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Abstract. The aim of this note is to present an elementary way to fractals which completely
avoids advanced analysis and uses purely naive set theory. The approach relies on fixed
point methods, where the role of the Banach contraction principle is replaced by a slightly
improved version of the Knaster–Tarski fixed point theorem.
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1. Motivations

Although fractals definitely belong to the most popular mathematical inven-
tions, they have no unified definition in the technical literature. Measure theo-
rists prefer to capture their fragmented nature. Mandelbrot himself considered
them as sets for which the Hausdorff–Besicovitch dimension strictly exceeds
the topological dimension (see his pioneer work [7], or its English version [8]).

Fixed point theorists focus on self-similarity, which is the other characteris-
tic property of fractals. This approach and its interaction with the Hausdorff–
Besicovitch dimension was elaborated by Hutchinson [4]. In the forthcoming
investigations, we also follow this path.

Throughout this note, X stands for an arbitrary set, and P(X) denotes
its power set. Assume that T = {Tγ : F (X) → F (X) | γ ∈ Γ} is a nonempty
family of maps, where F (X) is a subfamily of P(X). We say that H ∈ F (X)
is a T -fractal if it fulfills the invariance equation
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H =
⋃

γ∈Γ

Tγ(H). (1)

The family T is frequently called iterated function system (IFS), while fractals
are termed the attractors of the underlying IFS. To develop a satisfactory
fractal theory, that is, a theory in which fractals are uniquely defined objects
via their invariance equation, the family F (X) and the mapping class T have
to be declared.

In the classical setting, F (X) is the family of nonempty, bounded, closed
subsets of a complete metric space, and T consists of finitely many contrac-
tions. Then, Hutchinson’s fundamental result [4] guarantees the unique resolv-
ability of (1). His brilliant approach interprets the invariance equation as a
fixed point problem, which has exactly one solution in the complete metric
space of fractals according to the Blaschke Theorem and the Banach Contrac-
tion Principle.

Later Mandelbrot proposed to use ‘fractal’ without a pedantic definition,
since we can see fractals everywhere [2]. Motivated by this philosophy, we
take the liberty to consider fractals everything : We will not distinguish F (X)
and P(X). The family T will consist of arbitrarily many isotone or continu-
ous maps (their precise definition is given in the next section). Then, a slightly
improved version of the Knaster–Tarski theorem [6] guarantees a smallest frac-
tal fulfilling (1).

Our approach provides a minimalists’ fractal theory in a double sense: a
minimal theoretical setup leads to the minimum solution of the invariance
equation. This elementary way completely avoids the advanced tools of anal-
ysis, and simultaneously reflects the method and the beauty of the fixed point
approach.

2. Isotone and continuous maps

A mapping T : P(X) → P(X) is called isotone, if it preserves the set-
theoretic inclusion, that is T (A) ⊆ T (B) holds provided that A ⊆ B. Isotone
maps have several obvious properties. For instance, the images of the emptyset
and the basic set under an isotone map T are

T (∅) =
⋂

{T (A) | A ∈ P(X)} and T (X) =
⋃

{T (A) | A ∈ P(X)}.

Note also, that isotone maps are superadditive with respect to union, while sub-
additive with respect to intersection. That is, for any isotone map T : P(X) →
P(X), we have

⋃

A∈A

T (A) ⊆ T
(⋃

A
)

and T
(⋂

A
)

⊆
⋂

A∈A

T (A).
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An other important mapping class (which will turn out to be a subfamily
of isotone maps) is the class of continuous maps. In the power set P(X), it is
useful to regard countable chains as sequences and the union of the chain as
the limit. Guided by this, a map T : P(X) → P(X) is said to be continuous,
if, for every countable chain L ,

T
(⋃

L
)

=
⋃

L∈L

T (L).

Further obvious properties will play a distinguished role in our investiga-
tions. Therefore we formulate them as Propositions. The first one highlights
the precise relation of isotone and continuous self-maps, while the second and
third ones show how to generate isotone and continuous maps using these kind
of maps.

Proposition 1. Any continuous self-map of a power set is isotone. Further-
more, any self-map of a finite power set is isotone if and only if it is continu-
ous.

Proof. Let T : P(X) → P(X) be a continuous map, and assume that A ⊆ B.
Consider the chain L = {A,B}. Then,

T (A) ⊆ T (A) ∪ T (B) =
⋃

L∈L

T (L) = T
(⋃

L
)

= T (B),

resulting in the first statement. To prove the second one, it suffices to prove
only that any isotone map T on a finite power set is continuous. Observe first
that, any countable chain in a finite set is finite. For a finite chain L , the set
{T (L) | L ∈ L } is a chain again, since T is isotone. Moreover, if L represents
the greatest member of L , then T (L) becomes the greatest member in the
corresponding chain. Therefore, T (

⋃
L ) = T (L) =

⋃
T (L ) holds, yielding

continuity. �

Proposition 2. The finite composition of isotone (respectively, continuous)
maps is isotone (respectively, continuous). In particular, the iterates of an iso-
tone (respectively, continuous) map is also isotone (respectively, continuous).

Proposition 3. If T := {Tγ : P(X) → P(X) | γ ∈ Γ} is an isotone
(respectively: continuous) family and T : P(X) → P(X) is defined by

T (H) =
⋃

γ∈Γ

Tγ(H), (2)

then T is also isotone (respectively, continuous).

Proof. We restrict the proof only to the second statement. Let L be a count-
able chain. Then, by the continuity of the members,
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T
(⋃

L
)

=
⋃

γ∈Γ

Tγ

( ⋃

L∈L

L
)

=
⋃

γ∈Γ

⋃

L∈L

Tγ

(
L

)
=

⋃

L∈L

⋃

γ∈Γ

Tγ

(
L

)
=

⋃

L∈L

T
(
L

)
.

This verifies the continuity of T . �

A nontrivial property of isotone maps, the well-known result of Knaster and
Tarski [6], states that each isotone map has a fixed point. The next theorem
slightly improves this statement, guaranteeing the existence of a smallest fixed
point. Hence, in this form, it may be considered as an existence and uniqueness
result. Adopting the idea of Kantorovitch [5], the smallest fixed point can even
be represented with the help of the orbit of the empty set. In the sequel, Fix(T )
shall stand for the set of fixed points of T .

Theorem 1. If T : P(X) → P(X) is isotone, then Fix(T ) is nonempty, and⋂
Fix(T ) is the smallest fixed point of T . Moreover, if T is continuous, then

the smallest fixed point can be represented as
⋃

n∈N

Tn(∅) =
⋂

Fix(T ). (3)

Proof. By the Knaster–Tarski fixed point theorem, Fix(T ) is nonempty. Let
H ∈ Fix(T ) be arbitrary and define H0 :=

⋂
Fix(T ). Then H0 ⊆ H, and hence,

T (H0) ⊆ T (H) = H holds for all members of Fix(T ). Thus T (H0) ⊆ H0,
yielding that T maps the power set P(H0) into itself. By the Knaster–Tarski
fixed point theorem again, T has a fixed point which is a subset of H0. This
can occur only if this fixed point is H0 itself. Therefore H0 is the smallest fixed
point of T .

Consider now the family

L := {Tn(∅) | n ∈ N}.

For an isotone map T , the trivial inclusion ∅ ⊆ T (∅) implies T (∅) ⊆ T 2(∅).
Iterating this process, one can conclude that L is an increasing chain. On
the other hand, using now ∅ ⊆ H0 and Proposition 2, Tn(∅) ⊆ Tn(H0) = H0

follows for all n ∈ N. Therefore,
⋃

n∈N

Tn(∅) =
⋃

L ⊆ H0 =
⋂

Fix(T )

always holds for purely isotone maps. Assume now that our map is continuous.
By Proposition 1, the just proved facts above remain true for continuous T ,
as well. Moreover, by continuity,

T
(⋃

L
)

=
⋃

L∈L

T (L) =
⋃

n∈N

Tn+1(∅) =
⋃

n∈N

Tn(∅) =
⋃

L .

This verifies that
⋃
L is a fixed point for T . However, H0 is the smallest fixed

point. This implies the reverse inclusion H0 ⊆ ⋃
L . �



Vol. 94 (2020) Fractals for minimalists 599

Observe that (3) holds for such isotone maps that satisfy the continuity
property only on the special chain L = {Tn(∅) | n ∈ N}. Though this obser-
vation is valid for the forthcoming results, we shall formulate them under the
assumption of continuity.

Finally, we present some examples of isotone and continuous maps and
describe their fixed point properties, as well. The details of the proofs are left
to the reader.

Example 1. If A ⊆ X is arbitrary, then the map T : P(X) → P(X) defined
by T (H) = A is continuous. Its smallest and greatest fixed point is A.

Example 2. The identity map of any power set is continuous, and each subset
is a fixed point. The smallest fixed point is the emptyset, while the greatest
one is the basic set.

Example 3. Let X be an infinite set, and define T : P(X) → P(X) in the
following way. Let T (H) = ∅ if H is finite and T (H) = X if H is infinite.
Then T is an isotone, but not continuous map. Its smallest fixed point is the
emptyset, while the greatest one is X. No more fixed point exists.

Example 4. Let X be a vector space, and fix x0 ∈ X and λ ∈ R arbitrarily.
Then the mapping T : P(X) → P(X) given by T (H) = {λx + x0 | x ∈
H} ∪ {x0} is continuous, and its smallest fixed point H0 can be represented
as

H0 =

{(
n∑

k=1

λk−1

)
x0 | n ∈ N

}
.

Example 5. Let f : X → Y be an arbitrary function, and define the map
Tf : P(X) → P(Y ) via the standard way of “image of sets”

Tf (H) := {f(x) | x ∈ H}.

Then, Tf is continuous.

Observe, that Example 5 extends the first statement of Example 4. Note
also, that the representation of the smallest fixed point in Example 4 follows
directly from (3).

3. The main result

Now we are in the position to formulate and prove the main result and highlight
its connection with classical fractal theory. We illustrate this connection with
the help of well-known fractals.

Theorem 2. If T is a family of isotone maps, then there exists a smallest T -
fractal. Moreover, if T is a continuous family, then this fractal is obtained via
(3).
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Proof. Let T := {Tγ : P(X) → P(X) | γ ∈ Γ} and define T : P(X) →
P(X) with (2). By Proposition 3, T is isotone (respectively: continuous) pro-
vided that T is an isotone (respectively: continuous) family. Hence the state-
ments follow immediately from Theorem 1. �

Classical fractals can also be studied in the minimalists’ framework as the
first Corollary shows. Its first statement is a consequence of Example 5, Propo-
sition 3 and Theorem 2, the second one is obvious. Details of the proof are
omitted.

Corollary 1. If f1, . . . , fn are contractions of a complete metric space, then the
invariance equation

H = Tf1(H) ∪ · · · ∪ Tfn
(H)

has a smallest solution, which is a subset of the corresponding nonempty,
closed, bounded one.

It may occur, that the minimalist solution of the classical invariance equa-
tion is the emptyset. However, we can avoid trivial cases by adding some extra
parts to the original equation. Moreover, it can be done in such a way, that
the modification will have no effect on the original nonempty, closed, bounded
solution. The next Corollaries explain this phenomenon.

Corollary 2. The smallest real fractal H0 which satisfies the invariance equa-
tion

H =
1
3
H ∪

(
1
3
H +

2
3

)
∪ {0}

is a proper subset of the Cantor-set, and consists of exactly those real numbers
whose ternary expansions are finite, and the digits belong to the set {0, 2}.
Hint. By Example 4, the right-hand side of the invariance equation above
contains continuous maps. Therefore, by Theorem 2, there exists a smallest
fractal satisfying the invariance equation, indeed. Using induction and the fact
T (∅) = {0}, one can easily prove that

Tn+1(∅) =
{
(0, x1 . . . xn)3 | xk ∈ {0; 2}, k = 1, . . . , n

}
,

where (·)3 stands for the basic ternary expansion of reals. Hence (3) reduces
to

H0 =
{
(0, x1 . . . xn)3 | xk ∈ {0; 2}, k = 1, . . . , n; n ∈ N

}
,

as it was stated. The Cantor-set itself is a solution (more precisely, the unique
nonempty, closed, bounded one) of the invariance equation above. Therefore,
by Theorem 2, H0 is a subset of the Cantor-set. On the other hand, H0 is
nonempty and countable, so it is a proper subset. �
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Corollary 3. For all i, j ∈ {0, 1, 2}, define the mappings Ti,j : R → R by

Tij(x, y) =
(x + i

3
,
y + j

3

)
.

The smallest planar fractal which satisfies the invariance equation

H =
⋃ {

Tij(H) | i, j ∈ {0, 1, 2}, (i, j) �= (1, 1)
} ∪ {(0, 0)}

is a proper subset of the Sierpiński-carpet, and consists of exactly those points
whose components’ ternary expansions are finite, and have no position in which
both numbers have the digit 1.

Corollary 4. For all i, j ∈ {0, 1, 2, 3}, define the mappings Ti,j,k : R → R by

Tijk(x, y, z) =
(x + i

3
,
y + j

3
,
z + k

3

)
.

The smallest 3D fractal which satisfies the invariance equation

H =
⋃ {

Tijk(H) | i, j, k ∈ {0, 1, 2}, (1, 1) /∈ {(i, j), (j, k), (k, i)}} ∪ {(0, 0, 0)}
is a proper subset of the Menger-sponge, and consists of exactly those points
whose components’ ternary expansions are finite, and have no position in which
each number has the digit 1.

4. Some historical comments

The joint result of Knaster and Tarski [6] is the source of order theoretic fixed
point results. It appeared in a conference report of the meeting of the War-
saw Division of the Polish Mathematical Society. This report does not contain
the proof, and states only the existence of a fixed point. As applications, the
Banach Mapping Theorem [1] and the Schröder–Bernstein Theorem are men-
tioned. Then, Tarski developed this result alone. In the second footnote of a
later article [11], he commemorates this as follows:

In 1927 Knaster and the author proved a set-theoretical fixpoint
theorem by which every function, on and to the family of all subsets
of a set, which is increasing under set-theoretical inclusion has at
least one fixpoint; see [6], where some applications of this result in
set theory (a generalization of the Cantor–Bernstein theorem) and
topology are also mentioned. A generalization of this result is the
lattice-theoretical fixpoint theorem stated above. The theorem in its
present form and its various applications and extensions were found
by the author in 1939 and discussed by him in a few public lectures
in 1939–1942.
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The fundamental paper of Tarski [11] presents two fixed point theorems
for isotone maps of complete lattices. The first one extends considerably the
original result of Knaster and Tarski, and claims the existence of smallest and
greatest fixed points. The second theorem formulates an analogous statement
for a commuting family of isotone maps. Then several applications are given,
among others, generalizations of the Weierstrass Theorem and the Cantor–
Bendixson Theorem. Results in the theory of Boolean algebras are also pre-
sented.

Consider the union of the upper half-fixed points and the intersection of
the lower half-fixed points of an isotone map T : P(X) → P(X):

A := {H ⊆ X | H ⊆ T (H)}, A := ∪A ;
B := {H ⊆ X | T (H) ⊆ H}, B := ∩B.

The standard proof of the Knaster–Tarski Theorem, for example, as Shapiro
[9] presents, is to show that A is a fixed point of T . This proof can directly be
adopted to show the fixed point property of B. In fact, the first proof shows
the existence of the greatest, while the second one the existence of the smallest
fixed point implicitly.

The famous Hungarian journal, the Mathematical and Physical Jour-
nal for Secondary Schools, posed problems called ‘hors concours’ between
1973 and 1984. One of them, labeled P. 329, was the Knaster–Tarski The-
orem. Only three solutions arrived, and two of them were correct. The pre-
sented solution follows the nonstandard way [10], showing that B (see above)
is a fixed point. The problem itself does not claim the minimum prop-
erty.

Of course, our set-theoretic approach in itself is not sufficient to show
the nice geometrical properties of fractals. However, as we have pointed
out in the motivations, at least it opens a window to the role of fixed
point theory. Therefore, we hope, this note will have some didactic impact.
For those who are interested in fixed point theory and its applications, we
refer to the works of Granas and Dugundji [3], of Shapiro [9] and of Zei-
dler [12].
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