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1. Introduction

We start our discussion with a function g ∈ C[0, 1] := {f : [0, 1] → R :f is
continuous on [0,1]} with dimGg > 1. Here and in the following, we denote
the graph of a function g by Gg. In the present informal discussion, we use
dim to denote a fractal dimension. For the existence of such functions g, see,
for instance, [24].

The function f : [0, 1] → R defined by f(x) :=
x∫

0

g(t)dt will have the

following properties:

dim Gf = 1 and dimGf ′ = dim Gg > 1.

If we approximate f by Bernstein polynomials Bn(f) of order n,

Bn(f)(x) :=
n∑

k=0

(
n

k

)

f

(
k

n

)

xk(1 − x)n−k,

then Bn(f) converges uniformly to f and (Bn(f))′ converges uniformly to
f ′ = g. (We refer the interested reader to [13] for Bernstein polynomials and
their properties.) Note that (Bn(f))′ is again a polynomial and, thus, the
fractal dimension of (Bn(f))′ is equal to one. The above conveys that the
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approximation of a function by Bernstein polynomials preserves the function
class but not the dimension of its derivative.

The current article targets to study approximation aspects with respect to
fractal dimensions of a function and its derivative.

The structure of this paper is as follows. After a brief introduction to fractal
dimensions in Sect. 2, the novel concept of dimension preserving approximation
is introduced in Sect. 3 and some of its properties are discussed. Section 4 deals
with the restriction and extension of continuous functions in regards to fractal
dimensions.

2. Hausdorff dimension, box dimension, and packing dimension

In this section, we introduce those fractal dimensions that are relevant for the
present paper. These are the Hausdorff dimension, the box dimension, and the
packing dimension defined for nonempty subsets of a separable metric space
(X, dX). For more details about these fractal dimensions and for proofs, we
refer the interested reader to, for instance, [11,12,19].

To this end, let (X, dX) be a separable metric space. For a non-empty subset
U of X, the diameter of U is defined as

|U | := sup{dX(x, y) : x, y ∈ U}.

Let F be a subset of X and s a non-negative real number. The s-dimensional
Hausdorff measure of F is defined by

Hs(F ) := lim
δ→0+

inf

{ ∞∑

i=1

|Ui|s : F ⊆
∞⋃

i=1

Ui and |Ui| < δ

}

,

where the infimum is taken over all countable covers {Ui}i∈N of F by sets
Ui ⊂ F with |Ui| < δ.

Definition 2.1. Let F ⊂ X and let s ≥ 0. The Hausdorff dimension of F is
defined by

dimH F := inf{s : Hs(F ) = 0} = sup{s : Hs(F ) = ∞}.

The Hausdorff dimension satisfies the countable stability property: Let
{Xi}i∈I be a countable family of sets. Then

dimH

(
⋃

i∈I

Xi

)

= sup
i∈I

{dimH Xi} . (2.1)

Definition 2.2. Let F be any non-empty bounded subset of X and let Nδ(F )
be the smallest number of sets of diameter at most δ which can cover F. The
lower and upper box dimensions of F are defined as

dimBF := lim
δ→0+

log Nδ(F )
− log δ
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and

dimBF := lim
δ→0+

log Nδ(F )
− log δ

,

respectively. If the above two expressions are equal, their common value is
called the box dimension of F :

dimB F := lim
δ→0+

log Nδ(F )
− log δ

.

Let us introduce a few notions that will lead to the definition of packing
dimension. Let s ≥ 0 and δ > 0. We denote by

Ps
δ (F ) := sup

{ ∞∑

i=1

|Bi|s : {Bi} is a collection of countably many

disjoint balls of radii at most δ with centres in F

}

.

It is observed that Ps
δ (F ) decreases with δ. This further implies that the limit

Ps
0(F ) = lim

δ→0+
Ps

δ (F )

exists. As Ps
δ is only a pre-measure, one defines

Ps(F ) := inf

{ ∞∑

i=1

Ps
0(Fi) : F ⊆

∞⋃

i=1

Fi

}

.

Thus, the packing measure Ps of F is the infimum of the packing pre-measures
Ps

0 of countable covers of F .

Definition 2.3. Let F ⊂ X and s ≥ 0. The packing dimension of F is defined
by

dimP F := inf{s : Ps(F ) = 0} = sup{s : Ps(F ) = ∞}.

It is known that the following inequalities hold between these types of
fractal dimensions [11]:

dimH F ≤ dimBF ≤ dimBF

and

dimH F ≤ dimP F ≤ dimBF.

Although there are several other notions of fractal dimension, this article
will deal only with those that were introduced above.
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3. Dimension preserving approximation

In this section, we present some results relating to the invariance of fractal
dimensions under certain maps. In what follows, let (X, dX) be a separable
metric space, and (Y, dY ) be a separable normed linear space. We equip the
space X × Y with a metric d defined by

d
(
(x, y), (x′, y′)

)
:=

√
dX(x, x′)2 + dY (y, y′)2.

The Lipschitz constant of a map f : X → Y is given by

Lip(f) = sup
x,x′∈X,x�=x′

dY

(
f(x), f(x′)

)

dX(x, x′)
.

A map f is said to be Lipschitz if Lip(f) < +∞.
The following result is a generalization of Theorem 1 in [20].

Lemma 3.1. Let g : X → Y be a continuous map between metric spaces
(X, dX) and (Y, dY ). For a fixed Lipschitz map f : X → Y , we have that

dimH Gf+g = dimH Gg and dimP Gf+g = dimP Gg.

Proof. We define a map Tf : Gg → Gf+g by Tf ((x, g(x))) := (x, f(x) + g(x)),
x ∈ A. It is easy to check that the map Tf is onto. Now,

d
(
Tf ((x, g(x))), Tf ((y, g(y)))

)
= d

(
(x, f(x) + g(x)), (y, f(y) + g(y))

)

=
√

dX(x, y)2 + dY

(
f(x) + g(x), f(y) + g(y)

)2

≤
√

dX(x, y)2 + 2dY (f(x), f(y))2 + 2dY (g(x), g(y))2

≤
√

dX(x, y)2 + 2L2dX(x, y)2 + 2dY (g(x), g(y))2

≤ M
√

dX(x, y)2 + dY (g(x), g(y))2

= Md
(
(x, g(x)), (y, g(y))

)
,

where L is the Lipschitz constant of f and M := max{√1 + 2L2,
√

2}.
On the other hand,

d
(
Tf ((x,g(x))), Tf ((y, g(y)))

)
= d(

(
x, f(x) + g(x)

)
,
(
y, f(y) + g(y)

)
)

=
√

dX(x, y)2 + dY

(
f(x) + g(x), f(y) + g(y)

)2

=
M

M

√
dX(x, y)2 + dY

(
f(x) + g(x), f(y) + g(y)

)2

≥ 1
M

√
dX(x, y)2(1 + 2L2) + 2dY

(
f(x) + g(x), f(y) + g(y)

)2

≥ 1
M

√
dX(x, y)2 + 2dY

(
f(x) + g(x), f(y) + g(y)

)2 + 2dY (f(x), f(y))2

≥ 1
M

d
(
(x, g(x)), (y, g(y))

)
.
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Therefore, Tf is a bi-Lipschitz map. Since the Hausdorff dimension and pack-
ing dimension are Lipschitz invariant (see, for instance, [12]), we have that
dimH Gf+g = dimH Tf (Gf ) = dimH Gf and dimP Gf+g = dimP Tf (Gf ) =
dimP Gf . �

Remark 3.2. Since the upper and lower box dimensions and the box dimension
(if it exists) are also Lipschitz invariant (cf. [12]), the previous lemma also holds
for these fractal dimensions.

It is well-known that the set of Lipschitz functions [0, 1] → R, which we
denote by Lip[0, 1], is a dense subset of C[0, 1] when the latter is endowed with
the supremum norm ‖ · ‖∞. We use this fact to prove the following theorem.

Theorem 3.3. Let 1 ≤ β ≤ 2. Then the set Sβ := {f ∈ C[0, 1] : dimGf = β} is
dense in C[0, 1].

Proof. Let f ∈ C[0, 1]. From the density of Lip[0, 1] in C[0, 1], there exists a
sequence (gk) in Lip[0, 1] which converges to f uniformly. Now let g ∈ Lip[0, 1]
be arbitrary but fixed and fix an h ∈ Sβ . We define a sequence (fk) by fk =
g + 1

kh. Since g is a Lipschitz function, Lemma 3.1 implies that fk ∈ Sβ . With
the convergence of (fk) to g, a basic real analysis result completes the proof.

�

It is known that the box dimension, Hausdorff dimension and packing di-
mension are also Lipschitz invariant and therefore the above theorem is also
valid for these dimensions.

For the next result, we require the following definition.

Definition 3.4. [2] Let T : (X, dX) → (Y, dY ) be a set-valued map between two
metric spaces.

(1) T is called lower semicontinuous at x ∈ X if for any open set U in Y
such that U ∩ T (x) �= ∅ there exists a δ > 0 satisfying U ∩ T (x′) �= ∅
whenever dX(x, x′) < δ. The map T is called lower semicontinuous if it
is lower semicontinuous at every x ∈ X.

(2) T is said to be closed if the graph of T defined by GT := {(x, y) : y ∈
T (x)} is a closed subset of X × Y .

Theorem 3.5. The set-valued function D : [1, 2] → C[0, 1] defined by

D(β) := {f ∈ C[0, 1] : dim Gf = β} = Sβ

is lower semicontinuous.

Proof. Let β ∈ [1, 2] and U be any open set such that D(β) ∩ U �= ∅. Since Sβ

is dense in C[0, 1], we obtain D(α) ∩ U �= ∅, ∀α ∈ [1, 2], establishing the proof.
�
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Remark 3.6. The set-valued map D is not closed. If we choose a sequence
of polynomials (pn) converging to a Weierstrass-type nowhere differentiable
function f with Hausdorff dimension > 1 (for examples of such functions,
see, e.g., [20]) then (1, pn) ∈ GD and (1, pn) → (1, f) but dimH(Gf ) > 1.
Therefore, we deduce that GD is not closed.

The following result is well-known in analysis but repeated for the sake of
completeness.

Theorem 3.7. [23] Let
(
fn

)
be a sequence of differentiable functions on [0, 1].

Assume that the sequence
(
fn(x0)

)
converges for some x0 ∈ [0, 1]. If (f ′

n) con-
verges uniformly on [0, 1], then

(
fn

)
converges uniformly on [0, 1] to a function

f , and

f ′(x) = lim
n→∞ f ′

n(x),

for every x ∈ [0, 1].

Note that if f is a continuously differentiable function, then dim(Gf ) = 1.
However, we cannot say anything about the dimension of its derivative. For
example, take a Weierstrass-type nowhere differentiable continuous function
g : [0, 1] → R as in, for instance [24], with 1 ≤ dim Gg ≤ 2. Then the function
f defined by f(x) =

∫ x

0
g(t)dt satisfies the following conditions: dimGf = 1 and

1 ≤ dim Gf ′ = dim Gg ≤ 2. Moreover, we emphasize the fact that functions
f defined by an integral formula are always absolutely continuous. Hence, for
such functions f we have dim Gf = 1.

Theorem 3.8. Suppose f is a continuously differentiable function with dim Gf ′

= β for some 1 ≤ β ≤ 2. Then there exists a sequence of continuously differ-
entiable functions (fn) satisfying dim Gf ′

n
= β, and (fn) converges uniformly

to f .

Proof. From Theorem 3.3 we obtain a sequence of continuous functions (gn)
with dim Ggn

= β, which converges uniformly to f ′. Define a function fn :
[0, 1] → R by fn(x) =

∫ x

0
gn(t)dt. Then, f ′

n = gn and (f ′
n) converges to f ′.

Moreover, one verifies that the sequence
(
fn(0)

)
converges to zero. In view of

Theorem 3.7, the sequence (fn) converges uniformly to f with the required
condition dim Gf ′

n
= β. �

Remark 3.9. The above theorem can be extended as follows. Suppose f is
a k−times continuously differentiable function with dimGf(k) = β for some
1 ≤ β ≤ 2. Then there exists a sequence of k−times continuously differentiable
functions (fn) satisfying dimG

f
(k)
n

= β, which converges uniformly to f .

The next theorem deals with both dimension preserving and shape preserv-
ing approximation of a continuous function.
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Theorem 3.10. Suppose f is a continuously differentiable function with dim Gf ′

= β for some 1 ≤ β ≤ 2 and f(x) ≥ 0,∀x ∈ [0, 1]. Then there exists a se-
quence of continuously differentiable functions (fn) satisfying dim Gf ′

n
= β

and fn(x) ≥ 0,∀x ∈ [0, 1], and (fn) converges uniformly to f .

Proof. The proof uses arguments similar to those given in Theorems 3.3 and
3.8, and is omitted. �

3.1. Construction of dimension preserving approximants

Hutchinson constructed parametrized curves in [16] and Barnsley [5] used it-
erated function systems (IFSs) to define a class of functions called fractal
interpolation functions (FIFs). A FIF is a continuous function whose graph is
the (attractor) invariant set of a suitably chosen IFS. For the benefit of the
reader, we briefly revisit the construction of a fractal interpolation function.
For material about IFSs and FIFs, we refer the interested reader to, e.g., [6,19].

To this end, let (X, dX) be a complete metric space and let f : X → X.
The map f is said to be a contraction (on X) if Lip(f) < 1.

Definition 3.11. Let (X, dX) be a complete metric space and let F := {f1, . . . ,
fn} be a finite set of contractions on X. Then the pair (X,F) is called an
iterated function system on X.

Definition 3.12. A nonempty compact subset K of X is called an invariant set
or an attractor of the IFS (X,F) if it satisfies the self-referential equation

K =
n⋃

i=1

fi(K). (3.1)

It can be shown that if such a set K exists, it is unique.
Let a set of interpolation points {(xi, yi) : i = 0, 1, 2, ..., N} ⊂ R

2 with
increasing abscissae 0 =: x0 < x1 < x2 < · · · < xN := 1 be given. Set
J := {1, 2, ..., N − 1, N}, I := [0, 1] and Ii := [xi−1, xi], i ∈ J. Let Li : I → In

be affine functions such that Li(x0) = xi−1 and Li(xN ) = xi for i ∈ J . Suppose
that Fi : I ×R → R are functions that are continuous in the first variable and
contractive in the second variable such that

Fi(x0, y0) = yi−1, Fi(xN , yN ) = yi. (3.2)

Define

wi(x, y) :=
(
Li(x), Fi(x, y)

)
, i ∈ J,

and consider the IFS W = (I × R, wi : i ∈ J).
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Theorem 3.13. [5] Let W be the IFS defined above. Then W has a unique
attractor G = Gf which is the graph of a continuous function f : I → R.
Moreover, f interpolates the data set {(xi, yi) : i ∈ J}, that is, f(xi) = yi for
all i ∈ {0, 1, . . . , N}.

The function f in the above theorem whose graph is the attractor of an
IFS is termed a fractal interpolation function. Main features of FIFs are that
their graphs are self-referential in the sense of (3.1) and that they usually have
non-integral box or Hausdorff dimension.

For a special choice of mappings Fi, namely, Fi(x, y) := cix + di + αiy,
where the coefficients ci and di are determined by the conditions (3.2), and
the αi ∈ (−1, 1) are free parameters, the resulting FIF is called affine.

Estimates for the Hausdorff dimension of an affine FIF were presented in
[5] and also in [10]. The box dimension of classes of affine FIFs was computed
in [7,8,14] and for FIFs generated by bilinear maps in [9]. In [15], a formula
for the box dimension of FIFs R

n → R
m was derived.

In [21,22,26], the idea of fractal interpolation was explored further leading
to a class of fractal functions associated with a given (classical) function f ∈
C(I) as follows. (See also, [19] for a similar approach.)

Let Δ := (x0, x1, . . . , xN ) be a partition of I := [0, 1] such that, without
loss of generality, 0 = x0 < x1 < · · · < xN = 1. For i ∈ J , let Li : I → Ii be
affine (see above) and Fi : I × R → R be given by

Fi(x, y) := αiy + f
(
Li(x)

) − αib(x),

where b �= f is any continuous function satisfying

b(x0) = f(x0), b(xN ) = f(xN ),

and α := (α1, α2, . . . , αN ) ∈ (−1, 1)N . The corresponding FIF, denoted by
fα
Δ,b, is called an α-fractal function. In [22], it is noted that α-fractal functions

satisfy the self-referential equation

fα
Δ,b(x) = f(x) + αi(fα

Δ,b − b)
(
L−1

i (x)
)
, ∀ x ∈ Ii, i ∈ J. (3.3)

The following result is a special case of Theorem 3 in [8] applied to Lipschitz
functions. (See, also [1, Corollary 5.1].)

Theorem 3.14. Let Δ = (x0, x1, . . . , xN ) be a partition of I = [x0, xN ] sat-
isfying x0 < x1 < · · · < xN and let α = (α1, α2, . . . , αN ) ∈ (−1, 1)N . As-
sume that f and b are Lipschitz functions defined on I with b(x0) = f(x0)
and b(xN ) = f(xN ). If the data points {(xi, f(xi)) : i = 0, 1 . . . , N} are not
collinear, then

dimB Gfα
Δ,b

=

⎧
⎨

⎩
D, if

N∑

i=1

|αi| > 1;

1, otherwise,
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where D is the unique positive solution of
∑N

i=1 |αi|aD−1
i = 1. Here, Gfα

Δ,b

denotes the graph of fα
Δ,b.

Note 3.15. We define the second modulus of smoothness with step-weight func-
tion φ(x) :=

√
x(1 − x) by

ωφ(f ; δ) = sup
0≤t≤δ

sup
x

|f(x − tφ(x)) − 2f(x) + f(x + tφ(x))|,

where the second supremum is taken over those values of x for which every ar-
gument belongs to the domain [0, 1]. In [25] the following estimate was proved:

‖Bn(f) − f‖∞ ≤ C ωφ

(
f ;

1√
n

)
,

for some constant C > 0. Here, Bn : C(I) → Πn denotes the n-th order
Bernstein operator and Πn the space of polynomials of degree ≤ n.

Now we are ready to prove the next result.

Theorem 3.16. Let f ∈ C(I) and β ∈ (1, 2). Then there exists a sequence (fn)
of fractal functions converging uniformly to f and dimB Gfn

= β.

Proof. For a given f ∈ C(I) and β ∈ (1, 2), we choose the partition Δ =
(0, 1

2 , 1) of I = [0, 1] and a scale vector α = (α1, α2) ∈ (−1, 1)2 by

α1 = α2 and β = 2 +
log(|α1|)

log 2
.

Further assume, without loss of generality, that the sampling points in
{(

xi,

f(xi)
)

: i = 0, 1, 2
}

corresponding to f are not collinear. Let (pn)n∈N be the
sequence of Bernstein polynomials pn = Bn(f) that converges uniformly to
f . For each fixed n ∈ N, construct the α-fractal function (pn)α

Δ,Bn(pn) corre-
sponding to pn by choosing the parameter function b (see above) as Bn(pn). In
the light of Eq. (3.3) and Note 3.15, a simple and straightforward calculation
produces

‖f − (pn)α
Δ,Bn(pn)‖∞ ≤ ‖f − pn‖∞ + ‖pn − (pn)α

Δ,Bn(pn)‖∞

≤ ‖f − pn‖∞ +
|α1|

1 − |α1| ‖pn − Bn(pn)‖∞

≤ C ωφ

(
f ;

1√
n

)
+

C |α1|
1 − |α1| ωφ

(
pn;

1√
n

)
.

We therefore conclude that the sequence (pn)α
Δ,Bn(pn) converges uniformly to

f . For each fixed n ∈ N, the functions pn and Bn(pn) are Lipschitz continuous
and the set of data points {(xi, pn(xi)) : i = 0, 1, 2} is not collinear. Hence, with
the help of Theorem 3.14, the box dimensions of the graphs of (pn)α

Δ,Bn(pn),
which depend only on the partition and the scaling vector, are all the same
and are equal to β. �
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Remark 3.17. The previous theorem also determines the order of approxima-
tion by fractal functions. More precisely, for a given function f ∈ C(I) and
β ∈ (1, 2) we have the following estimate

‖f − fn‖∞ ≤ C

[

ωφ

(
f ;

1√
n

)
+ ωφ

(
Bn(f);

1√
n

)
]

,

where (fn) is a sequence of fractal functions as in the above theorem and
the constant C depends only on β. The above order of approximation is not
claimed to be the optimal. Note that though there are many other approxima-
tion polynomials, so called Bernstein-type polynomials, we have used only the
Bernstein polynomials in the previous theorem. The reader is encouraged to
consult [13] for a more detailed study on order of convergence by Bernstein-
type polynomials.

Next, we approximate a given function by a sequence of fractal functions
having the same Hausdorff dimension. For this purpose, we need to quote the
following result that can be found in [4] and is based on work presented in [3].

Theorem 3.18. ([4], Theorem 2.1) Let the data set � = {(xi, yi) ∈ I × R :
i = 1, 2, . . . ,m} be given so that 0 = x0 < x1 < · · · < xm = 1. Assume that∑m

i=1 |αi| > 1 and that there exists an i �= j such that

yi − yi−1 − αi(ym − y0)
xi − xi−1 − αi

�= yj − yj−1 − αj(ym − y0)
xj − xj−1 − αj

. (3.4)

Let f be an affine FIF associated with the above data set and denote by Gf its
graph. Then, dimH Gf = s where s is the unique positive solution of

m∑

i=1

|αi|(xi − xi−1)s−1 = 1.

Note that Theorem 3.18 implies that under the condition (3.4) the box
dimension of Gf equals its Hausdorff dimension.

Theorem 3.19. Let f ∈ C(I) and β ∈ (1, 2). Then there exists a sequence
of fractal functions converging uniformly to f with graphs having Hausdorff
dimension β.

Proof. We consider a sequence of data sets �n = {(xi, f(xi)) ∈ I × R : i =
0, 1, 2, . . . , n} with 0 = x0 < x1 < · · · < xn = 1 and xi − xi−1 = 1

n . Choose
αi = α = 1

n2−β for every i = 1, 2, . . . , n. Then we have s = 2 + log(|α|)
log n = β.

Moreover,
∑n

i=1 |αi| = n|α| = nβ−1 > 1. By Theorem 3.18 it suffices to show
that f(xi) − f(xi−1) �= f(xj) − f(xj−1), for some i �= j, in order to verify
condition (3.4). For each n ≥ 2, we define a data set �̃n by

�̃n =

{
�n, if f(x1) − f(x0) �= f(xn) − f(xn−1)
{(xi, yi) : i = 0, 1, 2, . . . , n}, otherwise,
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where y0 = f(x0) + 1
n , yi = f(xi) for i = 1, 2, . . . , n. Finally, we obtain

a sequence (gn) of fractal interpolation functions generated by the data set
�̃n and the aforementioned scale vector α converging to f and satisfying the
desired condition. �

4. Restrictions and extensions of continuous functions

In this section, we focus on some restrictions and extensions of continuous
functions in regards to fractal dimensions. For this purpose, we need to state
some known results.

Theorem 4.1. ([12], Theorem 4.10) Let A ⊂ R
n be a Borel set such that 0 <

Hs(A) ≤ ∞. Then there exists a compact set K ⊂ A such that 0 < Hs(K) <
∞.

In [17] the above result was also established for the packing dimension.

Theorem 4.2. Let A ⊂ R
n be a Borel set such that 0 < Ps(A) ≤ ∞. Then

there exists a compact set K ⊂ A such that 0 < Ps(K) < ∞.

Lemma 4.3. Let A be a compact subset of R
n, and s ≤ dimH A. Then there

exists a compact set K ⊂ A such that dimH K = s. The analogous result holds
for the packing dimension.

Proof. Suppose that s < dimH A. Using the definition of Hausdorff dimension,
we have Hs(A) = ∞. Theorem 4.1 produces a compact subset K of A satisfying
0 < Hs(K) < ∞. Again using the definition of Hausdorff dimension, this
implies that dimH K = s. The case s = dimH A is trivial. Thanks to Theorem
4.2, we have the same result for the packing dimension. �

Theorem 4.4. Suppose f ∈ C[0, 1]. Then, for each 0 ≤ β ≤ dimH Gf , there
exists a compact set K ⊂ [0, 1] such that dim Gf (K) = β, where Gf (K) =
{(x, f(x)) : x ∈ K} ⊂ R

2. The same result holds for the packing dimension.

Proof. For β ≤ dim Gf . Using Lemma 4.3 we have a compact subset K1 of Gf

such that dim K1 = β. We now show that there exists a compact set K2 ⊂ [0, 1]
such that Gf (K2) = K1. Define K2 by K2 := {x ∈ [0, 1] : (x, f(x)) ∈ K1}. If
(xn) is a sequence in K2 then (xn, f(xn)) ∈ K1 ⊂ Gf . By the compactness of
K1 there exists a convergent subsequence of

(
(xn, f(xn))

)
. Denote this con-

vergent subsequence again by (xn) and let (x, f(x)) ∈ K1 be its limit. Hence,
(xn) converges to x and x ∈ K2 completing the proof. �

Lemma 4.5. For fixed y0, y1 ∈ R and β ∈ [1, 2], there exists f ∈ C(I) such that
f(0) = y0, f(1) = y1 and dimH Gf = β.
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Proof. In the light of Lemma 3.3 we choose h ∈ C(I) with h(0) = y0 and
dimH Gh = β. Define a Lipschitz mapping g : [0, 1] → R by g(x) = (y1−h(1))x.
Defining a map f : [0, 1] → R by f = g + h, Lemma 3.1 in turn yields the
result. �

The next theorem is a modification of Proposition 2.3 appeared in [18]. For
the convenience of the reader, we include the proof.

Theorem 4.6. Let X be a proper compact subset of [0, 1] and let f : X → R

be a continuous function. Then for each max{dimH Gf (X), 1} ≤ β ≤ 2, the
function f can be extended continuously to a continuous function f̃ : [0, 1] → R

such that

dimH Gf̃ ([0, 1]) = β.

The result also holds for the packing dimension.

Proof. Let X be a proper compact subset of [0, 1] and f : X → R a continuous
function. Now we consider the following possibilities:

(1) 0, 1 ∈ X.
(2) 0 ∈ X and 1 /∈ X.
(3) 1 ∈ X and 0 /∈ X.
(4) 0, 1 /∈ X.

We write [0, 1]\X for each of the four cases above as follows:

(1) [0, 1] \ X =
⋃∞

i=1
(ai, bi), with ai, bi ∈ X for each i ∈ N.

(2) [0, 1] \ X =
⋃∞

i=1
(ai, bi) ∪ {1}, with ai, bi ∈ X for each i ∈ N.

(3) [0, 1] \ X =
⋃∞

i=1
(ai, bi) ∪ {0}, with ai, bi ∈ X for each i ∈ N.

(4) [0, 1] \ X =
⋃∞

i=1
(ai, bi) ∪ {0, 1}, with ai, bi ∈ X for each i ∈ N.

By the finite stability of the Hausdorff dimension (cf. [12]), we claim that it
is enough to deal with the first case. Applying Lemma 4.5 for each intervals
[ai, bi], we extend the function f as follows:

f̃(x) :=

⎧
⎪⎨

⎪⎩

f(x), x ∈ X;

gi(x), x ∈ (ai, bi) for some i ∈ N,

where gi(ai) = f(ai), gi(bi) = f(bi) and dimH Ggi
= β. Clearly, f̃ is continuous

on [0, 1]. Using the countable stability of the Hausdorff dimension (2.1), it
follows that

dimH Gf̃ ([0, 1]\X) = sup
i∈N

{dimH Gf̃ ((ai, bi))} = sup
i∈N

{β} = β,
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and

dimH Gf̃ ([0, 1]) = max{dimH Gf̃ (X),dimH Gf̃ ([0, 1]\X)}
= max{dimH Gf (X), β}
= β.

Hence we obtain the result for the Hausdorff dimension. Since the packing
dimension is also countably stable, the result for dimP follows immediately.

�

5. Summary

In this article we investigated a new notion of constrained approximation
through fractal dimensions. Further, we constructed dimension preserving ap-
proximants to a prescribed function. In the last part of the article, we in-
troduced and investigated the restrictions to and extensions of continuous
functions in terms of fractal dimensions.

Acknowledgements

The first author expresses his gratitude to the University Grants Commission
(UGC), India, for financial support, and to his supervisor Dr. P. Viswanathan
for his support and encouragement.

Funding Information Open Access funding enabled and organized by Projekt
DEAL.

Open Access. This article is licensed under a Creative Commons Attribution 4.0 Interna-
tional License, which permits use, sharing, adaptation, distribution and reproduction in any
medium or format, as long as you give appropriate credit to the original author(s) and
the source, provide a link to the Creative Commons licence, and indicate if changes were
made. The images or other third party material in this article are included in the article’s
Creative Commons licence, unless indicated otherwise in a credit line to the material. If
material is not included in the article’s Creative Commons licence and your intended use is
not permitted by statutory regulation or exceeds the permitted use, you will need to obtain
permission directly from the copyright holder. To view a copy of this licence, visit http://
creativecommons.org/licenses/by/4.0/.

Publisher’s Note Springer Nature remains neutral with regard to jurisdiction-
al claims in published maps and institutional affiliations.

References

[1] Akhtar, M.N., Prem Prasad, M.G., Navascués, M.A.: Box dimensions of α-fractal func-
tions. Fractals 24(3), 1650037 (2016)

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


1246 S. Verma, P. R. Massopust AEM

[2] Aubin, J.P., Frankowska, H.: Set-Valued Analysis. Birkhäuser, Boston (1990)
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