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Abstract. Let I ⊂ R be an interval that is closed under addition, and k ∈ N, k ≥ 2 . For a

function f : I → (0,∞) such that F (x) := f(kx)
kf(x)

is invertible in I, the k-variable function

Mf : Ik → I,

Mf (x1, . . . , xk) := F−1

(
f (x1 + · · · + xk)

f (x1) + · · · + f (xk)

)
,

is a premean in I, and it is referred to as a quasi Cauchy quotient of the additive type of
generator f . Three classes of means of this type generated by the exponential, logarithmic,
and power functions, are examined. The suitable quasi Cauchy quotients of the exponential
types (for continuous additive, logarithmic, and power functions) are considered. When I is
closed under multiplication, the quasi Cauchy quotient means of logarithmic and multiplica-
tive type are studied. The equalities of premeans within each of these classes are discussed
and some open problems are proposed.
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1. Introduction

Let I be a real interval that is closed under addition, and k ≥ 2 be a fixed
positive integer. For a function f : I → (0,∞) , the k-variable function

Ik � (x1, . . . , xk) �−→ f (x1 + · · · + xk)
f (x1) + · · · + f (xk)

,

called a Cauchy quotient of the additive type (generated by f), arises when
we divide the left-hand side by the right-hand side of the Cauchy functional
equation for the additive function f (x1 + · · · + xk) = f (x1) + · · · + f (xk) ,
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written in the customary way. The restriction of this function to the main
diagonal of Ik leads to the single variable function F (x) := f(kx)

kf(x) . Theorem
1 in Sect. 3 gives general conditions under which F is invertible, and the k-
variable function Mf : Ik → R,

Mf (x1, . . . , xk) := F−1

(
f (x1 + · · · + xk)

f (x1) + · · · + f (xk)

)
,

is a premean or a mean, which is referred to as a quasi-Cauchy quotient of
additive-type premean or mean. Of course, additive functions of the form
f (x) = px are useless here. But it is natural to ask what kind of means
one can get if the generating function f belongs to one of the three remain-
ing elementary classes of functions: exponential, logarithmic and multiplica-
tive, characterized by the respective Cauchy functional equation. Answering
this question we show that the one-parameter family of exponential functions
f (x) = px generates a new class of means (Proposition 1); the logarithmic
functions logp lead to a single premean that is not a mean in any subinterval
(Proposition 2); and in the case of power functions, the family of premeans is
empty (Remark 8). In the context of Proposition 1, a mean that is invariant
with respect to some mean-type mapping appears (Corollary 1).

Since F is invertible iff so is the function 1
F , and(

1
F

)−1 (
f (x1) + · · · + f (xk)

f (x1 + · · · + xk)

)
= F−1

(
f (x1 + · · · + xk)

f (x1) + · · · + f (xk)

)
,

there is no need to consider the quasi-Cauchy quotients separately if the roles of
nominator and denominator are reversed (Sect. 2, Remarks 3 and 4, concerning
also the remaining sections).

In Sect. 4, Theorem 2 gives conditions under which the quasi-Cauchy
quotient of exponential-type, i.e.the function

Mf (x1, . . . , xk) = F−1

(
f (x1 + · · · + xk)
f (x1) · · · · · f (xk)

)

with F (x) = f(kx)

[f(x)]k
, is a premean or a mean. For the continuous additive

functions f (x) = px (p > 0) one gets a k-variable mean (independent of p)
which in the case k = 2 coincides with the harmonic mean (Proposition 3).
These means, called Beta-type means, Bk : (0,∞)k → (0,∞) ,

Bk (x1, . . . , xk) =
(

kx1 · · · · · xk

x1 + · · · + xk

) 1
k−1

,

have appeared recently in [4], where the question: when the direct exponential
Cauchy quotient is a premean or a mean was considered. For the continuous
logarithmic functions f = logp the respective mean does not depend on p,
but, only in the case k = 2, the explicit formula is given (Proposition 4).
In the remaining case, if f is a continuous multiplicative function in (0,∞),
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i.e. f (x) = xp for some p ∈ R, p �= 0, then, independently of p, the quasi-
Cauchy quotient mean generated by f is the Beta-type mean (Proposition 5).

Let I be a real interval that is closed under addition. In Sect. 5, Theorem
3 provides conditions under which the quasi-Cauchy quotient of logarithmic
type

Mf (x1, . . . , xk) := F−1

(
f (x1 · · · · · xk)

f (x1) + · · · + f (xk)

)
,

with F (x) :=
f(xk)
kf(x) , is a premean or a mean. In this case the continuous

additive functions f (x) = px (p �= 0) generate Beta-type means (Propo-
sition 6), obtained also in the previous section. The exponential functions
produce a new class of means described for arbitrary k ≥ 3 by an implicit
equation, and effectively for k = 2 (Proposition 7). It is interesting that power
functions generate an extended family of Beta-type means (Proposition 8).

In Sect. 6, Theorem 4 gives conditions guaranteeing that the quasi-Cauchy
quotient of multiplicative type

Mf (x1, . . . , xk) := F−1

(
f (x1 · · · · · xk)

f (x1) · · · · · f (xk)

)

with F (x) :=
f(xk)
[f(x)]k

, is a premean or a mean. Applying Theorem 4 for the ex-
ponential functions f (x) = px one gets a new family of means given, in general,
by an implicit formula, which in case k = 2 reduces to the (translated) geo-
metric mean Mf (x, y) = 1 +

√
(x − 1) (y − 1) for all x, y > 1 (Proposition 9).

Proposition 10 describes the means generated by Theorem 4 and the logarith-
mic functions. Moreover it turns out that in this case the additive continuous
functions do not produce any means (Remark 18).

The Beta-type mean Bk plays an important role here, as it appears natu-
rally in each of the sections and helps to describe some of the obtained classes
of means.

After each theorem, we pose a problem concerning the equality of the in-
troduced mean. We give only a partial solution of Problem 4, concerning the
equality of two multiplicative-type quasi-Cauchy premeans. The suitable func-
tional equations restricted to the diagonal are related to the problem posed by
Reich [9].

Let us note that the question when the quasi-Cauchy difference is a mean
is considered in [8].
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2. Preliminaries

Let I ⊂ R be an interval and k ∈ N, k ≥ 2, be fixed. Recall that a function
M : Ik → R is called a k-variable mean in I, if

min (x1, . . . , xk) ≤ M (x1, . . . , xk) ≤ max (x1, . . . , xk) , x1, . . . , xk ∈ I;

(see, for instance, [1]). A function M : Ik → R is called reflexive if M (x, . . . , x)
= x for all x ∈ I. It is called a k-variable premean in I, if it is reflexive and
M : Ik → I.

A k-variable mean or premean in I is called:
strict in the ith variable, if, for all x1, . . . , xk ∈ I,

M (x1, . . . , xi, . . . , xk) = xi =⇒ x1 = x2 = · · · = xk,

and it is called strict, if it is strict with respect to each variable; symmetric,
if M

(
xσ(1), . . . , xσ(k)

)
= M (x1, . . . , xk) for every (x1, . . . , xk) ∈ Ik and every

permutation σ of {1, . . . , k}; homogeneous, if I = (0,∞) and

M (tx1, . . . , txk) = tM (x1, . . . , xk) , t, x1, . . . , xk > 0.

Of course, every mean is a premean, but the converse implication is not true.
However we have the following

Remark 1. If a function M : Ik → R is reflexive and (strictly) increasing in
each variable, then it is a (strict) mean; in the sequel it is referred to as a
(strictly) increasing k-variable mean.

In this connection we have

Remark 2. There is no mean that is decreasing with respect to any variable.

Note the following general method of construction of premeans and means.

Lemma 1. Let k ∈ N, k ≥ 2, I ⊂ R be an interval. For a function g : Ik → R

define γ : I → R by

γ (x) := g (x, . . . , x) , x ∈ I.

Then:
(i) if g

(
Ik

) ⊂ γ (I) and γ is invertible, then the function

M := γ−1 ◦ g

is a well defined k-variable premean in I;
(ii) if g is continuous and strictly increasing in each variable (strictly decreas-

ing in each variable), then γ is continuous strictly increasing (strictly de-
creasing), and the function M is a strictly increasing k-variable mean in
I;
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(iii) if g is continuous and increasing in each variable (decreasing in each
variable) and γ is strictly increasing (strictly decreasing), then M is an
increasing k-variable mean in I.

Remark 3. If g : Ik → (0,∞) in the previous lemma, then

M =
(

1
γ

)−1

◦
(

1
g

)
.

Remark 4. For a closed under addition interval I, a continuous and strictly
monotonic function f : I → (0,∞) , and k ∈ N, let

L (x1, . . . , xk) := f (x1 + · · · + xk) , R (x1, . . . , xk) := f (x1) + · · · + f (xk)

(the left-hand side and the right-hand side of the additivity equation
f (x1 + · · · + xk) = f (x1) + · · · + f (xk)), and put

l (x) := L (x, . . . , x) , r (x) := R (x, . . . , x) .

By the previous remark, if the function l
r is invertible, then,

(r

l

)−1
(

f (x1) + · · · + f (xk)
f (x1 + · · · + xk)

)
=

(
l

r

)−1 (
f (x1 + · · · + xk)

f (x1) + · · · + f (xk)

)
,

x1, . . . , xk ∈ I .

Similar equalities hold true for the exponential-type, logarithmic type, and
multiplicative- (or power)-type Cauchy quotients.

3. Additive quasi-Cauchy quotient

Theorem 1. Let I ⊂ R be an interval that is closed under addition, i.e. I +I ⊂
I; f : I → (0,∞) be a function; k ∈ N, k ≥ 2; and let F : I → (0,∞) be given
by

F (x) :=
f (kx)
kf (x)

, x ∈ I. (1)

Then
(i) if F is one-to-one and{

f (x1 + · · · + xk)
f (x1) + · · · + f (xk)

: x1, . . . , xk ∈ I

}
⊂ {F (x) : x ∈ I} , (2)

then the function Mf : Ik → (0,∞) defined by

Mf (x1, . . . , xk) := F−1

(
f (x1 + · · · + xk)

f (x1) + · · · + f (xk)

)
(3)

is a correctly defined symmetric k-variable premean in I;
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(ii) if f is continuous and the function

Ik � (x1, . . . , xk) �−→ f (x1 + · · · + xk)
f (x1) + · · · + f (xk)

(4)

is strictly increasing (decreasing) in one of the variables, then F is strictly
increasing (decreasing) and the function Mf defined by (3) is a continuous
symmetric strictly increasing k-variable mean in I.

Proof. (i) By (2) the function Mf is well defined and Mf (x1, . . . , xk) ∈ I for
all x1, . . . , xk ∈ I. Moreover, in view of (1) and (3), for every x ∈ I we have

Mf (x, . . . , x) := F−1

(
f (kx)
kf (x)

)
= x,

so Mf is reflexive.
To show (ii) assume that the function (4) is strictly increasing in one of the

variables. The symmetry of this function implies that it is strictly increasing
in each of the variables. Hence, if x, y ∈ I, x < y, then

F (x) =
f (kx)
kf (x)

=
f (x + · · · + x)

f (x) + · · · + f (x)
≤ f (y + · · · + y)

f (y) + · · · + f (y)
=

f (ky)
kf (y)

= F (y) ,

so F is increasing. Since F is one-to-one, it is strictly increasing. The function
Mf , being the composition of the function (4) and F−1 , is (strictly) increasing.
Since, in view of (i), Mf is a premean, it is reflexive.

In the case when the function (4) is strictly decreasing in one of the vari-
ables, arguing similarly, we show that F is strictly decreasing. Consequently,
the function Mf , being a composition of two strictly decreasing functions, is
increasing. In both cases the continuity of Mf is obvious.

Now (ii) follows from Remark 1. �

Definition 1. Under the assumptions of Theorem 1 (ii), the function Mf : Ik →
I is referred to as an additive-type quasi-Cauchy quotient mean generated by
f (or of generator f).

Remark 5. There is no monotonic function f : (0,∞) → (0,∞) such that its
direct additive-type Cauchy quotient is a premean in (0,∞).

To see this assume, on the contrary, that for some monotonic function
f : (0,∞) → (0,∞), the function M : (0,∞)2 → (0,∞) , M (x, y) = f(x+y)

f(x)+f(y)

is a premean. Then f(2x)
2f(x) = x for all x > 0, or, equivalently, f satisfies the

iterative functional equation

f (x) = xf
(x

2

)
, x > 0.

Hence, by induction, we get

f (x) = x
x

2
x

22
· · · · · x

2n−1
f

( x

2n

)
=

xn

2
n(n−1)

2

f
( x

2n

)
, x > 0, n ∈ N.
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If f were bounded in a right vicinity of 0, then, letting n → ∞, we would get
f (x) = 0 for all x > 0.

Thus limx→0 f (x) = ∞. Consequently, f must be decreasing and
limx→∞ f (x) is a finite nonnegative real number. It follows that f(2x)

2f(x) ≤
f(x)
2f(x) = 1

2 < x for all x > 0 is invalid, so M is not reflexive.
Since a positive continuous solution of this iterative equation depends on

an arbitrary function (see [6]), the condition of monotonicity of f in Remark
5 is essential.

Problem 1. Let f : I → (0,∞) and g : I → (0,∞) satisfy the conditions
of Theorem 1. Determine conditions under which the quasi-Cauchy quotient
premeans Mf and Mg are equal.

Remark 6. Put G (x) := g(kx)
kg(x) and ϕ := G◦F−1. The equality Mf = Mg leads

to the functional equation

ϕ

(
f (x1 + · · · + xk)

f (x1) + · · · + f (xk)

)
=

g (x1 + · · · + xk)
g (x1) + · · · + g (xk)

, x1, . . . , xk ∈ I,

which for k = 2 reduces to

ϕ

(
f (x + y)

f (x) + f (y)

)
=

g (x + y)
g (x) + g (y)

, x, y ∈ I,

which is a special case of a more general functional equation

ϕ (h (x, y)) =
g (x + y)

g (x) + g (y)
, x, y ∈ I,

in which ϕ, h and g are unknown.

Part 1: Additive quasi-Cauchy quotient for exponential functions

Applying Theorem 1 for the exponential function of the form f (x) = px

we get

Proposition 1. Let k ∈ N, k ≥ 2, be fixed. For every p > 0, p �= 1, the function
Mp : Rk → R given by

Mp (x1, . . . , xk) =
1

k − 1
logp

kpx1+···+xk

px1 + · · · + pxk

is an additive type quasi-Cauchy quotient mean generated by the exponential
function f (x) = px, (x ∈ R).
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Moreover, for all x1, . . . , xk ∈ R,

lim
p→1

Mp (x1, . . . , xk) =
x1 + · · · + xk

k
;

lim
p→0

Mp (x1, . . . , xk)

=
card {j : xj = min (x1, . . . , xk)} − 1

k − 1
min (x1, . . . , xk) +

1
k − 1

∑
{j:xj �=

min (x1, . . . , xk)} xj ;
lim

p→∞ Mp (x1, . . . , xk)

=
card {j : xj = max (x1, . . . , xk)} − 1

k − 1
max (x1, . . . , xk) +

1
k − 1

∑
{j:xj �=

max (x1, . . . , xk)} xj ;

and setting

M1 := lim
p→1

Mp, M0 := lim
p→0

Mp, M∞ := lim
p→∞ Mp

(pointwise limits), yields a family of symmetric means {Mq : q ∈ [0,∞]} such
that for every x1, . . . , xk ∈ R, the function

[0,∞] � q �−→ Mq (x1, . . . , xk) is continuous.

Proof. Take k ∈ N, k ≥ 2, I = R, p > 0, p �= 1, and the function f (x) = px.
By (11) we have

F (x) =
pkx

kpx
=

p(k−1)x

k
, x ∈ R.

The function F maps R onto (0,∞) , it is strictly increasing if p > 1 and
strictly decreasing if 0 < p < 1; so F satisfies all the conditions of Theorem
1(ii). To show that the function

R
k � (x1, . . . , xk) �−→ px1+···+xk

px1 + · · · + pxk

is strictly monotonic with respect to the first variable, let us fix arbitrarily
x2, . . . , xk ∈ R, and define ϕ : R → R by

ϕ (t) := Mr (t, x2, . . . , xk) =
art

rt + b
,

where a := rx2+···+xk and b := rx2 + · · · + rxk are some positive real numbers.
The function ϕ, being the composition of the strictly increasing homographic
function (0,∞) � u �−→ au

u+m and the exponential function R � u �−→ pu, is
strictly increasing if p > 1, and strictly decreasing if 0 < p < 1. It follows
that the function Mp is strictly monotonic with respect to the first variable.
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The symmetry of Mp implies that it is strictly monotonic with respect to each
variable, and, consequently, all the assumptions of Theorem 1 (ii) are satisfied.

Since

F−1 (t) =
1

k − 1
logp kt, t ∈ (0,∞) ,

applying Theorem 1(ii), we get

Mp (x1, . . . , xk) =
1

k − 1
logp

kpx1+···+xk

px1 + · · · + pxk
, x1, . . . , xk ∈ R.

Since

Mp (x1, . . . , xk) =
1

k − 1

ln ke(x1+···+xk) ln p

ex1 ln p+···+exk ln p

ln p
, x1, . . . , xk ∈ R,

and, after an easy calculation,

∂
∂p

(
ln ke(x1+···+xk) ln p

ex1 ln p+···+exk ln p

)
∂
∂p (ln p)

=
(x1 + · · · + xk)

(
ex1 ln p + · · · + exk ln p

) − (
ex1 ln px1 + · · · + exk ln pxk

)
ex1 ln p + · · · + exk ln p

,

by the L’Hospital rule, we obtain

(k − 1) lim
p→1

Mp (x1, . . . , xk)

= lim
p→1

(
ex1 ln p + · · · + exk ln p

)
(x1 + · · · + xk) − (

ex1 ln px1 + · · · + exk ln pxk

)
ex1 ln p + · · · + exk ln p

=
k (x1 + · · · + xk) − (x1 + · · · + xk)

k
=

(k − 1) (x1 + · · · + xk)
k

,

whence

M1 (x1, . . . , xk) := lim
p→1

Mp (x1, . . . , xk) =
x1 + · · · + xk

k
, x1, . . . , xk ∈ R.

To calculate the limit at 0, assume first that x1, . . . , xk ∈ R are such that

x1 = min (x1, . . . , xk) < min (x2, . . . , xk) .

Making use of the above formula, we have

∂
∂p

(
ln ke(x1+···+xk) ln p

ex1 ln p+···+exk ln p

)
∂
∂p (ln p)

=
1

1 + e(x2−x1) ln p + · · · + e(xk−x1) ln p

·
((

1 + e(x2−x1) ln p + · · · + e(xk−x1) ln p
)
(x1 + · · · + xk)

− (
x1 + e(x2−x1) ln px2 + · · · + e(xk−x1) ln pxk

)
)

.
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By the L’Hospital rule, taking into account that the numbers x2−x1, . . . , xk −
x1 are positive, and letting p → 0, we get

(k − 1) lim
p→0

Mp (x1, . . . , xk) = (x1 + · · · + xk) − x1,

so

M0 (x1, . . . , xk) = lim
p→0

Mp (x1, . . . , xk) =
x1 + · · · + xk − min (x1, . . . , xk)

k − 1
.

Now assume that x1, . . . , xk ∈ R are such that, for some l ∈ N, 1 < l < k,

x1 = x2 = · · · = xl = min (x1, . . . , xk) < min (xl+1, . . . , xk) .

In this case we have
∂
∂p

(
ln ke(x1+···+xk) ln p

ex1 ln p+···+exk ln p

)
∂
∂p (ln p)

=
1

l + e(xl+1−x1) ln p + · · · + e(xk−x1) ln p

·
( (

l + e(xl+1−x1) ln p + · · · + e(xk−x1) ln p
)
(x1 + · · · + xk)

− (
x1 + · · · + xl + e(xl+1−x1) ln pxl+1 + · · · + e(xk−x1) ln pxk

)
)

,

and letting p → 0, we get

(k − 1) lim
p→0

Mp (x1, . . . , xk)

=
l2x1 + l (xl+1 + · · · + xk) − lx1

l
= (l − 1) x1 + xl+1 + · · · + xk,

so, generally,

M0 (x1, . . . , xk) = lim
p→0

Mp (x1, . . . , xk)

=
(l − 1) min (x1, . . . , xk) + xl+1 + · · · + xk

k − 1
.

Now the symmetry of Mp implies that for all x1, . . . , xk ∈ R,

lim
p→0

Mp (x1, . . . , xk)

=

((∑
{j:xj=min(x1,...,xk)} j

)
− 1

)
min (x1, . . . , xk) +

∑
{j:xj �=min(x1,...,xk)} xj

k − 1
,

lim
p→0

Mp (x1, . . . , xk)

=
card {j : xj = min (x1, . . . , xk)} − 1

k − 1
min (x1, . . . , xk)

+

∑
{j:xj �=min(x1,...,xk)} xj

k − 1
,

and, of course,

M0 := lim
p→0

Mp
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is a symmetric mean.
We omit the analogous reasoning in the calculations of limp→∞ Mp. �

Remark 7. Proposition 1 implies that for all k ≥ 2 and p > 0, p �= 1,

Mp (x1, . . . , xk) = logp Bk (px1 , . . . , pxk) , x1, . . . , xk ∈ R,

so Mp is exponentially conjugate to Bk, the Beta-type mean defined in the
introduction. In the case k = 2 we get Mp (x, y) = logp H (px, py), where
H : (0,∞)2 → (0,∞), given by H (x, y) = 2xy

x+y is the harmonic mean. Thus
Mp is exponentially conjugate to the harmonic mean.

Corollary 1. Let k = 2. Then for every q > 0 the arithmetic mean A = M1

is invariant with respect to the mean-type mapping
(
M 1

q
,Mq

)
: (0,∞)2 →

(0,∞)2, i.e.

M1 ◦
(
M 1

q
,Mq

)
= M1,

which implies that the sequence
((

M 1
q
,Mq

)n

: n ∈ N

)
of iterates of

(
M 1

q
,Mq

)
is pointwise convergent in R

2 and

lim
n→∞

(
M 1

q
,Mq

)n

= (M1,M1) .

Proof. Since, after simple calculations, for all x, y ∈ R,

M1 ◦
(
M 1

q
,Mq

)
(x, y) =

1
2

(
log 1

q

2 1
qx+y

1
qx + 1

qy

+ logq

2qx+y

qx + qy

)

=
x + y

2
= M1 (x, y) ,

the mean M1 is
(
M 1

q
,Mq

)
-invariant, and the result follows from [7]. �

Part 2: Additive quasi-Cauchy quotient for logarithmic functions

Proposition 2. Let k ∈ N, k ≥ 2; p > 0, p �= 1, be fixed and let f = logp. Then

(i) for every p > 0, p �= 1, the additive type quasi-Cauchy quotient Mf :
(1,∞)k → (1,∞) generated by the logarithmic function f = logp is a
premean, it does not depend on p, and Mf = Mln where

Mln (x1, . . . , xk) := k
ln(x1·····xk)

k(ln(x1+···+xk)−ln x1·····xk) , x1, . . . , xk > 1;

(ii) the premean Mln is not a mean in any of the intervals (α,∞) where
α ≥ 1.
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Proof. Take k ∈ N, k ≥ 2 , p > 0, p �= 1, the interval I = (1,∞), and the
function f : I → R, f = logp. By (1) we have

F (x) =
logp (kx)
k logp x

, x > 1.

Hence, since logp = ln
ln p , we have

F (x) =
ln (kx)
k ln (x)

, x > 1.

It is easy to verify that F is decreasing in (1,∞) , and maps the interval (1,∞)
onto

(
1
k ,∞)

.

Since logp = ln
ln p , the k-variable function (4) has the form

(1,∞)k � (x1, . . . , xk) �−→ logp (x1 + · · · + xk)
logp (x1 · · · · · xk)

=
ln (x1 + · · · + xk)
ln (x1 · · · · · xk)

.

For arbitrarily fixed x2, . . . , xk ∈ (1,∞) define ϕ : (1,∞) → (0,∞), by

ϕ (t) :=
ln (a + t)
ln (bt)

, t > 1,

where a := x2 + · · · + xk and b := x2 · · · · · xk.

Note that

ϕ′ (t) =
ψ (t)

[ln (bt)]2 t (a + t)
, t > 1,

where

ψ (t) := t ln (bt) − (a + t) ln (a + t) , t > 1.

Considering this function we conclude that ϕ has exactly one global minimum
at a point c ∈ (a, b) ⊂ (1,∞) and, consequently, the function ϕ : (1,∞) →
(0,∞) is strictly decreasing in the interval (1, c] and is strictly increasing in
[c,∞) , for some c ∈ (1,∞) . This property implies that for arbitrarily fixed
x1, . . . , xk ∈ (1,∞) one can find j ∈ {1, . . . , k} such that

ln (x1 + · · · + xk)
ln (x1 · · · · · xk)

≥ ln (xj + · · · + xj)
ln (xj · · · · · xj)

= F (xj) >
1
k

,

which proves that condition (2) of Theorem 1 is satisfied. Since

F−1 (t) = e
ln k
kt−1 , t >

1
k

,

by Theorem 1, the function
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Mf (x1, . . . , xk) = e

ln k

k
ln(x1+···+xk)
ln(x1·····xk)

−1
= e

(ln k)
ln(x1·····xk)

k(ln(x1+···+xk)−ln(x1·····xk))

=
(
eln k

) ln(x1·····xk)
k(ln(x1+···+xk)−ln(x1·····xk)) = k

ln(x1·····xk)
k(ln(x1+···+xk)−ln(x1·····xk))

is a k-variable premean in (1,∞) .
Since, for each j ∈ {1, . . . , k},

lim
xj→∞

ln (x1 · · · · · xk)
k (ln (x1 + · · · + xk) − ln (x1 · · · · · xk))

=
1

k − 1

for all x1, . . . , xj−1, xj+1, . . . , xk ∈ (1,∞) we have

lim
xj→∞ Mf (x1, . . . , xk) = k

1
k−1 , x1, . . . , xj−1, xj+1, . . . , xk > 1.

Of course, it follows that Mf := Mln is not a mean in any closed under addition
subinterval J of (1,∞). �

Part 3: Additive quasi-Cauchy quotient for power functions
It turns out that

Remark 8. There are no additive-type quasi-Cauchy quotient premeans gen-
erated by power functions.

Indeed, take an arbitrary k ∈ N, k ≥ 2, an interval I ⊂ (0,∞) , closed
under addition, and a power function f (x) = xp, where p ∈ R, p �= 0. Since
by (1),

F (x) =
(kx)p

kxp
= kp−1, x ∈ I,

the function F is constant, which shows that there does not exist an additive-
type quasi-Cauchy quotient mean generated by f .

4. Exponential quasi-Cauchy quotient

Theorem 2. Let I ⊂ R be an interval that is closed under addition, i.e. I +I ⊂
I; f : I → (0,∞) be a function; k ∈ N, k ≥ 2; and let F : I → (0,∞) be given
by

F (x) :=
f (kx)

[f (x)]k
, x ∈ I. (5)

Then
(i) if F is one-to-one and{

f (x1 + · · · + xk)
f (x1) · · · · · f (xk)

: x1, . . . , xk ∈ I

}
⊂ {F (x) : x ∈ I} , (6)
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then the function Mf : Ik → (0,∞) defined by

Mf (x1, . . . , xk) := F−1

(
f (x1 + · · · + xk)
f (x1) · · · · · f (xk)

)
(7)

is a correctly defined symmetric k-variable premean in I;
(ii) if f is continuous and the function

Ik � (x1, . . . , xk) �−→ f (x1 + · · · + xk)
f (x1) · · · · · f (xk)

(8)

is strictly increasing (decreasing) in one of the variables, then F is strictly
increasing (decreasing) and the function Mf defined by (7) is a continuous
symmetric strictly increasing k-variable mean in I.

Proof. Analogous as in Theorem 1. �

Definition 2. Under the assumptions of Theorem 2 (ii), the function M : Ik →
I is referred to as an exponential-type quasi-Cauchy quotient mean generated
by f (or, of generator f).

Problem 2. Let f : I → (0,∞) and g : I → (0,∞) satisfy the conditions
of Theorem 2. Determine conditions under which the exponential-type quasi-
Cauchy quotient premeans Mf and Mg are equal.

Remark 9. Put G (x) := g(kx)
kg(x) and ϕ := G ◦ F−1. Now the equality Mf = Mg

leads to the functional equation

ϕ

(
f (x1 + · · · + xk)
f (x1) · · · · · f (xk)

)
=

g (x1 + · · · + xk)
g (x1) · · · · · g (xk)

, x1, . . . , x ∈ I,

which for k = 2 reduces to

ϕ

(
f (x + y)
f (x) f (y)

)
=

g (x + y)
g (x) g (y)

, x, y ∈ I,

which is a special case of the functional equation

ϕ (h (x, y)) =
g (x + y)
g (x) g (y)

, x, y ∈ I,

where ϕ, h and g are unknown.

Part 4: Exponential quasi-Cauchy quotient for additive functions
Applying Theorem 2 we obtain

Proposition 3. Let k ∈ N, k ≥ 2, be fixed. For every p > 0, the exponential-type
quasi-Cauchy quotient mean Mf : (0,∞)k → (0,∞) generated by the function
f (x) = px, (x > 0), does not depend on p, and

Mf = Bk
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where Bk is the Beta-type mean given by

Bk (x1, . . . , xk) =
(

kx1 · · · · · xk

x1 + · · · + xk

)1/(k−1)

.

Proof. Take k ∈ N, k ≥ 2 , I = (0,∞), p > 0, and the function f (x) = px. By
(5) we have

F (x) =
pkx

(px)k
=

k

pk−1xk−1
, x > 0,

so the function F : (0,∞) → (0,∞) is strictly decreasing. Moreover we have

F−1 (t) =
(

k

pk−1

1
t

)1/(k−1)

, t > 0.

Since
∂

∂x1

p (x1 + · · · + xk)
(px1) · · · · · (pxk)

= − 1
pk−1x2

1

x2 + · · · + xk

x2 · · · · · xk
< 0,

the symmetric function

(0,∞)k � (x1, . . . .xk) �−→ p (x1 + · · · + xk)
(px1) · · · · · (pxk)

is strictly decreasing in each variable. By Theorem 2(ii) we obtain, for all
x1, . . . , xk > 0,

Mf (x1, . . . , xk) =
(

k

pk−1

(px1) · · · · · (pxk)
p (x1 + · · · + xk)

)1/(k−1)

=
(

kx1 · · · · · xk

x1 + · · · + xk

)1/(k−1)

.

�

Remark 10. The mean Mf coincides with the Beta-type k-variable mean ob-
tained in [4]. For k = 2, the mean M is the classical harmonic mean.

Part 5: Exponential quasi-Cauchy quotient for logarithmic functions

Proposition 4. Let k ∈ N, k ≥ 2, be fixed. For every p > 0, p �= 1, the function
M : (1,∞)k → (1,∞) given by the implicit equality

ln (kM (x1, . . . , xk))

[ln M (x1, . . . , xk)]k
=

ln (x1 + · · · + xk)
ln x1 · · · · · ln xk

, x1, . . . , xk > 1,

is the exponential-type quasi-Cauchy quotient mean Mf generated by the loga-
rithmic function f = logp, so it does not depend on p.

Moreover, in case k = 2,

M (x, y) = exp

(
(ln x) (ln y)
2 ln (x + y)

(√
4

ln (x + y)
(ln x) (ln y)

ln 2 + 1 + 1

))
, x, y > 1.
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Proof. Take k ∈ N, k ≥ 2, I = (1,∞), and the function f = logp. Consider
first the case p > 1. By (5) we have

F (x) =
logp (kx)(
logp x

)k
= (ln p)k−1 ln (kx)

(ln x)k
, x > 1,

F is strictly decreasing and maps (1,∞) onto (0,∞). Since the function (8):

(1,∞)k � (x1, . . . , xk) �−→ logp (x1 + · · · + xk)
logp x1 · · · · · logp xk

= (ln p)k−1 ln (x1 + · · · + xk)
ln (x1 · · · · · xk)

∈ (0,∞) ,

is decreasing in each variable, (that is easy to verify), by formula (7) of
Theorem 2(ii), we obtain the mean

Mf (x1, . . . , xk) = F−1

(
(ln p)k−1 ln (x1 + · · · + xk)

ln x1 · · · · · ln xk

)
, x1, . . . , xk > 1.

Since we do not have the effective form of F−1, we get

(ln p)k−1 ln (kM (x1, . . . , xk))

[ln M (x1, . . . , xk)]k
= (ln p)k−1 ln (x1 + · · · + xk)

ln x1 · · · · · ln xk
, x1, . . . , xk > 1,

whence
ln (kM (x1, . . . , xk))

[ln M (x1, . . . , xk)]k
=

ln (x1 + · · · + xk)
ln x1 · · · · · ln xk

, x1, . . . , xk > 1,

which, in particular, shows that M is independent of the choice of p.
If p ∈ (0, 1) the proof is similar, so we omit it.
The result in the case k = 2 follows from the fact that one can easily

determine the effective form of F−1. �

Part 6: Exponential quasi-Cauchy quotient for multiplicative functions

Proposition 5. Let k ∈ N, k ≥ 2, be fixed. For every p ∈ R, p �= 0, the
exponential-type quasi-Cauchy quotient mean Mf : (0,∞)k → (0,∞) generated
by the power function f (x) = xp, (x > 0), does not depend on p, and

Mf = Bk

where Bk is the Beta-type mean.

Proof. By Theorem 2 with I = (0,∞) and f (x) = xp we have

F (x) =
kp

x(k−1)p
, x > 0,

whence

F−1 (t) =
k

1
k−1

t
1

(k−1)p
, t > 0 ,
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and, for all x1, . . . , xk > 0,

Mf (x1, . . . , xk) =
k

1
k−1(

(x1+···+xk)
p

(x1·····xk)
p

) 1
(k−1)p

=
(

kx1 · · · · · xk

x1 + · · · + xk

)1/(k−1)

= Bk (x1, . . . , xk) .

�

5. Logarithmic quasi-Cauchy quotient

Theorem 3. Let I ⊂ R be an interval that is closed under multiplication, f :
I → (0,∞) be a function; k ∈ N, k ≥ 2; and let F : I → (0,∞) be given by

F (x) :=
f

(
xk

)
kf (x)

, x ∈ I. (9)

Then
(i) if F is one-to-one and{

f (x1 · · · · · xk)
f (x1) + · · · + f (xk)

: x1, . . . , xk ∈ I

}
⊂ {F (x) : x ∈ I} , (10)

then the function Mf : Ik → (0,∞) defined by

Mf (x1, . . . , xk) := F−1

(
f (x1 · · · · · xk)

f (x1) + · · · + f (xk)

)
(11)

is a correctly defined symmetric k-variable premean in I;
(ii) if f is continuous and the function

Ik � (x1, . . . .xk) �−→ f (x1 · · · · · xk)
f (x1) + · · · + f (xk)

(12)

is strictly increasing (decreasing) in one of the variables, then F is strictly
increasing (decreasing) and the function Mf defined by (11) is a contin-
uous symmetric strictly increasing k-variable mean in I.

Proof. Analogous as in Theorem 1. �

Definition 3. Under the assumptions of Theorem 3 (ii), the function Mf : Ik →
I is referred to as a logarithmic-type quasi-Cauchy quotient mean generated
by f (or of generator f).

Problem 3. Let f : I → (0,∞) and g : I → (0,∞) satisfy the conditions
of Theorem 3. Determine conditions under which the logarithmic-type quasi-
Cauchy quotient premeans Mf and Mg are equal.
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Remark 11. Put G (x) := g(kx)
kg(x) and ϕ := G◦F−1. Now the equality Mf = Mg

leads to the functional equation

ϕ

(
f (x1 · · · · · xk)

f (x1) + · · · + f (xk)

)
=

g (x1 · · · · · xk)
g (x1) + · · · + g (xk)

, x1, . . . , x ∈ I,

which for k = 2 reduces to

ϕ

(
f (xy)

f (x) + f (y)

)
=

g (xy)
g (x) + g (y)

, x, y ∈ I,

which is a special case of a more general equation

ϕ (h (x, y)) =
g (xy)

g (x) + g (y)
, x, y ∈ I,

with unknowns ϕ, h and g.

Part 7: Logarithmic quasi-Cauchy quotient for additive functions
Applying Theorem 3 for continuous additive functions, we again obtain the

Beta-type means. Indeed, we have

Proposition 6. Let k ∈ N, k ≥ 2, be fixed. For every p > 0, the logarithmic-type
quasi-Cauchy quotient mean Mf : (0,∞)k → (0,∞) generated by the function
f (x) = px, (x > 0) does not depend on p, and

Mf = Bk,

where Bk is the Beta-type mean.

Proof. Take k ∈ N, k ≥ 2 , I = (0,∞), p > 0, and the function f (x) = px. By
(9) we have

F (x) =
pxk

kpx
=

1
k

xk−1, x > 0,

so the function F : (0,∞) → (0,∞) is strictly increasing, and

F−1 (t) = (kt)1/(k−1)
, t > 0.

Since the function (12) for f (x) = px :

(0,∞)k � x �−→ p (x1 · · · · · xk)
p (x1 + · · · + xk)

is strictly increasing in each variable, the assumptions of Theorem 3(ii) are
satisfied. Applying this result we obtain

Mf (x1, . . . , xk) =
(

k
p (x1 · · · · · xk)

p (x1 + · · · + xk)

)1/(k−1)

=
(

kx1 · · · · · xk

x1 + · · · + xk

)1/(k−1)

= Bk (x1, . . . , xk)

for all x1, . . . , xk > 0. �
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Part 8: Logarithmic quasi-Cauchy quotient for exponential functions

Proposition 7. Let k ∈ N, k ≥ 2, be fixed. For every p ∈ R, p �= 1, there
is a unique mean Mp : (1,∞)k → (1,∞) such that Mp = Mf , where Mf is
a logarithmic-type quasi-Cauchy quotient mean generated by the exponential
function f (x) = px; and the mean Mp is given by the implicit equation

1
k

p[Mp(x1,...,xk)]
k−Mp(x1,...,xk) =

px1·····xk

px1 + · · · + pxk
, x1, . . . , xk > 1.

Moreover the functions M0,M1,M∞ : (1,∞)k → (1,∞) defined as the point-
wise limits

M0 = lim
p→0

Mp, M1 = lim
p→1

Mp, M∞ = lim
p→∞ Mp

exist, and are k-variable means such that

[M0 (x1, . . . , xk)]k − M0 (x1, . . . , xk) = x1 · · · · · xk − min (x1, . . . , xk) ,

x1, . . . , xk > 1;

[M1 (x1, . . . , xk)]k − M1 (x1, . . . , xk) = x1 · · · · · xk − x1 + · · · + xk

k
,

x1, . . . , xk > 1;

[M∞ (x1, . . . , xk)]k − M∞ (x1, . . . , xk) = x1 · · · · · xk − max (x1, . . . , xk) ,

x1, . . . , xk > 1.

In the case k = 2 we have

Mp (x, y) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

1
2

(
1 +

√
1 + logp

2pxy

px+py

)
if p ∈ (0,∞) \ {1}

1
2

(
1 +

√
1 + 4xy − 4min (x, y)

)
if p = 0

1
2

(
1 +

√
1 + 4xy − 4x+y

2

)
if p = 1

1
2

(
1 +

√
1 + 4xy − 4max (x, y)

)
if p = ∞

, x, y > 1.

Proof. Take k ∈ N, k ≥ 2; I = (1,∞); p > 0, p �= 1; and let f (x) = px.
Assume first that p > 1. By (9) we have

F (x) =
pxk

kpx
=

1
k

pxk−x, x > 1,

so the function F : (1,∞) → (
1
k ,∞)

is strictly increasing. For the function (12)
we have

(1,∞)k � (x1, . . . , xk) �−→ px1·····xk

px1 + · · · + pxk
∈

(
1
k

,∞
)

and, for all x1, . . . , xk > 1,

∂

∂x1

px1·····xk

px1 + · · · + pxk
=

px1·····xkx2 · · · · · xk (px2 + · · · + pxk)
(px1 + · · · + pxk)2

> 0,
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so, by symmetry, it is strictly increasing in each of the variables. Now Theorem
3(ii) implies that the function Mf : (1,∞)k → (1,∞) given by

Mf (x1, . . . , xk) = F−1

(
px1·····xk

px1 + · · · + pxk

)
, x1, . . . , xk > 1,

is the desired mean Mp := Mf . Since, in general, we do not have the effective
formula for F−1, we get

1
k

p[Mp(x1,...,xk)]
k−Mp(x1,...,xk) =

px1·····xk

px1 + · · · + pxk
, x1, . . . , xk > 1.

Hence, making use of the L’Hospital rule, for all x1, . . . , xk > 1, we get

lim
p→1+

(
[Mp (x1, . . . , xk)]

k −Mp (x1, . . . , xk)
)

= lim
p→1+

logp
kpx1·····xk

px1 + · · ·+ pxk
= lim

p→1+

ln kex1·····xk ln p

ex1 ln p+···+exk ln p

ln p

= lim
p→1+

[
x1 · · · · · xk −

(
ex1 ln p

ex1 ln p + · · ·+ exk ln p
x1 + · · ·+ exk ln p

ex1 ln p + · · ·+ exk ln p
xk

)]

= x1 · · · · · xk −
lim

p→1+

(
x1

1 + e(x2−x1) ln p + · · ·+ e(xk−x1) ln p
+ · · ·+

xk

e(x1−xk) ln p + · · ·+ e(xk−1−xk) ln p

)

= x1 · · · · · xk − x1 + · · ·+ xk

k
.

Now the properties of the function tk − t imply that M0 ( x1, . . . , xk)
= limp→0 Mp exists, M0 is a mean as the limit of means, and

[M0 (x1, . . . , xk)]k − M0 (x1, . . . , xk) = x1 · · · · · xk

−x1 + · · · + xk

k
, x1, . . . , xk > 1.

Similarly we get

lim
p→∞

(
[Mp (x1, . . . , xk)]k − Mp (x1, . . . , xk)

)

= lim
p→∞

[
x1 · · · · · xk −

(
ex1 ln p

ex1 ln p + · · · + exk ln p
x1 + · · · +

exk ln p

ex1 ln p + · · · + exk ln p
xk

)]

= x1 · · · · · xk − lim
p→∞(

x1

1 + e(x2−x1) ln p + · · · + e(xk−x1) ln p
+ · · · +

xk

e(x1−xk) ln p + · · · + e(xk−1−xk) ln p

)

= x1 · · · · · xk − max (x1, . . . , xk) ,

which proves the existence of the mean M∞.



Vol. 95 (2021) Quasi-Cauchy quotients and means 1087

In the case 0 < p < 1 the suitable considerations as well as the calculations
of the limits limp→0 Mp and limp→1− Mp are analogous, so we omit them.

In the case k = 2, setting x1 = x, x2 = y, the implicit equality becomes

1
2
p[Mp(x,y)]2−Mp(x,y) =

pxy

px + py
, x, y > 1,

whence

[Mp (x, y)]2 − Mp (x, y) = logp

2pxy

px + py
, x, y > 1, p ∈ [0,∞] ,

which is a quadratic equation for M . Solving it we get the result. �

Remark 12. Since the function F (x) = 1
kpxk−x is not monotonic in the interval

(0, 1) , a similar result for this interval does not hold.

Part 9: Logarithmic quasi-Cauchy quotient for multiplicative functions
Applying Theorem 3 to multiplicative continuous generators we obtain an

extension of Beta-type means.

Proposition 8. Let k ∈ N, k ≥ 2, be fixed. For every p ∈ R, p �= 0, the function
Mp : (0,∞)k → (0,∞) given by

Mp (x1, . . . , xk) =

(
k1/px1 · · · · · xk

(xp
1 + · · · + xp

k)1/p

)1/(k−1)

is the logarithmic-type quasi-Cauchy quotient mean Mf generated by the power
function f (x) = xp. Moreover the pointwise limits M−∞, M0, M∞ : (0,∞)k →
(0,∞),

M−∞ = lim
p→−∞ Mp, M∞ = lim

t→∞ Mp, M0 = lim
p→0

Mp,

exist and

M−∞ (x1, . . . , xk) =
(

x1 · · · · · xk

min (x1, . . . , xk)

) 1
k−1

,

M−∞ (x1, . . . , xk) =
(

x1 · · · · · xk

max (x1, . . . , xk)

) 1
k−1

,

M0 (x1, . . . , xk) = (x1 · · · · · xk)
1
k ,

in particular, M0 is the geometric mean.

Proof. Take k ∈ N, k ≥ 2, I = (0,∞), p ∈ R, p �= 0, and the function
f (x) = xp. By (9) we have

F (x) =
1
k

xp(k−1), x > 0,
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so the function F : (0,∞) → (0,∞) is strictly increasing for p > 0 and strictly
decreasing for p < 0, and

F−1 (t) = (kt)1/p(k−1)
, t > 0.

Since the function

(0,∞)k � (x1, . . . , xk) �−→ (x1 · · · · · xk)p

xp
1 + · · · + xp

k

is strictly increasing in each variable if p > 0 and strictly decreasing in each
variable if p < 0, the first result follows from Theorem 3 (ii).

We omit the easy verification of the results concerning the limits. �

Remark 13. Note that M1 = Bk.

Corollary 2. Let k = 2. Then for every p ∈ R the geometric mean G = M0

is invariant with respect to the mean-type mapping (M−p,Mp) : (0,∞)2 →
(0,∞)2, i.e.

M0 ◦ (M−p,Mp) = M0,

which implies that the sequence ((M−p,Mp)
n : n ∈ N) of iterates of (M−p,Mp)

is pointwise convergent in (0,∞)2, and

lim
n→∞ (M−p,Mp)

n = (M0,M0) .

Proof. Since, for all x, y > 0,

M0 ◦ (M−p,Mp) (x, y)

=

√√√√ 21/(−p)xy(
x(−p) + y(−p)

)1/(−p)

21/pxy

(xp + yp)1/p
=

√
xy = M0 (x, y) ,

the result follows from [7]. �

6. Multiplicative quasi-Cauchy quotient

Theorem 4. Let I ⊂ (0,∞) be an interval that is closed under multiplication,
f : I → (0,∞) be a function; k ∈ N, k ≥ 2; and let F : I → (0,∞) be given
by

F (x) :=
f

(
xk

)
[f (x)]k

, x ∈ I. (13)

Then
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(i) if F is one-to-one and{
f (x1 · · · · · xk)

f (x1) · · · · · f (xk)
: x1, . . . , xk ∈ I

}
⊂ {F (x) : x ∈ I} , (14)

then the function Mf : Ik → (0,∞) defined by

Mf (x1, . . . , xk) := F−1

(
f (x1 · · · · · xk)

f (x1) · · · · · f (xk)

)
(15)

is a correctly defined symmetric k-variable premean in I;
(ii) if f is continuous and the function

Ik � (x1, . . . .xk) �−→ f (x1 · · · · · xk)
f (x1) · · · · · f (xk)

(16)

is strictly increasing (decreasing) in one of the variables, then F is strictly
increasing (decreasing) and the function Mf defined by (15) is a contin-
uous symmetric strictly increasing k-variable mean in I.

Proof. Analogous as in Theorem 1. �

Definition 4. Under the assumptions of Theorem 4 (ii), the function Mf : Ik →
I is referred to as a multiplicative-type quasi-Cauchy quotient mean generated
by f (or of generator f).

Problem 4. Let f : I → (0,∞) and g : I → (0,∞) satisfy the conditions
of Theorem 4. Determine conditions under which the logarithmic-type quasi-
Cauchy quotient premeans Mf and Mg are equal.

Remark 14. Put G (x) := g(kx)
kg(x) and note that the equality Mf = Mg leads to

the functional equation

ϕ

(
f (x1 · · · · · xk)

f (x1) · · · · · f (xk)

)
=

g (x1 · · · · · xk)
g (x1) · · · · · g (xk)

, x1, . . . , x ∈ I,

where ϕ := G ◦ F−1 is defined on the set

Jf :=
{

f (x1 · · · · · xk)
f (x1) · · · · · f (xk)

: x1, . . . , xk > 1
}

.

In the case k = 2 this equation reduces to

ϕ

(
f (xy)

f (x) f (y)

)
=

g (xy)
g (x) g (y)

, x, y ∈ I, (17)

which is a special case of the functional equation

ϕ (h (x, y)) =
g (xy)

g (x) g (y)
, x, y ∈ I,

where ϕ, h and g are unknown.

A partial solution of Problem 4 gives the following
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Remark 15. Assume that f : (1,∞) → (0,∞) is continuously differentiable
and locally not a power function (i.e. it is not of the form x �−→ αxp on any
nonempty subinterval of I), and g : (1,∞) → (0,∞) is continuous. Let

J :=
{

f (xy)
f (x) f (y)

: x, y ∈ (1,∞)
}

.

If f, g and ϕ : J → (0,∞) satisfy Eq. (17), then there are a, b, c ∈ R, a >
0, c > 0 such that

g (x) = cxb [f (x)]a , x ∈ I; ϕ (t) =
ta

ec
, t ∈ J.

Proof. Setting

s = log x, t = log y , x, y ∈ I,

and

Φ := log ◦ϕ ◦ exp , F := log ◦f ◦ exp , G := log ◦g ◦ exp,

it is easy to see, that Eq. (17) is equivalent to

Φ (F (s + t) − F (s) − F (t)) = G (s + t) − G (s) − G (t) , s, t ∈ log (I) .

Since Φ is continuous, F is differentiable, not affine on any subinterval of
log (I), and g is continuous, Bruce Ebanks’ result [3] (see also [8], Remark 5),
we conclude that there are some real numbers a, b, C such that

G (s) = aF (s) + bs + C, s ∈ log I; and Φ(u) = au − C, u ∈ JF ,

where

J := {F (s + t) − F (s) − F (t) : s, t ∈ log (I)} .

Hence, setting c = eC , we obtain

g (x) = cxb [f (x)]a , x ∈ I; and ϕ (t) =
ta

c
, t ∈ J.

�

Remark 16. In this remark the interval (1,∞) can be replaced by (0, 1) and
(0,∞) .

Remark 17. Ebanks proved his result in [3] using some regularity results of
Járai [5] (see also [2], where stronger regularity is assumed).

Part 10: Multiplicative quasi-Cauchy quotient for exponential functions

Proposition 9. Let k ∈ N, k ≥ 2, be fixed.
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(i) Let I = (1,∞). Then for every p > 0, p �= 1, the exponential function
f (x) = px, x ∈ I, generates a unique multiplicative-type quasi-Cauchy
quotient mean M : (1,∞)k → (1,∞); it is given by the implicit equality

Mk − kM = x1 · · · · · xk − (x1 + · · · + xk) , x1, . . . , xk > 1,

and it does not depend on p.
Moreover, in case k = 2,

M (x, y) = 1 +
√

(x − 1) (y − 1).

(ii) Let I = (0, 1). Then for every p > 0, p �= 1, the exponential function
f (x) = px, x ∈ I, generates a unique multiplicative-type quasi-Cauchy
quotient mean M : (0, 1)k → (0,∞); it is given by the implicit equality

kM − Mk = x1 + · · · + xk − x1 · · · · · xk, x1, . . . , xk ∈ (0, 1) ,

and it does not depend on p. Moreover, in case k = 2,

M (x, y) = 1 −
√

(1 − x) (1 − y).

Proof. (ii) Take k ∈ N, k ≥ 2 , I = (1,∞), p > 0, p �= 1, and the function
f (x) = px in Theorem 4. By (13) we have

F (x) =
pxk

(px)k
= pxk−kx, x > 1.

Assume first that p > 1. Since F ′ (x) = (k ln p) pxk−kx
(
xk−1 − 1

)
, it follows

that F is strictly increasing in (1,∞) and maps this interval onto
(
p1−k,∞)

.
Since for all x1, . . . , xk > 1,

∂

∂x1

px1·····xk

px1 · · · · · pxk
= (ln p) (x2 · · · · · xk − 1) px1·····xk−(x1+···+xk) > 0,

the function (16) with f (x) = px is strictly increasing in each variable in
(1,∞)k . By Theorem 4 (ii), there is a unique mean M : (1,∞)k → (1, k) such
that

pMk−kM =
px1·····xk

px1 · · · · · pxk
= px1·····xk−(x1+···+xk),

or, equivalently, such that

Mk − kM = x1 · · · · · xk − (x1 + · · · + xk) ,

which shows that M does not depend on p.
If 0 < p < 1, then F and the respective function (16) are decreasing and

we argue similarly.
In the case k = 2, setting x = x1, x2 = y, solving this quadratic equation

M2 − 2M = xy − (x + y) we get

M (x, y) = 1 +
√

(x − 1) (y − 1), x, y > 1,

which concludes the proof of (i). We omit a similar argument for (ii). �
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Remark 18. For k = 2 the mean M is a “translated” geometric mean or ϕ
-conjugate geometric mean with ϕ (t) = t − 1, i.e. M (x, y) = ϕ−1 (G (ϕ (x) ,
ϕ (y))).

Remark 19. In case k = 2 the function M : (0,∞)2 → (0,∞) defined by

M (x, y) :=

⎧⎨
⎩

1 +
√

(x − 1) (y − 1) if (x, y) ∈ (1,∞)2

1 − √
(1 − x) (1 − y) if (x, y) ∈ (0, 1)2

1 if min (x, y) ≤ 1 ≤ max (x, y)

is a mean. It joins two means defined separately in the intervals (1,∞) and
(0, 1) in Proposition 9.

Part 11: Multiplicative quasi-Cauchy quotient for logarithmic functions

Proposition 10. Let k ∈ N, k ≥ 2, be fixed. For every p > 0, p �= 1, the
logarithmic function f = logp generates an independent on p multiplicative-
type quasi-Cauchy quotient mean M : (1,∞)k → (1,∞) given by

M (x1, . . . , xk) = expBk (ln x1, . . . , ln xk) .

Proof. Take k ∈ N, k ≥ 2 , I = (1,∞), p > 1, and the function f = logp. By
(13) we have

F (x) =
k logp xk

(
logp x

)k
=

k(
logp x

)k−1
, x > 1,

so the function F : (1,∞) → (0,∞) is strictly decreasing in (1,∞). Since the
function (16)

(1,∞)k � (x1, . . . , xk) �−→ logp (x1 · · · · · xk)(
logp x1

) · · · · · (
logp xk

)

is decreasing in each variable (we omit calculations), and

F−1 (t) = p( k
t )

1/(k−1)

, t > 0,

making use of (15), we conclude that

M (x1, . . . , xk) = p

(
k(logp x1)·····(logp xk)

logp(x1·····xk)

)1/(k−1)

, x1, . . . , xk > 1,

is a k-variable mean in (1,∞). Since logp x = ln x
ln p , we have, for all x1, . . . , xk >

1,
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M (x1, . . . , xk) = p

⎛
⎝ k( ln x1

ln p )·····( ln xk
ln p )

ln(x1·····xk)
ln p

⎞
⎠

1/(k−1)

=
(
p

1
ln p

)(
k(ln x1)·····(ln xk)

ln(x1·····xk)

)1/(k−1)

= e

(
k(ln x1)·····(ln xk)

ln(x1·····xk)

)1/(k−1)

= e

(
k(ln x1)·····(ln xk)
ln x1+···+ln xk

)1/(k−1)

= exp Bk (ln x1, . . . , ln xk) ,

so M does not depend on p.
We omit similar calculations in the case p ∈ (0, 1). �

Remark 20. The mean M is logarithmically conjugate to the mean Bk. The
above proposition remains true on replacing the interval (1,∞) by (0, 1).

Part 12: Multiplicative quasi-Cauchy quotient for additive functions

Remark 21. The additive functions do not generate any multiplicative-type
quasi-Cauchy quotient means.

Indeed, taking k ∈ N, k ≥ 2 , I = (0,∞), p > 0, and the function f (x) = px,
by (13) we have

F (x) =
pxk

(px)k
=

1
pk−1

, x > 0,

so F is a constant function.
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