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Continuous solutions of a system of composite functional
equations

Péter Tóth

Abstract. In this paper we introduce the concept of translation invariant functions: con-
sidering an arbitrary set ∅ �= S ⊂ R

n, the function F : S −→ R is translation invari-
ant if F (x) = F (y) implies F (x + t) = F (y + t) for any vectors x, y, t ∈ R

n such that
x, y, x+t, y+t ∈ S. In our main results we shall consider an open, connected set ∅ �= D ⊂ R

n.
We prove that if F : D −→ R is a translation invariant, continuous function, then there ex-
ists a vector a = (a1, . . . , an) ∈ R

n and a strictly monotone, continuous function f such
that

F (x1, . . . , xn) = f(a1x1 + · · · + anxn)

holds for all (x1, . . . , xn) ∈ D . Using this result we also show that continuous solutions
F : D −→ R of the system of functional equations

F (x1, . . . , xj + tj , . . . , xn) = Ψj(F (x1, . . . , xj , . . . , xn), tj) (j = 1, . . . , n)

can be represented as the composition of a strictly monotone, continuous function and a
linear functional as well. Applying the latter theorem, we give a characterization of Cobb–
Douglas type utility functions.
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1. Introduction

In the paper [1] Z. Boros proved that if D is an open, connected subset of R2

then a continuous function F : D −→ R , which is strictly monotone in one of
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its variables, fulfills the equations

F (x + t, y) = Ψ1(F (x, y), t) and F (x, y + s) = Ψ2(F (x, y), s)

with some unknown functions Ψ1 , Ψ2 if, and only if, there exist real numbers
a , b and a strictly monotone, continuous real function f such that F can be
represented as

F (x, y) = f(ax + by) .

Motivated by this result, it seems natural to consider the analogous version
of the above mentioned system of composite functional equations for n ≥ 2
variables. Therefore, in our work we are going to investigate the system of
functional equations

F (x1 + t1, x2, . . . , xn) = Ψ1(F (x1, x2, . . . , xn), t1) (1)

F (x1, x2 + t2, . . . , xn) = Ψ2(F (x1, x2, . . . , xn), t2) (2)
...

F (x1, x2, . . . , xn + tn) = Ψn(F (x1, x2, . . . , xn), tn) (n).

Our purpose is to obtain some decomposition theorems for the continuous
solutions of this system of equations, similar to the one in [1]. However, we
will take an approach which fundamentally differs from the arguments applied
in [1]. The main reason for using alternative methods is that the ideas used
by Boros do not seem easily applicable for the higher dimensional system of
equations.

Therefore we will utilize the geometrical meaning of the functional equa-
tions. Namely, one can easily check that each one of the equations (1) − (n)
ensures that if F (x) = F (y) holds for some points of the domain of definition
of F , then F (x + t) = F (y + t) is also fulfilled for vectors t ∈ R

n which are
parallel to the corresponding coordinate axis (of course, assuming that F is
defined in x+ t and y + t). It seems reasonable to investigate whether an anal-
ogous property holds for arbitrary translation vectors as well. Hence we will
introduce the concept of translation invariant functions: if S is a non-empty
subset of Rn then the function F : S −→ R is said to be translation invariant
if F (x) = F (y) implies F (x + t) = F (y + t) for all vectors t ∈ R

n such that
x + t , y + t ∈ S.

In the most extensive part of our work we will examine continuous, trans-
lation invariant functions with the purpose of formulating a decomposition
theorem similar to the one in [1]. Then we will show that the obtained results
can be applied to characterize the continuous solutions of (1)− (n). As we will
see, this can be done without any major difficulties, as the solutions of the
system of equations are locally translation invariant, so they behave similarly
to ’proper’ translation invariant functions. Another advantage of our approach
is that we do not need to assume strict monotonicity in any of the variables
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of the solutions. This means that, as a particular case, we immediately obtain
a stronger version of the main result of [1].

Finally, we are going to present an application of our results, in the field
of mathematical economics. One can find numerous works (e. g. [2,7]) which
deal with the problem of how to characterize certain types of so-called util-
ity functions. However, it is common that strong regularity conditions (such
as higher-order differentiability) are assumed, which excludes many possible
utility functions. On the other hand, our decomposition theorem provides a
characterization of the frequently used Cobb–Douglas type utility functions,
with the help of a system of composite functional equations, while assuming
relatively weak regularity.

2. Preliminaries

Firstly, we will collect some fundamental notions and propositions concerning
convex geometry and particular sets of metric spaces. Throughout our work we
consider R

n with its standard inner product, norm and the induced topology.
In order to avoid possible technical difficulties, we shall always assume that
the dimension n is at least 2 (we are going to explicitly state if this is not the
case).

We will use the concepts of affine/convex set, affine/convex combination
and affine/convex hull in the usual sense. Special affine/convex sets, such as
lines, line segments and hyperplanes will also be used in the standard way.
These definitions can be found, for instance, in the first chapter of the mono-
graph [4] of Lay. Let us introduce some notations.

Notation 1. Let x, y ∈ R
n. The line passing through x and y will be denoted

by l(x, y), and the line segment joining x and y will be denoted by s(x, y).
Furthermore, let

int s(x, y) = { (1 − λ)x + λy | λ ∈ ]0 , 1[ }
be the interior of the segment. Moreover, for fixed vectors x ∈ R

n and 0 �=
a ∈ R

n, the hyperplane that passes through x and has normal vector a will be
denoted by H(x, a), i.e.

H(x, a) = {y ∈ R
n | 〈y − x, a〉 = 0}.

Remark 2.1. The affine/convex hull of finitely many points x1, . . . , xk ∈ R
n

will be denoted by Aff(x1, . . . , xk) and conv(x1, . . . , xk) , respectively. Since
the affine/convex hull of a set S consists of all the affine/convex combinations
of the points of S (see [4, Theorem 2.22]), we get that these sets have the form

Aff(x1, . . . , xk) =
{ k∑

j=1

λjxj | λj ∈ R,

k∑

j=1

λj = 1
}
,
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conv(x1, . . . , xk) =
{ k∑

j=1

λjxj | λj ∈ [0, 1],
k∑

j=1

λj = 1
}
.

As it is well-known, the affine subsets of R
n can be characterized as the

translates of linear subspaces. Namely, if A ⊂ R
n is affine, then there exists

a unique linear subspace L ⊂ R
n such that A = p + L, for any p ∈ A (cf. [4,

Theorem 2.13]). Motivated by this result, we will refer to affine sets of Rn as
affine subspaces (as it is common in the literature).

We will also use the following notion: the dimension of an affine subspace A
is the dimension of the (uniquely determined) linear subspace belonging to A.
For example, the n−1 dimensional affine subspaces of Rn are the hyperplanes.
Furthermore, the affine hull of a set S ∈ R

n will be called the affine subspace
generated by S.

Finally, we shall mention affine independence and give some equivalent
conditions.

Definition 2.2. Let k ∈ N, x1, . . . , xk ∈ R
n and λ1, . . . , λk ∈ R. The points

x1, . . . xk are said to be affinely independent, if
k∑

j=1

λjxj = 0 and
k∑

j=1

λj = 0

implies λj = 0, for every j = 1, . . . , k.

Proposition 2.3. Let x1, . . . , xk ∈ R
n. Then the following statements are e-

quivalent
i) x1, . . . , xk are affinely independent.
ii) For any i ∈ {1, . . . , k}, the system of vectors

{xj − xi | j = 1, . . . , k and j �= i}
is linearly independent.

iii) The affine subspace generated by x1, . . . , xk has dimension k − 1.

The results of this statement can be found in [4], mostly in the form of
exercises (e.g. [4, Exercise 2.27]) and remarks. Now we formulate a corollary
of the proposition, which later will be an important auxiliary tool.

Lemma 2.4. Let x1, . . . , xk ∈ R
n be affinely independent and let

y /∈ Aff(x1, . . . , xk).

Furthermore, let us consider some non-zero scalars λ1, . . . , λk ∈ R \ {0}, and
define

yj := y + λj(xj − y). (j = 1, . . . , k)

Then y, y1, . . . , yk are affinely independent.
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Proof. Since x1, . . . , xk are affinely independent and y /∈ Aff(x1, . . . , xk), it fol-
lows that x1, . . . , xk together with y are also affinely independent and therefore
x1 − y, . . . , xk − y are linearly independent. Multiplying some of these vectors
by non-zero scalars does not affect their linear independence. This means that
the vectors yj − y = λj(xj − y) for j = 1, . . . , k are linearly independent, so
y, y1, . . . , yk are affinely independent. �

In the next part we will summarize some important topological notions and
theorems. Since we will work in R

n, in this section we also restrict ourselves
to metric spaces only, instead of a more general approach. We shall use the
concept of open sets, closed sets as well as compact sets and connected sets in
the usual sense (as they are introduced, for instance, in the monographs of
Rudin [6] or Sutherland [8]).

An open ball with center x and radius r will be denoted by B(x, r). We will
frequently use the fact that the image of a connected set under a continuous
function is connected, while the image of a compact set under a continuous
function is compact. A well-known consequence of the latter statement is that
if X is a metric space, ∅ �= K ⊂ X is compact and f : K −→ R is a continuous
function, then f attains its minimum and maximum on the set K. The proof
of these previous statements can be found in [8, Propositions 13.15, 12.13 and
Corollary 13.18].

Finally, we enumerate two statements that later will play a crucial role in
many of the main results of our work. Both of them are often used in the
proofs of some classical theorems of complex analysis.

Proposition 2.5. Let (X, d) be a metric space, K ⊂ X be compact, ∅ �= C ⊂ X
be closed and assume K ∩ C = ∅. Then there exists r > 0 such that for every
x ∈ K it holds that B(x, r) ⊂ X \ C.

Proposition 2.6. Let ∅ �= D ⊂ R
n be open, connected and let x, y ∈ D. Then

there exists a polygonal path in D joining x and y.

Remark 2.7. By a polygonal path in D joining x and y we mean the union of
line segments

s(zk−1, zk) ⊂ D , (k = 1, . . . , m)

where z0, z1, . . . zm ∈ D such that z0 = x and zm = y.
We shall note that the proof of a somewhat weaker statement – namely

that any open, connected subset of R
n is path-connected – can be found in

the monograph of Sutherland [8, Proposition 12.25]. The author also mentions
that the proof could be applied to the case of polygonal paths as well, without
any major adjustments.
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3. Translation invariant functions

In this section we introduce the concept of translation invariance, and then
formulate various propositions for continuous, translation invariant functions.
We will show that such functions – if the domain of definition is connected
and open – can be represented as the composition of a strictly monotone,
continuous, real valued function and a linear functional.

3.1. Translation invariant functions on affine sets

Definition 3.1. Let S ⊂ R
n be a nonempty set and F : S −→ R be a function.

We say that the function F is translation invariant, if F (x) = F (y) implies
F (x+ t) = F (y + t), for any vectors x, y, t ∈ R

n such that x, y, x+ t, y + t ∈ S.

Sometimes it is more convenient to use another condition which will be
referred to as local translation invariance.

Definition 3.2. Let S ⊂ R
n be a nonempty set and F : S −→ R be a function.

Suppose that for any x, y ∈ S and for any 0 < r ∈ R such that B(x, r) ⊂ S
and B(y, r) ⊂ S the following assertion holds: if F (x) = F (y) then F (x+h) =
F (y + h) is fulfilled for any h ∈ B(0, r). Then the function F is said to be
locally translation invariant.

We recall a notation which will be used later in many of our proofs: let x
be an arbitrary real number, then

⌊
x
⌋

= max{k ∈ Z | k ≤ x} is the floor of x and
⌈
x
⌉

= min{k ∈ Z | x ≤ k} is the ceiling of x.

Proposition 3.3. Let ∅ �= K ⊂ R
n be an open, convex set and let F : K −→ R

be locally translation invariant. Then F is translation invariant.

Proof. Let x, y ∈ K and 0 �= t ∈ R
n be arbitrary vectors such that x+t, y+t ∈

K and F (x) = F (y). Then the convexity of K provides s(x, x + t) ⊂ K and
s(y, y + t) ⊂ K. These line segments are compact while R

n \ K is closed, thus,
due to Proposition 2.5, there exists r > 0 such that

Tx :=
⋃

z ∈ s(x,x+t)

B(z, r) ⊂ K and Ty :=
⋃

z ∈ s(y,y+t)

B(z, r) ⊂ K

hold. Now let us define the positive integer N and vector h as

N :=
⌈

2‖t‖
r

⌉
and h :=

1
N

t.
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Hence we get that

‖h‖ =
∥
∥
∥
∥

1
N

t

∥
∥
∥
∥ =

1
N

‖t‖ ≤ 1
2‖t‖

r

‖t‖ =
r

2
< r.

Now the local translation invariance implies F (x + h) = F (y + h). We shall
repeat the translation with h (and use the local translation invariance) N times
for the appropriate starting points x+ kh, y + kh (k = 1, . . . , N − 1). Then we
obtain F (x + t) = F (x + Nh) = F (y + Nh) = F (y + t). Thus we have proven
the translation invariance of F . �

The next lemma will be crucial for our later investigations.

Lemma 3.4. Let ∅ �= S ⊂ R
n and let F : S −→ R be a continuous, translation

invariant function. Furthermore, let x, y ∈ S such that F (x) = F (y) = α, and
suppose s(x, y) ⊂ S. Then F (p) = α for every p ∈ s(x, y).

Proof. We may assume x �= y, otherwise the statement is trivial. In the first
step we show that for all 0 < r ∈ R there exist u, v ∈ s(x, y) such that
F (u) = F (v), u ∈ s(x, v) and 0 < ‖v−u‖ < r. Let us introduce two notations:

T := s(x, y) and e :=
y − x

‖y − x‖ .

Since the line segment T is compact, the continuous function F attains its
extrema on T . Moreover, as F (x) = F (y), there exists m ∈ int s(x, y) such that
F (m) = max{F (z) | z ∈ T} or F (m) = min{F (z) | z ∈ T}. We investigate
only the first case, the other one can be handled analogously. Now let us choose
ε ∈ ]0, r[ such that

S− := s
(
m − ε

2
e,m

)
⊂ T and S+ := s

(
m,m +

ε

2

)
⊂ T.

Then I− := F (S−) and I+ := F (S+) are closed intervals in R as they are
images of compact, connected line segments under the continuous function F .
Observe that if I− = {m} then u = m − ε

2e , v = m is an appropriate pair
of vectors. Similarly, if I+ = {m} then we may choose u = m, v = m + ε

2e.
Finally, if I− = [a− ,m] and I+ = [a+ ,m] for some real numbers a− < m,
a+ < m, then there exist u ∈ S−, v ∈ S+ such that

F (u) = max{a− , a+} = F (v).

Obviously, 0 < ‖u − v‖ ≤ ε < r and u ∈ s(x, v), so we have obtained an
adequate pair of points.

In the second part of the proof we show that we are able to give a partition
of the segment consisting of finitely many sub-segments such that the length
of each new segment is at most r, and at each endpoint of these segments F
has value α. For this purpose our first observation is that using the translation
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invariance for the previously obtained points u and v and for the translating
vector x − u, we get

F (x + v − u) = F (v + x − u) = F (u + x − u) = F (x) = α.

Now let N :=
⌊ ‖y − x‖

‖v − u‖
⌋

and let us define the points

zk := x + k(v − u) (k = 0, 1, . . . , N) and zN+1 := y.

Since ‖v − u‖ < r, it is clear that ‖zk−1 − zk‖ < r for all k = 1, . . . , N .
Furthermore, from the definition of N it is easy to see that ‖zN − y‖ < r also
holds. On the other hand, we have already shown F (z0) = F (z1) = α. Due to
the translation invariance, for any k ∈ {1, . . . , N − 1}, if F (zk−1) = F (zk) = α
then

F (zk+1) = F (zk + v − u) = F (zk−1 + v − u) = F (zk) = α.

Therefore by induction we get that F (zk) = α for all k = 0, 1, . . . , N + 1.
That is, z0, z1, . . . , zN+1 gives the desired partition. Observe that if p ∈ T is
arbitrary then there exists j ∈ {0, 1, . . . , N} such that ‖zj − p‖ < r. Indeed, if

j =
⌊ ‖p − x‖

‖v − u‖
⌋

then p ∈ s(zj , zj+1).

For the final step of the proof let p ∈ T be arbitrary. Applying the previous
construction for r = 1

n (for all n ∈ N), we get a sequence of points (xn) :
N −→ T such that F (xn) = α and ‖xn − p‖ < 1

n . Now xn → p so, due to the
continuity of F , we have

F (p) = F ( lim
n→∞ xn) = lim

n→∞ F (xn) = lim
n→∞ α = α.

Since p was an arbitrary point of the segment s(x, y), we have verified our
statement. �

The following corollary generalizes this lemma.

Corollary 3.5. Let ∅ �= S ⊂ R
n and F : S −→ R be a continuous, translation

invariant function. Furthermore, let x, y ∈ S such that s(x, y) ⊂ S. Under
these assumptions it holds that if u, v ∈ s(x, y) (u �= v) such that F (u) =
F (v) = α, then F (p) = α for all p ∈ s(x, y).

Proof. The point p can be written as an affine combination of u and v:

p = (1 − λ)u + λv.

Without loss of generality, we may suppose λ ≥ 0 (by exchanging the role of
u and v, if necessary). Let

k := λ� and μ := λ − k,

hence μ ∈ [0, 1[ is fulfilled. Let us also define some particular points of the
segment s(x, y):

zj := u + j(v − u) (j = 0 , 1, . . . , k) and w := (1 − μ)u + μv.
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This definition ensures that the introduced points are indeed on the segment
s(x, y). Actually one can easily see that they are elements of s(u, p), especially
p = w + k(v − u). According to the assumptions of the statement F (z0) =
F (z1) = α holds, therefore by induction we may claim that F (zj) = α is
fulfilled for all j = 0 , 1, . . . , k. Indeed, the translation invariance of F means
that if F (zj−1) = F (zj) = α, then

F (zj+1) = F (zj + (v − u)) = F (zj−1 + (v − u)) = F (zj) = α

for all j = 1, . . . , k − 1. Furthermore w and s(u, v) satisfy the assumptions
of Lemma 3.4, thus F (w) = α. This means that, by applying translation
invariance once again, we get

F (p) = F (w + k(v − u)) = F (u + k(v − u)) = F (zk) = α,

which had to be proven. �

Remark 3.6. If the domain of definition of F is convex, then the two previous
propositions can be summarized as follows:

Let K ⊂ R
n be convex, F : K −→ R be a continuous, translation invariant

function. Suppose x, y ∈ K and suppose that there exist u, v ∈ s(x, y) (u �= v)
such that F (u) = F (v) = α. Then F (p) = α holds for all points p ∈ s(x, y).

Finally, we will formalize a theorem that is a further generalization of the
previous results. Namely, instead of two points, we will consider the affine hull
of finitely many points having the same function value. This time we assume
local translation invariance which will be more convenient for later applications
of the statement.

Theorem 3.7. Let ∅ �= K ⊂ R
n be open and convex, F : K −→ R be a continu-

ous, locally translation invariant function, and let x1, x2, . . . , xk ∈ K. It holds
that if F (x1) = F (x2) = · · · = F (xk) = α, then F (p) = α is fulfilled for every
p ∈ Aff(x1, x2, . . . , xk) ∩ K.

Proof. Since K is open and convex, Proposition 3.3 implies that F is transla-
tion invariant.

In the case of k = 1 we have nothing to prove, so from now on we assume
k ≥ 2. Let us observe that conv(x1, . . . , xk) ⊂ K, since K is convex. Firstly,
we will show that the value of F is α in all points of the convex hull.

Under the assumptions of the theorem, we can apply Lemma 3.4 which
ensures that if p ∈ s(xi, xj) for some i, j ∈ {1, . . . , k}, then F (p) = α holds.
Now let us consider an arbitrary point of conv(x1, . . . , xk) ⊂ K, in the form of
a convex combination of x1, . . . , xk. If the number of non-zero coefficients in
this convex combination is at most two, then the function value of this point
is α, according to the cited lemma.

Let r ≥ 3, and let us assume that the value of F is α in all such points of
conv(x1, . . . , xk) ⊂ K which can be expressed as a convex combination of at
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most r − 1 vectors from the system x1, . . . , xk. This means that if p = λ1xi1 +
· · · + λrxir for some {i1, . . . , ir} ⊂ {1, . . . , k} and λ1, . . . , λr ∈ [0, 1], then we
may suppose that neither of those coefficients is 0 or 1, because otherwise, using
the induction hypothesis, the proof is complete. However, if the assumption
holds, then we can do the following calculations:

p = (1 − λr)
(

λ1

1 − λr
xi1 + · · · +

λr−1

1 − λr
xir−1

)
+ λrxir = (1 − λr)p̃ + λrxir ,

and here for the point

p̃ :=
λ1

1 − λr
xi1 + · · · +

λr−1

1 − λr
xir−1

we have F (p̃) = α, due to the inductive hypothesis.
As p ∈ s(p̃, xir ), applying Lemma 3.4 we get F (p) = α, which means that

the function F is constant on the whole conv(x1, . . . , xn). Especially we have
obtained F (c) = α, where

c :=
1
k

x1 + · · · +
1
k

xk .

Finally, let us choose an arbitrary q ∈ Aff(x1, . . . , xk)∩K such that q �= c. We
will show that int s(c, q) ∩ conv(x1, . . . , xk) �= ∅. Let us assume

q = μ1x1 + · · · + μkxk

with some μ1, . . . , μk ∈ R such that μ1 + · · · + μk = 1, and define

M := max
{

|μj − 1
k

|
∣
∣
∣
∣ j = 1, . . . , k

}
and ε :=

1
kM

.

Now c �= q grants that M > 0 and therefore ε > 0 , too. Hence for all j =
1, . . . , k we have

−M ≤
(

μj − 1
k

)
≤ M thus − 1

k
≤ ε

(
μj − 1

k

)
≤ 1

k
=⇒

0 ≤ 1
k

+ ε

(
μj − 1

k

)
≤ 2

k
≤ 1.

This means that the point v = c+ ε(q − c) ∈ int s(c, q) is an element of the
convex hull conv(x1, . . . , xk). Indeed,

v = c + ε(q − c)

=
1
k

x1 + · · · +
1
k

xk + ε

(
μ1x1 + · · · + μkxk − 1

k
x1 − · · · − 1

k
xk

)

=
(

1
k

+ ε

(
μ1 − 1

k

))
x1 + · · · +

(
1
k

+ ε

(
μk − 1

k

))
xk,

and here the affine coordinates of v are from the interval [0, 1], according to the
calculation above. Thus v is definitely in the convex hull. Therefore F (v) = α,
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so using Corollary 3.5 for q ∈ l(c, v) we also get F (q) = α which needed to be
verified. �

3.2. Decomposition of translation invariant functions

In the previous subsection we showed that if a continuous, (locally) translation
invariant function F , defined on an open, convex set, takes the same value in
some points of its domain, then F is constant on the affine subspace spanned
by these points. However, the dimension of that subspace will be critical for us
later. We are going to present some results concerning the dimension of such
subspaces. In order to proceed to that question, we need to prove a general
existence theorem for continuous functions.

Theorem 3.8. Let p ∈ R
n and 0 < ε ∈ R be arbitrary, and let F : B(p, ε) −→

R be a continuous function. Then there exist x1, . . . , xn ∈ B(p, ε) such that
x1, . . . , xn are affinely independent and

F (x1) = · · · = F (xn).

Proof. We will prove the statement by induction on the dimension of the do-
main of definition. The one-dimensional case is trivial. From now on, let us
assume that n + 1 ≥ 2 and the theorem holds in R

n.
Therefore let us fix an arbitrary point p = (p1, . . . , pn, pn+1) ∈ R

n+1 and a
radius ε > 0. We may introduce the following notations:

B := B(p, ε) and B̃ := {(x1, . . . , xn) ∈ R
n | (x1, . . . , xn, pn+1) ∈ B}.

Furthermore, let us define the function F̃ as follows:

F̃ : B̃ −→ R, F̃ (x1, . . . , xn) := F (x1, . . . , xn, pn+1).

One can easily check that actually

B̃ = B(p̃, ε) ⊂ R
n, where p̃ = (p1, . . . , pn),

holds, while the continuity of F implies that F̃ is also a continuous function.
Hence we can apply the inductive hypothesis for the domain B̃ and the function
F̃ . Namely, there exist affinely independent points ỹ1, . . . , ỹn ∈ B̃ ⊂ R

n such
that

F̃ (ỹ1) = · · · = F̃ (ỹn).

The (n − 1 dimensional) hyperplane in R
n passing through these points will

be denoted by Ã. Now let us introduce

yj := (ỹj , pn+1) ∈ R
n+1 (j = 1, . . . , n) moreover

U := {(x, pn+1) ∈ R
n+1 | x ∈ B̃} and A := {(x, pn+1) ∈ R

n+1 | x ∈ Ã}.
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Obviously, the points y1, . . . , yn ∈ U are affinely independent in R
n+1 and the

affine subspace generated by them is A. Moreover,

F (y1) = · · · = F (yn)

follows from the definition of F̃ . Let us denote this common function value by
α.

Now if there exists z ∈ B \ A such that F (z) = α, then the proof is
finished. Indeed, according to Lemma 2.4, the system z, y1, . . . , yn is affinely
independent, consisting of n + 1 points which all have the same value of F .

Therefore, in the next step, we consider the case when there is no point in
B \A with value α. Then we may assume that there exists z ∈ U \A such that
F (z) > α (otherwise, if the value of every point in U \ A is less than α, then
we should continue the proof using the function −F and replacing α by −α).

For the remaining part of the proof let us fix such a point z ∈ U \A. Now if
there exists w ∈ B \ U such that F (w) < α, then we shall argue as follows: As
B is convex, it holds that s(w, z) ⊂ B. Furthermore, as the segment s(w, z) is
connected and F is continuous, we get that F (s(w, z)) is an interval. Therefore
there has to exist some v ∈ int s(w, z) such that F (v) = α.

Now z ∈ U and w /∈ U entails that v /∈ U . Indeed, v ∈ U would imply
w ∈ Aff U which – considering that Aff U ∩ B = U ∩ B – contradicts the
assumption w ∈ B \ U . So for the vector v we have obtained F (v) = α , while
on the other hand v /∈ U is fulfilled which also implies v /∈ A. But this is a
contradiction as we have assumed earlier that no such vector exists.

Therefore the only possible case is when F (w) > α holds for every w ∈
B \ U . Using again the continuity of F in a similar manner, we can get that
there exists a vector v ∈ B \U such that α < F (v) < F (z). With further basic
arguments using the continuity, we can conclude the existence of points

xj ∈ int s(z, yj) such that F (xj) = F (v) (j = 1, . . . , n).

This means that, for every index j = 1, . . . , n, there exists a real number
λj ∈]0, 1[ so that

xj = z + λj(yj − z).

In order to complete the proof we shall use Lemma 2.4: the points x1, . . . , xn

are affinely independent – as z was fixed in the complement of A – and for
a similar reason (namely, v ∈ B \ U) the points v, x1, . . . , xn are an affinely
independent system, as well. Due to our construction, all of these n+1 points
have function value F (v). �

Combining this theorem with the results of the previous subsection we can
verify an important property of locally translation invariant functions.

Corollary 3.9. Let p ∈ R
n and 0 < ε ∈ R be arbitrary, and F : B(p, ε) −→ R

be continuous, locally translation invariant. Then there exists 0 �= a ∈ R
n such



Vol. 96 (2022) Solutions of a system of functional equations 1191

that

F |H(p,a)∩B(p,ε) is constant.

Proof. Observe that B(p, ε) is a convex set hence F is in fact translation invari-
ant. According to Theorem 3.8 there exists a system of affinely independent
points x1, . . . , xn ∈ B(p, ε

2 ) such that F (x1) = · · · = F (xn). Let us denote the
hyperplane Aff(x1, . . . , xn) by H and let a denote a normal vector of H. Using
Theorem 3.7 we get

F |H∩B(p,ε) ≡ F (x1).

If p ∈ H then H = H(p, a) and F (p) = F (x1), so the proof is finished.
Otherwise, if p /∈ H holds then let us consider the following points:

yj := xj + (p − x1) (j = 1, . . . , n).

We shall observe that

‖yj − p‖ = ‖xj + p − x1 − p‖ ≤ ‖xj − p‖ + ‖x1 − p‖ <
ε

2
+

ε

2
= ε ,

thus yj ∈ B(p, ε). On the other hand y1 = p holds. Hence, from the translation
invariance, the equalities F (yj) = F (p) follow for all indices j = 1, . . . , n.
It is also clear that the system y1, . . . , yn is affinely independent, while the
affine hull of these points is H + (p − x1) = H(p, a). Therefore we may apply
Theorem 3.7 once again and obtain

F |H(p,a)∩B(p,ε) ≡ F (p),

which had to be proven. �

The meaning of the previous statement is that, for every interior point p
in the n dimensional domain of definition of a continuous, locally translation
invariant function, there exists an n − 1 dimensional open disc with center
p such that the function is constant on this ball. We immediately note that,
of course, these are not open balls in the standard topology of Rn, they are
intersections of proper open balls and appropriate (n − 1 dimensional) hyper-
planes. However, for the sake of simplicity, we will continue to use the term
n − 1 dimensional disc, when it is not confusing.

We would like to show that under certain circumstances we can claim more
than this local property. Namely, that a continuous, locally translation in-
variant function is globally constant on parallel hyperplanes, if the domain of
definition is open and connected. In order to prove such a statement, we will
need the following technical lemma.

Lemma 3.10. Let n be a positive integer and consider some nonempty, closed
intervals I1 = [a1, b1] ⊂ R , . . . , In = [an, bn] ⊂ R such that Ii and Ii+1 have a
common endpoint, i.e.

{ai , bi} ∩ {ai+1 , bi+1} �= ∅ (i = 1, . . . , n − 1).
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Let us also assume that I1 and In have a common endpoint as well, i.e.
{a1 , b1} ∩ {an , bn} �= ∅.

Moreover let X be an arbitrary set, and for every k = 1, . . . , n consider
fk : Ik −→ X such that for any index i = 1, . . . , n − 1 the functions fi and
fi+1 have the same function value in at least one of the common endpoints of
the intervals Ii and Ii+1, i.e

∃v ∈ {ai , bi} ∩ {ai+1 , bi+1} : fi(v) = fi+1(v) (i = 1, . . . , n − 1).

Furthermore let us suppose that for all indices i, j = 1, . . . , n (i �= j) the
following holds: if Ii ∩ Ij �= ∅ and fi(x) = fj(x) for some element x ∈ Ii ∩ Ij,
then fi|Ii∩Ij = fj |Ii∩Ij .

Under these assumptions we may claim that if w is a common endpoint of
I1 and In then f1(w) = fn(w).

Remark 3.11. We shall note that in this lemma we did not exclude singleton
intervals. This fact will be important later in some proofs.

Proof. In the first place we verify an auxiliary statement from which we can
easily deduce the implication of the lemma. The statement is the following: for
arbitrary indices i �= j it holds that if Ii ∩ Ij �= ∅ then there exists p ∈ Ii ∩ Ij

such that fi(p) = fj(p). Therefore let i and j be fixed indices and let us
introduce the notation m = |i − j|.

We will prove this statement by induction on m. The case of m = 1 fol-
lows directly from the assumptions of the lemma: Ii and Ii+i have a common
endpoint where the corresponding function values are equal (i = 1, . . . , n − 1).

Now let m ≥ 2 and suppose that the statement holds for smaller natural
numbers. Let us consider the intervals Ii and Ij where j = i + m and assume
M = Ii ∩ Ij �= ∅. We can show that there exists an index k such that i < k < j
and M ∩ Ik �= ∅.

We will consider 4 cases, depending on the order of the endpoints of Ii and
Ij . We shall note that these cases are not completely separated, although they
cover all possibilities.

1. ai ≤ aj ≤ bj ≤ bi. In this case M = [aj , bj ], therefore Ij−1 ∩ M �= ∅
follows from the assumptions of the lemma, as (at least) one endpoint of
Ij−1 is contained in Ij , hence in M as well.

2. aj ≤ ai ≤ bi ≤ bj . Then M = [ai, bi] and therefore Ii+1 ∩ M �= ∅ , for
analogous reasons as before.

3. ai < aj ≤ bi < bj . In this case M = [aj , bi]. If bi is a common endpoint
of Ii+1 and Ii , then k = i + 1 is a suitable choice. Similarly, if aj is a
common endpoint of Ij−1 and Ij , then k = j−1 is appropriate. If neither
of these are fulfilled then we have ai ∈ Ii+1 and bj ∈ Ij−1. Clearly, this
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means

ai, bj ∈
j−1⋃

l=i+1

Il .

Let us observe that if two nonempty, closed intervals of R have a common
point, then their union is also a closed interval. Because of that, the set⋃j−1

l=i+1 Il is a closed interval as well. Therefore aj ∈ ⋃j−1
l=i+1 Il holds as

ai < aj < bj was supposed. This means that there exists a required index
i < k < j such that Ik ∩ M �= ∅.

4. aj < ai ≤ bj < bi. This means M = [ai, bj ]. We may use an argumenta-
tion analogous to the previous case: if ai is a common endpoint of Ii+1

and Ii , then choose k = i + 1. Similarly, if bj is a common endpoint of
Ij−1 and Ij , then k = j − 1 is appropriate. Otherwise aj ∈ Ij−1 and
bi ∈ Ii+1 thus

aj , bi ∈
j−1⋃

l=i+1

Il , which is a closed real interval.

Hence ai ∈ ⋃j−1
l=i+1 Il so there exists i < k < j such that ai ∈ Ik, conse-

quently Ik ∩ M �= ∅.

Therefore we have investigated every possibility, and we have obtained that a
required interval Ik must exist. Let p ∈ Ik∩M . Apply the inductive hypothesis,
firstly to the intervals Ii and Ik then for Ik and Ij : according to the hypothesis
there exist elements x ∈ Ii ∩ Ik and y ∈ Ik ∩ Ij such that fi(x) = fk(x) and
fk(y) = fj(y). The assumptions of the lemma ensure

fi|Ii∩Ik = fk|Ii∩Ik and fk|Ik∩Ij = fj |Ik∩Ij ,

especially fi(p) = fk(p) = fj(p).
Therefore we have verified the auxiliary statement formulated at the begin-

ning of the proof. The implication of the lemma is a straightforward corollary
of that: since I1 ∩ In �= ∅ was assumed, there exists p ∈ I1 ∩ In such that
f1(p) = fn(p), thus for any common endpoint w (or, in fact, for any point of
the intersection I1 ∩ In) the equation

f1(w) = fn(w) follows from f1|I1∩In = fn|I1∩In .

�

From now on, for any fixed vector a ∈ R
n, pa will denote the inner product

with a (as a linear functional):

pa(x) = 〈x , a〉 (x ∈ R
n).
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Proposition 3.12. Let ∅ �= D ⊂ R
n be an open, connected set and F : D −→ R

be a continuous, locally translation invariant function. Then there exists 0 �=
a ∈ R

n such that pa(x) = pa(y) implies F (x) = F (y) for all x, y ∈ D.

Proof. Firstly, let x, y ∈ D be two arbitrary, but different points. As D is an
open, connected set, there exists a polygonal path in D, joining x and y (see
Proposition 2.6). Precisely: there exist z0, z1, . . . , zm ∈ D such that

z0 = x, zm = y and Sk := s(zk−1, zk) ⊂ D (k = 1, . . . ,m).

The polygonal path S = S1∪· · ·∪Sm is compact while the set Rn \D is closed.
Therefore, according to Proposition 2.5, there exists a real number r > 0 such
that

T :=
⋃

s∈S

B(s, r) ⊂ D.

Observe that the open sets

Tk :=
⋃

s∈Sk

B(s, r) (k = 1, . . . ,m)

are convex, so the restrictions F |Tk
are translation invariant, according to

Proposition 3.3. Using Corollary 3.9 we get that there exists 0 �= a ∈ R
n such

that F is constant over the n − 1 dimensional disc H(z0, a) ∩ B(z0, r).
We will show that for this vector a the implication of our proposition holds.

Firstly, the translation invariance on T1 implies that, for each s ∈ S1 , F is
constant over the translated disc H(s, a) ∩ B(s, r), especially F |H(z1,a)∩B(z1,r)

is also constant. By analogous reasoning for T2, T3 and so on, we obtain that
F |H(zm,a)∩B(zm,r) is constant, that is, F |H(y,a)∩B(y,r) is constant. Since y ∈ D
can be chosen arbitrarily, we get the following: for all z ∈ D there exists ε > 0
such that F |H(z,a)∩B(z,ε) is constant.

Using Theorem 3.7 we can deduce immediately that, for all z ∈ D and
r > 0 such that B(z, r) ⊂ D, it holds that

F |H(z,a)∩B(z,r) is constant.

From now on assume that pa(x) = pa(y) and consider the previous construction
of S and T . For every k ∈ {1, . . . , m} the sets Ik = pa(Sk) ⊂ R are images
of the compact, connected line segments Sk, under the continuous function
pa therefore they are also compact and connected. This means that they are
bounded, closed intervals.

Moreover, if pa(zk−1) < pa(zk) holds for some index k ∈ {1, . . . ,m}, then
by using the bilinearity of the inner product we obtain

pa((1 − λ)zk−1 + λzk) = (1 − λ)pa(zk−1) + λpa(zk)
= pa(zk−1) + λ(pa(zk) − pa(zk−1))
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where λ ∈ [0, 1]. From this calculation it is clear that in this case

pa(zk−1) ≤ pa(z) ≤ pa(zk), holds for any z ∈ Sk.

For similar reasons, we may claim that if pa(zk−1) > pa(zk) is fulfilled for an
index k ∈ {1, . . . , m} then

pa(zk) ≤ pa(z) ≤ pa(zk−1), holds for any z ∈ Sk ,

and if pa(zk−1) = pa(zk), then

pa(zk) = pa(z) = pa(zk−1) holds for all z ∈ Sk .

As a summary of the three cases we get that, for all k = 1, . . . , m, we have

Ik = [ min{pa(zk−1), pa(zk)} , max{pa(zk−1), pa(zk)} ] . (1)

We proceed with some further investigation of these three types of intervals
Ik.

1. If pa(zk−1) < pa(zk) then Ik = [pa(zk−1), pa(zk)]. For such intervals it is
easy to see that the function pa|Sk

: Sk −→ Ik is bijective. Surjectivity is
obvious while injectivity can be justified as follows: if pa(s) = pa(t) was
true for two different points s, t ∈ Sk, then this would imply

〈s, a〉 = 〈t, a〉, and therefore 〈s − t, a〉 = 0 =⇒ t ∈ H(s, a).

Hence the whole line segment Sk would be contained in the affine sub-
space H(s, a), especially pa(zk−1) = pa(zk) would hold, but this is a
contradiction. So pa|Sk

is indeed a bijection, thus the definition of the
function

fk : Ik −→ R fk(c) := F (p−1
a (c))

is correct. Note that for the endpoints of Ik the following equations hold:

fk(pa(zk−1)) = F (zk−1) and fk(pa(zk)) = F (zk).

2. If pa(zk−1) > pa(zk) then Ik = [pa(zk), pa(zk−1)]. By analogous reasoning
one can see that pa|Sk

: Sk −→ Ik is a bijection, so we may define a
function fk with the same formula

fk : Ik −→ R fk(c) := F (p−1
a (c)).

Especially, at the endpoints of Ik it holds that fk(pa(zk)) = F (zk) and
fk(pa(zk−1)) = F (zk−1).

3. If pa(zk−1) = pa(zk) then

Ik = [ pa(zk−1), pa(zk−1) ] = [pa(zk), pa(zk)] = {pa(zk)} = {pa(zk−1)}.

These singleton intervals occur if and only if the segment Sk is contained
in a hyperplane with normal vector a. However, that being so we may
apply Theorem 3.7 for the convex set: Tk =

⋃
s∈Sk

B(s, r). As the function
F is constant on the n−1 dimensional disc H(zk, a)∩B(zk, r) with value



1196 P. Tóth AEM

F (zk), due to Theorem 3.7 F |Sk
≡ F (zk) is fulfilled. Nevertheless, in the

case of these singleton intervals the definition of fk remains the same:

fk : Ik −→ R fk (pa(zk)) := F (zk).

As a summary we may claim that for every index k = 1, . . . , m the (not
necessarily different) endpoints of an above defined interval Ik are exactly
the values of pa at the endpoints of the segment Sk, in the correct order.
Furthermore, the value of fk at any endpoint of Ik is equal to the value of F
at the corresponding endpoint of Sk .

In the next part of the proof we will show that the intervals Ik and functions
fk fulfill the assumptions of Lemma 3.10.

First of all, due to Eq. (1) the intervals Ii and Ii+1 have a common endpoint,
namely pa(zi) (i = 1, . . . ,m − 1). Furthermore, since z0 = x and zm = y, it
holds that pa(z0) = pa(zm) which means that I1 and Im have a common
endpoint. Moreover it is also clear, that at an appropriate common endpoint
of two intervals with adjacent indices, the corresponding function values are
equal, because the construction above implies

fi(pa(zi)) = F (zi) = fi+1(pa(zi)) (i = 1, . . . , m − 1).

To check the last assumption of Lemma 3.10, let us consider two intervals

Ii = pa( s(zi−1, zi) ) and Ij = pa( s(zj−1, zj) ),

where i, j ∈ {1, . . . , m}, i �= j such that fi(c) = fj(c) is fulfilled for some
element c ∈ Ii ∩ Ij .

We shall prove fi|Ii∩Ij = fj |Ii∩Ij . If either Ii or Ij is a singleton, then it
holds automatically. Thus the only interesting case is when both intervals are
proper (none of them is a singleton) and their intersection is also proper.

Let d ∈ Ii ∩ Ij such that d �= c. That being so, there exist (uniquely
determined) points

v, ṽ ∈ Si and w, w̃ ∈ Sj

such that v �= ṽ and w �= w̃, moreover pa(v) = pa(w) = c and pa(ṽ) = pa(w̃) =
d. Besides that, let us define two unit vectors

b1 =
1

‖ṽ − v‖ (ṽ − v) and b2 =
1

‖w̃ − w‖ (w̃ − w).

It is easy to see that 〈b1, a〉 �= 0 and 〈b2, a〉 �= 0. Otherwise Si or Sj would be
contained in a hyperplane orthogonal to a, which would entail that its image
under pa shrinks to a single point, but this was excluded. Furthermore, by
calculating

〈b1, a〉 =
1

‖ṽ − v‖〈ṽ − v, a〉 =
〈ṽ, a〉 − 〈v, a〉

‖ṽ − v‖ =
d − c

‖ṽ − v‖ and

〈b2, a〉 =
1

‖w̃ − w‖〈w̃ − w, a〉 =
〈w̃, a〉 − 〈w, a〉

‖w̃ − w‖ =
d − c

‖w̃ − w‖
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we obtain that the sign of 〈b1, a〉 and 〈b2, a〉 is the same. Without loss of
generality we may assume |〈b1, a〉| ≤ |〈b2, a〉| (if necessary, define the unit
vectors inversely, i.e. use the points of Sj for b1 and use the points of Si for
b2). This way we may introduce

λ :=
〈b1, a〉
〈b2, a〉 ∈ ]0, 1].

We shall observe that this implies, for all s ∈ S,

s +
r

2
b1 ∈ B

(
s,

r

2

)
⊂ T and s + λ

r

2
b2 ∈ B

(
s,

r

2

)
⊂ T.

Furthermore, it also holds that
〈
w + λ

r

2
b2 −

(
w +

r

2
b1

)
, a

〉
=

r

2
〈λb2 − b1 , a〉

=
r

2

( 〈b1, a〉
〈b2, a〉 〈b2, a〉 − 〈b1, a〉

)
= 0

which means w + λ r
2b2 ∈ H(w + r

2b1, a).
Here using the local translation invariant property of F we get

F
(
v +

r

2
b1

)
= F

(
w +

r

2
b1

)
.

We should also keep in mind that we already concluded that F is constant on
the n − 1 dimensional disc B(w + r

2b1, r) ∩ H(w + r
2b1, a). Now

‖w + λ
r

2
b2 −

(
w +

r

2
b1

)
‖ =

r

2
‖b1 − λb2‖ ≤ r

2
(‖b1‖ + ‖λb2‖) =

r

2
(1 + λ) ≤ r.

Observe that the first inequality is strict, because otherwise we would have
b1 = γ(−λb2) for some γ ≥ 0. However, this would imply

0 < λ =
〈b1, a〉
〈b2, a〉 =

〈γ(−λb2), a〉
〈b2, a〉 = γ(−λ) ≤ 0

which is a contradiction. Hence we have in fact w + λ r
2b2 ∈ B(w + r

2b1, r). As
w + λ r

2b2 ∈ H(w + r
2b1, a) was obtained previously, we may claim that

w + λ
r

2
b2 ∈ B

(
w +

r

2
b1, r

)
∩ H(w +

r

2
b1, a) and therefore

F
(
w + λ

r

2
b2

)
= F

(
w +

r

2
b1

)
= F

(
v +

r

2
b1

)
.

We shall observe that this process works not just for r
2 , but for an arbitrary

real number 0 < � ≤ r
2 we can get

F (w + λ�b2) = F (w + �b1) = F (v + �b1).

With some basic calculations analogous to the previously discussed ones it is
easy to see that besides F (w +λ�b2) = F (v +�b1), the equation pa(v +�b1) =
pa(w + λ�b2) holds as well, for any � ∈]0, r

2 ].
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Now let us introduce the notation

N :=
⌊

2‖ṽ − v‖
r

⌋
.

We shall execute this translation process N times for r
2 , starting every step

from the most recently obtained points v + lr
2 b1 and w + λ lr

2 b1 where l =
0, 1, . . . , N − 1. This way one gets

F

(
v +

Nr

2
b1

)
= F

(
w + λ

Nr

2
b2

)
.

If necessary, we may do one final step, but instead of r
2 now with some 0 <

δ < r
2 . Hence we get that F (ṽ) = F (w̃).

Finally, we shall utilize the fact that Ii and Ij are proper intervals and
not singletons. Therefore the functions fi and fj were defined with the help
of the bijective restrictions pa|Si

and pa|Sj
. Hence, for the considered number

d ∈ Ii ∩ Ij , we have

fi(d) = F (p−1
a (d)) = F (ṽ) = F (w̃) = F (p−1

a (d)) = fj(d).

As d was an arbitrary element of Ii ∩ Ij , we have checked that all the as-
sumptions of Lemma 3.10 are fulfilled. Use the implication of the lemma
for pa(z0) = pa(zm) which is a common endpoint of I1 and Im . Therefore
f1(pa(z0)) = fm(pa(zm)), but considering that z0 = x and zm = y, this mean-
s

F (x) = f1(pa(x)) = f1(pa(z0)) = fm(pa(zm)) = fm(pa(y)) = F (y),

which completes our proof. �

Corollary 3.13. Let ∅ �= D ⊂ R
n be an open, connected set and F : D −→ R be

a continuous, locally translation invariant function. If there exist x ∈ D and
ε > 0 such that B(x, ε) ⊂ D and F |B(x,ε) is constant, then F is constant on
the whole set D.

Proof. Let y ∈ D\{x} be an arbitrary point, and let us choose a vector 0 �= b ∈
R

n such that 〈b, y − x〉 = 0 and therefore pa(x) = pa(y) holds. In the proof of
Proposition 3.12 we have shown that, for any x ∈ D, 0 �= a ∈ R

n and r > 0, if
B(x, r) ⊂ D and F is constant on the n−1 dimensional disc H(x, a)∩B(x, r),
then F is globally constant on the hyperplanes orthogonal to a. Now F |B(x,ε)

is constant, so especially for the vector b we get that pb(x) = pb(y) implies
F (x) = F (y). Since y was an arbitrary point of D, we have shown that F is
constant on the whole domain. �

Before proving our main result we recall a well-known fact about real func-
tions.

Theorem 3.14. Let I ⊂ R be an interval and f : I −→ R be a continuous,
injective function. Then f is strictly monotone.
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Remark 3.15. The previous statement is listed among some other fundamental
properties of continuous real functions in [5, Theorem 8.1]. The main idea of the
proof is the intermediate value property of continuous, real valued functions.

Theorem 3.16. Let ∅ �= D ⊂ R
n be a connected, open set and let F : D −→

R be a continuous, locally translation invariant function. Then either F is
constant, or there exists a vector 0 �= a = (a1, . . . , an) ∈ R

n and a strictly
monotone, continuous function f : pa(D) −→ R such that

F (x1, . . . , xn) = f(a1x1 + · · · + anxn)

holds for all (x1, . . . , xn) ∈ D .

Proof. According to Proposition 3.12 there exists a vector 0 �= a ∈ R
n such

that x, y ∈ D , pa(x) = pa(y) implies F (x) = F (y). Now pa(D) ⊂ R is connect-
ed since pa is continuous and D is connected. Thus pa(D) is a nonempty real
interval. Obviously it cannot be a singleton, because that would mean that the
set D is contained in an n − 1 dimensional hyperplane, which contradicts that
D is open.

For every c ∈ pa(D) let us consider an element xc ∈ D such that pa(xc) = c.
Then we shall define the function f in the following way:

f : pa(D) −→ R f(c) := F (xc).

Let us observe that the properties of a mentioned before ensure that f is well-
defined (i.e. independent of the choice of xc). Indeed, if we use some other x̃c

in the definition of f instead of xc, then pa(x̃c) implies F (x̃c) = F (xc) = f(c),
so f remains the same.

Now we may show that f is continuous. For this purpose let us fix an
arbitrary c0 ∈ pa(D) and choose y0 ∈ D so that pa(y0) = c0. Since D is
open, there exists a real number r0 > 0 such that B(y0, r0) ⊂ D. Therefore,
if r < r0

‖a‖ , then y0 + λa ∈ D holds for all λ ∈ [−r, r]. This means that by
using the notation S := s(y0 − ra, y0 + ra) we have that S ⊂ D and c0 is an
interior point of pa(S). Moreover, since S is compact and connected, we get
that pa(S) is a closed interval while clearly it is a proper interval, as S is not
contained in any hyperplane orthogonal to a. Furthermore, it is easy to check
that pa|S : S −→ pa(S) is a bijective function. Therefore

f(c) = F (p−1
a (c)) holds for all c ∈ pa(S).

Here pa|S is a restriction of a linear function, so it is continuous. As its domain
of definition is a compact line segment, we get that the inverse of pa|S is con-
tinuous, too. Hence f is a composition of two continuous functions, therefore
f itself is continuous on pa(S). Recall that c0 is an interior point of pa(S), so f
is continuous in an open neighborhood of c0. Since c0 ∈ pa(D) was arbitrary,
we have obtained that f is continuous on its whole domain of definition pa(D).
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We shall prove that if f is not injective then F is constant. If there exist
s, t ∈ pa(D), s < t such that f(s) = f(t), then this means that there exist
xs, xt ∈ D such that

pa(xs) �= pa(xt) but F (xs) = F (xt).

Now if f |[s,t] is constant, then clearly F is also constant on an open ball and
hence constant on the whole domain D, according to Corollary 3.13. Therefore
we may assume that f attains one of its extrema in an inner point of the interval
[s, t]. Suppose that there exists u ∈ ]s, t[ such that f(u) = max{f(c) | c ∈ [s, t]}
(the case when the minimum is attained in an inner point can be handled
analogously). Let xu ∈ D such that pa(xu) = u. Then there exists ε > 0 such
that B := B(xu, ε‖a‖) ⊂ D.

Now T := s(xu − εa, xu + εa) ⊂ B. Moreover u is a local maximum and
therefore, due to the Darboux-property of the continuous function f |pa(S),
there exist x1, x2 ∈ S and c ∈ pa(D) such that pa(x1) < u < pa(x2) and

F (x1) = f(pa(x1)) = c = f(pa(x2)) = F (x2).

This implies

F |H(x1,a)∩B ≡ c ≡ F |H(x2,a)∩B .

Consequently, there exist n + 1 affinely independent points in B where F has
the same value (namely c). According to Theorem 3.7, F is then constant on
B and therefore on D as well.

So we have shown that if F is not constant on D then f must be injective.
But f is also continuous hence it is strictly monotone as well. �

4. Continuous solutions of a system of functional equations

Let us consider a given set ∅ �= S ⊂ R
n and a function F : S −→ R . For every

k = 1, . . . , n let us define the sets Ek(S, F ) ⊂ R
2 in the following way:

Ek(S, F ) ={ (u, v) ∈ R
2 | ∃(x1, . . . , xn) ∈ S :

F (x1, . . . , xn) = u and (x1, . . . , xk−1, xk + v, xk+1, . . . , xn) ∈ S }.

Suppose that there exist some functions Ψk : Ek(S, F ) −→ R (k = 1, . . . , n)
such that the following equations hold:

F (x1 + t1, x2, . . . , xn) = Ψ1(F (x1, x2, . . . , xn), t1) (1)

F (x1, x2 + t2, . . . , xn) = Ψ2(F (x1, x2, . . . , xn), t2) (2)
...

F (x1, x2, . . . , xn + tn) = Ψn(F (x1, x2, . . . , xn), tn) (n).

Then we say that F is a solution of the system of composite functional equa-
tions (1) − (n).
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In this section we will describe the continuous solutions of this system of
functional equations, using the previously verified results about locally trans-
lation invariant functions.

From now on, a vector v ∈ R
n will often be represented by its coordinate

vector with respect to the standard basis.

Lemma 4.1. Let ∅ �= D ⊂ R
n be an open set and F : D −→ R be a continuous

solution of the system of functional equations (1) − (n). Then F is locally
translation invariant.

Proof. Let x, y ∈ D such that F (x) = F (y) and suppose that for some radius
0 < r ∈ R the inclusions B(x, r) ⊂ D and B(y, r) ⊂ D hold. Moreover suppose
that ‖h‖ < r is fulfilled for some vector h ∈ R

n . Due to the assumptions, it is
obvious that

(x1 + h1, . . . , xk + hk, xk+1, . . . , xn) ∈ D and
(y1 + h1, . . . , yk + hk, yk+1, . . . , yn) ∈ D

hold for all indices k = 1, . . . , n. Therefore we can execute the following calcu-
lations:

F (x + h) = F (x1 + h1, x2 + h2, . . . , xn + hn)
= Ψ1(F (x1, x2 + h2, . . . , xn + hn), h1)
= Ψ1(Ψ2(F (x1, x2, x3 + h3, . . . , xn + hn), h2), h1) = . . .

= Ψ1(Ψ2(. . . (Ψn(F (x1, x2, . . . , xn), hn) . . . ), h2), h1)
= Ψ1(Ψ2(. . . (Ψn(F (y1, y2, . . . , yn), hn) . . . ), h2), h1) = . . .

= Ψ1(Ψ2(F (y1, y2, y3 + h3, . . . , yn + hn), h2), h1)
= Ψ1(F (y1, y2 + h2, . . . , yn + hn), h1)
= F (y1 + h1, y2 + h2, . . . , yn + hn) = F (y + h).

�

Theorem 4.2. Let ∅ �= D ⊂ R
n be a connected, open set and let F : D −→ R

be a continuous solution of the system of functional equations (1) − (n). Then
either F is constant, or there exist a vector 0 �= a = (a1, . . . , an) ∈ R

n and a
strictly monotone, continuous function f : pa(D) −→ R such that

F (x1, . . . , xn) = f(a1x1 + · · · + anxn)

holds for all (x1, . . . , xn) ∈ D .

Proof. It immediately follows from Theorem 3.16 and Lemma 4.1. �
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5. Application in mathematical economics

In this section we are going to use our previous decomposition theorems in
order to characterize the Cobb–Douglas type utility functions with a system
of functional equations.

Let us introduce a notation for such vectors of Rn that have only positive
coordinates:

R
n
+ := {(x1, . . . , xn) ∈ R

n | x1 > 0, . . . , xn > 0}
and especially R+ :=]0,+∞[.

Definition 5.1. Consider a subset ∅ �= D ⊂ R
n
+ and let A,α1, . . . , αn ∈ R+ be

given positive constants. Furthermore, let the function u : D −→ R be defined
with the following formula:

u(x1, . . . , xn) = A · xα1
1 · . . . · xαn

n ((x1, . . . , xn) ∈ D) .

Then u is called a Cobb–Douglas utility function.

A utility function u : D −→ R always generates a preference relation �u

on its domain of definition:

x �u y ⇐⇒ u(x) ≤ u(y) (x, y ∈ D).

However, in mathematical economics the preference relation generated by a
utility function is more relevant than the function itself [3]. It is easy to see
that if the utility function is composed with a strictly increasing real function
then the generated preference relation remains the same. Hence, if u is a Cobb–
Douglas utility function and ϕ is a strictly increasing real function, then the
composite function ϕ ◦ u shall be considered as a Cobb–Douglas type utility
function.

Now let ∅ �= S ⊂ R
n be a given set and F : S −→ R be a given function.

At the beginning of Section 4 we defined the sets Ek(S, F ). We shall introduce
a similar notation which will be useful in the formulation and proof of the
following theorem. For every k = 1, . . . , n let us define Gk(S, F ) ⊂ R

2 in the
following way:

Gk(S, F ) ={ (a, b) ∈ R
2 | ∃(x1, . . . , xn) ∈ S :

F (x1, . . . , xn) = a and (x1, . . . , xk−1, xk · b, xk+1, . . . , xn) ∈ S }.

Theorem 5.2. Let D ⊂ R
n
+ be a connected, open set and u : D −→ R be a

continuous function which is strictly increasing in all of its variables. Then
u is a Cobb–Douglas type utility function if, and only if, there exist some
functions

Φk : Gk(D,u) −→ R (k = 1, . . . , n)
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with the following property: for all (x1, . . . , xn) ∈ D, tk ∈ R+ such that
(x1, . . . , xk−1, xk · tk, xk+1, . . . , xn) ∈ D the equations

u(x1, . . . , xk−1, xk · tk, xk+1, . . . , xn) = Φk(u(x1, . . . , xn), tk)

are fulfilled for all k = 1, . . . , n.

Proof. Firstly, let u be a Cobb–Douglas type utility function i.e.

u(x1, . . . , xn) = ϕ (xα1
1 · . . . · xαn

n ) ,

where the exponents αj (j = 1, . . . , n) are positive and ϕ is strictly monotone.
Then we can define appropriate functions Φk (k = 1, . . . , n) in the following
way

Φk(a, b) = ϕ
(
ϕ−1(a) bαk

)
, where (a, b) ∈ Gk(D,u).

To check that the requirements of the theorem are fulfilled we shall calculate

u(x1, . . . , xk−1, xk · tk, xk+1, . . . , xn)
= ϕ

(
xα1
1 . . . x

αk−1
k−1 (xk · tk)αk x

αk+1
k+1 . . . xαn

n

)
= ϕ (xα1

1 . . . xαn
n · tαk

k )

= ϕ
(
ϕ−1 (u(x1, . . . xn)) · tαk

k

)
= Φk(u(x1, . . . , xn), tk).

Conversely, let us assume that u is continuous, strictly increasing in all of its
variables and it is a solution of the system of composite functional equations

u(x1, . . . , xk−1, xk · tk, xk+1, . . . , xn) = Φk(u(x1, . . . , xn), tk)

for every k = 1, . . . , n. Now we may define the set

S = { (ln x1, . . . , ln xn) ∈ R
n | (x1, . . . , xn) ∈ D }.

Clearly, S is connected, since it is the image of the connected set D under a
continuous function. In order to see that S is open as well, let us introduce the
function E : Rn −→ R with the formula E(y1, . . . , yn) = (ey1 , . . . , eyn). Then
E is obviously continuous and, as S is the preimage of D under E, we get that
S is open. Let us define the function v : S −→ R in the following way:

v(y1, . . . , yn) = u (ey1 , . . . , eyn) , where (y1, . . . , yn) ∈ S.

In fact, here v = u ◦ E holds, therefore v is continuous and v(S) = u(D)
also holds. Furthermore, the exponential function is strictly increasing, thus
v is strictly increasing in all of its variables. We shall also observe that, if we
introduce the functions

Ψk : Ek(S, v) −→ R , Ψk(a, b) = Φk(a, eb)

for every k = 1, . . . , n , then

v(y1, . . . , yk−1, yk + sk, yk+1, . . . , yn)
= u(ey1 , . . . , eyk−1 , eyk · esk , eyk+1 , . . . , eyn)
= Φk (u(ey1 , . . . , eyn), esk) = Ψk (v(y1, . . . , yn), sk)
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holds for all (y1, . . . , yn) ∈ S and sk ∈ R, fulfilling

(y1, . . . , yk−1, yk + sk, yk+1, . . . , yn) ∈ S.

Consequently v : S −→ R is a continuous solution of the system of functional
equations

v(y1, . . . , yk−1, yk + sk, yk+1, . . . , yn) = Ψk(v(y1, . . . , yn), sk)

for every k = 1, . . . , n. Obviously v is not constant, therefore, due to Theo-
rem 4.2, there exist a vector 0 �= a = (a1, . . . , an) ∈ R

n and a continuous,
strictly monotone real function f such that

v(y1, . . . , yn) = f(a1y1 + · · · + anyn). ((y1, . . . yn) ∈ S)

Since v is strictly increasing in all of its variables, one can easily see that
either all the coordinates of a are positive and f is strictly increasing, or all
coordinates are negative and f is strictly decreasing. Without loss of generality
we can restrict ourselves to the first case, as one can easily check that a is
determined only up to a non-zero multiplicative constant.

From this result we can instantly conclude that

u(x1, . . . , xn) = v(lnx1, . . . , ln xn)
= f(a1 ln x1 + · · · + an ln xn) = (f ◦ ln)(xa1

1 · . . . · xan
n )

holds for all (x1, . . . , xn) ∈ D. Here f and ln are strictly increasing, thus f ◦ ln
is also strictly increasing, which means that u is a Cobb–Douglas type utility
function. �
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