 0. Further similar
results, as well as some generalizations, are due to Jurkat [8], Kannappan and
Kurepa [9,10], Kurepa [13], among others. Ebanks [4] generalized and extended
these results to arbitrary fields. A recent paper by Amou [1] provides some n-
dimensional generalizations of the results of [8–10,13].

This paper provides versions of the above-mentioned results for operators
T : Ck(I) → C(I). Therefore, we seek conditions which are equivalent to (3).

2. Main results

Throughout this section let us fix k ∈ N0 and an interval I ⊆ R. We will study
conditions upon an additive operator T : Ck(I) → C(I) which yield analogues
to Eqs. (6), (14) and (8). Therefore, we will focus on the following operator
relations:

T (f2) = 2f · T (f), (9)

T (f) = −f2 · T

(
1
f

)
, (10)

T (fn) = nfn−1 · T (f). (11)

Our first theorem is a simple observation that some reasonings concerning
derivations from the real-to-real case can be extended to arbitrary commuta-
tive rings without substantial changes. We adopted parts of the proof of [12,
Theorem 14.3.1].

Theorem 2. Assume that Q is a commutative ring, P is a subring of Q and
T : P → Q is an additive operator. Then, the following conditions are pairwise
equivalent:

(i) T satisfies T (f2) = 2f · T (f) for all f ∈ P ,
(ii) T satisfies T (f · g) = f · T (g) + g · T (f) for all f, g ∈ P ,
(iii) T satisfies T (fn) = nfn−1 · T (f) for all f ∈ P and n ∈ N.

Proof. (i) ⇒ (ii). Fix arbitrarily f, g ∈ P . By (9) we get

T ((f + g)2) = 2(f + g) · T (f + g).

Since T is additive,

T (f2) + 2T (f · g) + T (g2) = 2f · T (f) + 2g · T (f) + 2f · T (g) + 2g · T (g).

Using (9) again, after reductions we obtain (3).
(ii) ⇒ (iii). If n = 1, then (11) reduces to an identity. Assume that (11)

holds for some n ∈ N and all f ∈ P . Then, by (3) and the induction hypothesis
we have

T (fn+1) = T (fn · f) = fn · T (f) + f · T (fn)

= fn · T (f) + nfn−1+1 · T (f) = (n + 1)fn · T (f).
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(iii) ⇒ (i). Take n = 2. �

The next corollary will be utilized later on.

Corollary 1. Assume that T : Ck(I) → C(I) is an additive operator. Then, the
following conditions are pairwise equivalent:

(i) T satisfies T (f2) = 2f · T (f) for all f ∈ Ck(I),
(ii) T satisfies T (f · g) = f · T (g) + g · T (f) for all f, g ∈ Ck(I),
(iii) T satisfies T (fn) = nfn−1 · T (f) for all f ∈ Ck(I) and n ∈ N.

Our next result characterizes the Leibniz rule (3) on a domain restricted
to functions separated from zero. Thus, we can consider conditions (10) and
(11) for negative n, which involve the function 1/f . The situation is a bit more
complicated, but Theorem 3 below has a mainly technical role.

Theorem 3. Assume that T : Ck(I) → C(I) is an additive operator and ε1 ∈
(0, 1), ε2 ∈ (0, 1) and c ∈ (1,+∞] are constants. Consider the following con-
ditions:

(i) T satisfies T (f) = −f2 · T
(

1
f

)
for all f ∈ Ck(I), c > f > ε1,

(ii) T satisfies T (f2) = 2f · T (f) for all f ∈ Ck(I), f > ε2,
(iii) T satisfies T (f · g) = f · T (g) + g · T (f) for all f, g ∈ Ck(I), f > ε2,

g > ε2,
(iv) T satisfies T (fn) = nfn−1 · T (f) for all n ∈ Z and all f ∈ Ck(I) such

that ε2 < f < 1/ε2, and fn−1 > ε2 if n > 0 and fn+1 > ε2 if n < 0.

Then: (i) with c = +∞ implies (ii) with ε2 >
√

ε1, (ii) and (iii) are equivalent,
(iii) implies (iv), (iv) implies (i) with ε1 = ε2 and c = 1/ε2.

Proof. (i) ⇒ (ii). First, note that by applying (10) for f = 1 and using the
rational homogeneity of T we get that T vanishes on each constant function
equal to a rational number. Observe that for an arbitrary rational δ > 0 (which
will be chosen later) the identity

1
f2 − δ2

=
1
2δ

(
1

f − δ
− 1

f + δ

)
(12)

holds for f ∈ Ck(I) such that f > δ. Next, if ε1 > 0 is given and ε2 >
√

ε1,
then we will find some rational δ > 0 such that ε2 > ε1 + δ and ε22 > ε1 + δ2.
Consequently, if f ∈ Ck(I) and f > ε2, then f ± δ > ε1 and f2 − δ2 > ε1.
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Using (i) three times together with (12) and the additivity of T we obtain

T (f2) = T (f2 − δ2) = −(f2 − δ2)2T
(

1
f2 − δ2

)

= − 1
2δ

(f2 − δ2)2T
(

1
f − δ

− 1
f + δ

)

= − 1
2δ

(f + δ)2(f − δ)2
[
T

(
1

f − δ

)
− T

(
1

f + δ

)]

=
1
2δ

[
(f + δ)2T (f − δ) − (f − δ)2T (f + δ)

]
= 2fT (f).

(ii) ⇔ (iii). Analogously as in Theorem 2 for f > ε2 and g > ε2. (iii) ⇒ (iv).
If n = 1, then (11) is trivially satisfied. Assume that f , n and ε2 satisfy the
assumptions of (iv). For n > 1 we proceed like in Theorem 2. If n = 0, then (iv)
reduces to T (1) = 0, which follows from (iii). If n = −1, then for 1/ε2 > f > ε2
we have

0 = T (1) = T

(
f · 1

f

)
=

1
f

· T (f) + f · T

(
1
f

)
.

Assume that n < −1. By downward induction, one can check that for
fn+1 > ε2 we have from (3)

T (fn) = T

(
fn+1 · 1

f

)
= fn+1 · T

(
1
f

)
+

1
f

· T
(
fn+1

)

= −fn+1 · f−2T (f) +
n + 1

f
· fn · T (f) = nfn−1T (f).

(iv) ⇒ (i). Take n = −1. �

If we assume additionally that interval I is compact, then the situation
clarifies considerably.

Theorem 4. Assume that I is compact and T : Ck(I) → C(I) is an additive
operator. Then, the following conditions are pairwise equivalent:

(i) T satisfies T (f · g) = f · T (g) + g · T (f) for all f, g ∈ Ck(I),
(ii) T satisfies T (f · g) = f ·T (g)+ g ·T (f) for all f, g ∈ Ck(I), f > 0, g > 0,
(iii) T satisfies T (f2) = 2f · T (f) for all f ∈ Ck(I),
(iv) T satisfies T (f2) = 2f · T (f) for all f ∈ Ck(I), f > 0,
(v) T satisfies T (f) = −f2 · T

(
1
f

)
for all f ∈ Ck(I), f > 0,

(vi) T satisfies T (fn) = nfn−1 · T (f) for all f ∈ Ck(I) and n ∈ N,
(vii) T satisfies T (fn) = nfn−1 · T (f) for all f ∈ Ck(I), f > 0 and n ∈ N.

Proof. This statement is a consequence of Corollary 1 and Theorem 3. Since
I is compact, f attains its global extrema. Thus, we will find some rational
r, q ∈ Q such that 1/2 < rf + q < 2. Moreover, as it was already observed
in the proof of Theorem 3, each of the conditions of Theorem 4 implies that
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T (1) = 0 and then T vanishes on constant functions equal to a rational number.
Consequently, we have T (rf + q) = rT (f) + T (q) = rT (f) and therefore
Theorem 3 applies to the conditions (ii), (iv), (v) and (vii) with appropriately
chosen ε1 and ε2. The remaining conditions are equivalent by Corollary 1.
Therefore, we are done if we prove for example the implication (iv) ⇒ (iii).

Fix f ∈ Ck(I) arbitrarily and choose r, q ∈ Q such that 1/2 < rf + q < 2.
By (iv) we get

T ((rf + q)2) = 2(rf + q)T (rf + q).

Then using additivity we obtain

r2T (f2) + 2rqT (f) + T (q2) = 2r2fT (f) + 2rqT (f)

and after reduction

T (f2) + 0 = 2fT (f)

i.e. condition (iii). �

One can join Corollary 1 and Theorem 4 with the mentioned result of H.
König and V. Milman to obtain a corollary.

Corollary 2. Under the assumptions of Corollary 1 or Theorem 4, if k > 0,
then each of the conditions listed there is equivalent to the following one:
(x) there exists some d ∈ C(I) such that T (f) = d · f ′ for all f ∈ Ck(I)
and if k = 0, then T = 0 is the only additive operator that fulfils any of the
equivalent conditions.

Proof. Consider f(x) = x on I and denote d̃ := T (f) ∈ C(I). Next, note that
by [11, Theorem 3.1] the formulas (4) and (5), respectively hold on the interior
of I with some c, d ∈ C(intI). The additivity of T implies that c = 0. Therefore
d̃ is a continuous extension of d to the whole interval I. �

3. Final remarks

Remark. The inequalities between f , g and constants ε1 and ε2 in Theorem 3
are not optimal. This however was not our goal since the role of this result
is auxiliary only. Similarly, the inequality f > 0 in some of the conditions of
Theorem 4 can be equivalently replaced by an estimate from above or from
below by any other fixed constant.

Moreover, in the proof of Theorem 4 we showed more than is stated.
Namely, it is equivalently enough to assume, instead of f > 0, that f is bilat-
erally bounded by two rational numbers, like 1/2 and 2. However, since this
generalization is only apparent and easy, we do not include it in the formulation
of the theorem.
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Example 1. Assume that ϕ : (1,∞) → R is a smooth mapping that satisfies
the equation

ϕ(2x) = 2ϕ(x), x ∈ (1,∞). (13)

Such mappings exist in abundance. In fact, every map ϕ0 defined on (1, 2] can
be uniquely extended to a solution of (13). Next, let d : (e,∞) → R be defined
as

d(x) = x · ϕ(ln x), x ∈ (e,∞).

It is easy to see that

d(x2) = 2xd(x), x ∈ (e,∞)

and

d(xy) �= xd(y) + yd(x)

in general, unless ϕ is additive. Define T : C1((e,∞)) → C((e,∞)) as follows:

T (f) = d ◦ f, f ∈ C1((e,∞)).

One can see that T satisfies (9) for all f, g ∈ C((e,∞)), but fails to satisfy
the Leibniz rule (3). Thus, the assumption of additivity in all our results is
essential. Observe also that T has the property that it vanishes on constant
functions equal to a rational. This fact, as a consequence of additivity, was
frequently used in the proofs of our Theorems 3 and 4. Therefore, the additivity
assumption cannot be relaxed to this property.

Example 2. Assume that I is an interval and T is given by the formula

T (f) = f ′′ − (f ′)2

f
, f ∈ C2(I), f > 0.

Then T satisfies (3) for all f, g ∈ C2(I) such that f > 0 and g > 0. This
observation is a particular case of the second part of [11, Corollary 3.4]. Clearly,
T is not additive. Moreover, T cannot be extended in such a way that it satisfies
(3) on the whole space C2(I).

The following examples show that if the domain of operator T is changed,
then the conditions discussed in our results are no longer equivalent and various
situations are possible.

Example 3. Let S be the space of all functions f ∈ C1((0,∞)) which satisfy
the functional equation

f(x + 1) = 2f(x), x ∈ (0,∞). (14)

Note that S is not closed under multiplication. Moreover, each function f0 :
(0, 1] → R can be uniquely extended to a solution of (14). Therefore, S
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is an infinite-dimensional subspace of C1((0,∞)). Define T : C1((0,∞)) →
C1((0,∞)) by the formula

T (f)(x) = f(x + 1), f ∈ C1((0,∞)), x ∈ (0,∞).

It is easy to check that T is additive and satisfies (3) for f, g ∈ S. Thus,
there are more solutions of (3) if the domain of T is restricted to a particular
subspace of Ck(I).

Example 4. Let P [x] be the space of all real polynomials of variable x. By
deg(f) we denote the degree of a polynomial f ∈ P [x]. Define T : P [x] → P [x]
by

T (f) = deg(f) · f, f ∈ P [x].

Then T is not additive, it satisfies (3) and there exists no extension of T to
the whole space Ck(R) which is a solution of (3).

Example 5. Let

S := {f : (0,∞) → R : f(x) = xk for some k ∈ Z and x ∈ (0,∞)}.

Note that S is closed under multiplication but it is not a linear space. Next, let
a double sequence ϕ on Z of natural numbers be defined as follows: ϕ(0) = 0,
ϕ(k) is arbitrary but �= k if k is odd, and if k = 2n · m with some n ∈ N and
odd m ∈ Z, then

ϕ(k) := 2
n2−n

2 · mn · ϕ(m).

Note that we have

ϕ(2k) = ϕ(2n+1 · m) = 2
n2+n

2 · mn+1 · ϕ(m)

= 2n · m · 2
n2−n

2 · mn · ϕ(m) = k · ϕ(k), k ∈ Z. (15)

Define T : S → C((0,∞)) by

T (f)(x) := k · xϕ(k), x ∈ (0,∞) (16)

if f(x) = xk for x ∈ (0,∞). One can see that if f is of this form, then by (15)

T (f2)(x) = 2k · xϕ(2k) = 2k · xk·ϕ(k) = 2f(x)T (f)(x)

for all x ∈ (0,∞), i.e. T satisfies (9).
Moreover, one can see that (10) is equivalent to the equality

ϕ(k) − ϕ(−k) = 2k, k ∈ Z, k �= 0.

Therefore, we can construct a sequence ϕ such that T defined by (16) satisfies
(10) as well as another sequence ϕ′ for which T does not satisfy (10). Finally,
(3) is not true on S. Indeed, note that if (3) is satisfied by T given by (16),then:
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ϕ(k + l) = ϕ(k) + l = ϕ(l) + k, k, l ∈ Z, k �= 0, l �= 0,

which does not hold.
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