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Abstract. Given a probability space (€2, A, P), a complete and separable metric space X with
the o-algebra B of all its Borel subsets and a B ® A-measurable f : X x Q@ — X we consider
its iterates f™ defined on X x QN by fO(z,w) = z and f*(z,w) = f(f* (z,w),wn) for
n € N and provide a simple criterion for the existence of a probability Borel measure 7 on
X such that for every x € X and for every Lipschitz and bounded ¢ : X — R the sequence

(% ZZ;& zp(fk(x, ))) N converges in probability to fX Y (y)m(dy).
ne
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1. Introduction

Fix a probability space (€2, .A, P) and a complete and separable metric space
(X, p).

Let B denote the o-algebra of all Borel subsets of X. We say that f :
X x Q — X is a random-valued function (shortly: an rv-function) if it is
measurable with respect to the product o-algebra B ® A. The iterates of such
an rv-function are given by

Pz,w,wo, .. ) =2, [M(z,wi,ws,...) = f(f"_l(a:,wl,WQ,...),wn)

forn € N, z € X and (wy,ws, ...) from Q> defined as Q. Note that f™: X x
0% — X is an rv-function on the product probability space (Q°°, A%, P>).
More exactly, for n € N the nth iterate f™ is B ® A,-measurable, where A,
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denotes the o-algebra of all sets of the form
{(w1,wa,...) €Q®: (w1,...,wy) € A}

with A from the product o-algebra A™. (See [4], [5, Sec. 1.4].)

A result on the a.s. convergence of (f"(z,-)) _ for X being the unit in-
terval may be found in [5, Sec. 1.4B]. The paper [4] by Rafal Kapica brings
theorems on the convergence a.s. and in L' of those sequences of iterates in
the case where X is a closed subset of a Banach lattice. A simple criterion for
the convergence in law of (f"(x,-))nen to a random variable independent of
x € X was proved in [1] and applied to the equation

ﬂ@:LwﬁwwﬂW@+F@

with ¢ as the unknown function. In [2] this criterion was applied to the equa-
tion

ﬂ@=ﬂm—4¢mawwew

In the present paper it is strengthened and applied to get a weak law of
large numbers for iterates of random-valued functions.

2. Wasserstein metric

By a distribution (on X') we mean any probability measure defined on B. Recall
that a sequence (7n)nen of distributions converges weakly to a distribution  if
lim [ u(x)m,(dz) = [ u(z)m(dz) for any continuous and bounded u : X —
n—0oo

R. Tt is well known (see [3, Th. 11.3.3]) that this convergence is metrizable by
the (Fortet—-Mourier, Lévy—Prohorov, Wasserstein) metric

/udm—/ udmy
X X

Lip,(X) = {u: X = R]| |u(z) — u(z)| < o(z, 2) for z,z € X}
and ||ullco = sup{|u(x)|: x € X} for a bounded u : X — R.

I =l =sup { 0 € Lip, ()l < 1.

where

3. Convergence in law

Fix an rv-function f: X x Q — X and let 7, (x,-) denote the distribution of
fn( 7 )’
Tn(z, B) = P®(f"(2,-) € B) forn e NU{0}, z € X and B € B.

The above mentioned strengthening of [1, Th. 3.1] reads as follows.
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Theorem 3.1. If

[ elf@w) fe0) Plaw) < Mofa.2) for w2 X o)
with a X € (0,1), and
/Qg(f(ac,w),x)P(dw) < oo for x€ X, (2)

then there exists a distribution ™ on X such that for every x € X the sequence
(mn(, '))neN converges weakly to 7; moreover,

|mn () — 7llw < P(dw) for x€ X and neN (3)

1 A

and

/ oz, y)m(dy) < oo for xz € X. (4)
X

Proof. Tt follows from [1, Th. 3.1] that there exists a distribution 7 on X such
that (3) holds. We shall show that (4) is also satisfied. To this end note first
that by (1) we have

/ o(f"(z,w), f*(z,w)) P> (dw) < X"o(z,2) for z,z € X and n € N. (5)

Fix z € X and for every n € N define 7, : [0, 00) — [0,00) by
Tn(t) = min{t, n}.
Since, by (3),

/ Tn(p(xvy))ﬂn(w,dy)—/ Tn(p(xvy))ﬂ(dy)' < nfmn(z, ) = wllw
X X

nA\"

<155 [ elrww).)Plaw)

for n € N and by the monotone convergence theorem

/Xp(x,y)w(dy): lim XTn(p(%y))W(dy)’

n—0o0

it is enough to prove that the sequence (fX Tn (p(x, y))ﬁn(x, dy))neN, i.e., the
sequence (fQOO Tn (p(ac, f"(x,w))) P“(dw))neN, is bounded.
To show it observe that for every n € N and (w1, ws,...) € 2% we have
Tn (p (fn(xawlaw% o ),’I’)) < p(fn(x’wlaw% . ')a SU)
(fn_l (f(.’lf (/.}1),0.}2,0.}3, v ),.T)

n
Z (" (f (@, wr), wrp 1, @rpas - ), f 70 (@ w1, Weg2, )

| A



418 K. BARON AEM
and for every y € X the value f™(y,wi,ws,...) depends only on y and on

(wi,...,wp). Hence, applying the Fubini theorem and (5), for every n € N we
get

/m Tn (p(f"(x,w),a:)) P (dw)

(fnik(f(x,wl),wg,w?,, .. .), fnfk(;r,u)g,u)g7 .. )) P (d(whwz, .. ))
f(

SZ p
k=1cm
SI;)\"* /Qp( %w),x)P(dw)Sﬁ/ﬂg(f(x,w),x)P(dw)_

Remark 3.2. If (1) holds with a A € (0,00) and (2) is satisfied, then the
function v : X — [0, 00) defined by

o) = /Q o(f (,), ) P(dw) (6)

is Lipschitz.

4. Weak law of large numbers

Theorem 4.1. If (1) holds with a A € (0,1) and (2) is satisfied, then there
exists a distribution m on X such that for every x € X and for every Lipschitz
and bounded ¢ : X — R the sequence (% Zz;é Yo fE(x, )) converges in
probability to fX Y(y)m(dy).

Proof. Making use of Theorem 3.1 let m be a distribution on X such that (3)
and (4) hold. Tt follows from Remark 3.2 and (4) that

/X o(y)m(dy) < oo. (7)

Fix xp € X, a Lipschitz and bounded ¢ : X — R and an € € (0, 00). Put

neN

b0 =0 f'(z0,)) for neN, c= /X B(y)m(dy). (8)

26)20.

We shall show that

n—1

1
lim P> | |— —
S (0
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Since by Chebyshev’s inequality

n—l n—1 2
oo [ |1 1 N
P (nkz_%gk_c >6><n2€2/ﬂx (Z(fk—0)> dP for n € N,

it is enough to prove that

n—1 2
. 1 o
i (Z@k - C>> w0
We may assume that

¢ € Lip;(X) and ||¢]e < 1. (9)
We shall prove that

n—1k—1

. 1 o
dm 5303 [ =G, 19
k=1 1=0
1 n—1 1 n—1
: 2 oo : oo
Jim — Z/Qm €dP> =0, lim ~ > - EpdP>® =c.  (11)
k=0 k=0
Since
n_1 2 n—1k—1
/ (Z(@ - c)) P> =23"%" / €r6dP™
< \k=0 k=1 1=0 Y&

n—1 n—1
+> / §dP> —2ney £edP>® + n?c?
k=072 k=0 /2
for every integer n > 2, it will complete the proof.
Fix integers n > 2, k € [1,n — 1] and [ € [0,k — 1]. Then
fk(x()uwlawa o ) = fk_l(fl(‘rOawlana .. ')7wl+lawl+27 e )

for (w1,wa,...) € Q°°. Hence, by (8) and the Fubini theorem,

gadr== [ ([ ol o) smedn) P (),
Qo Qe \Jx
It follows from (9) and (5) that the function

T w(fk_l(x,w))Poo(dw), r € X,
Qo

has values in [~1,1] and is Lipschitz with a Lipschitz constant \*~!, whence
the function

oo @) [ () PRde), e X,
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has value in [—~1,1] and is Lipschitz with a Lipschitz constant 1 + A\*~!. Hence
and from (3) and (6) we infer that

oo ([ ot e mie

- [ ([ ot opp= ) stan)

l

-

< 2||m(zo,") = 7llw < v(zo).

Consequently, for every integer n > 2,

n—1
k=1

<

2!  20(wo) &= 1= A 2(n — 1)v(xo)
- 0;1_A§ T

It shows that

lim —

n
1
n—oo N

—1k—1
kz:llz—%< Qoo SGdP™ = /)(¢(y)(/)(1/)(2)ﬂkz(y,dz))w(dy)> =0.
(12)

Further, for every integer n > 2,

/ ) / ()i i(y, d2))m(dy)
(n—k /w /w Yy, dz)) m(dy)

and, by (9), (3) and (6),

‘ [ v@midn - [ v

n—1k

Z?j

=1

k

1-A

<|m(y,) = 7w < v(y)
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for y € X and k € N, whence

>(n—) /X b()( /X (2)mely, dz))w(dy)

—gm—k) [ v [ s
:Zn- /w |‘/w Yy, dz) — /¢ 7(dz)| (dy)
SZZ;(”_@/XlA—kA v(u)n(dy) < 7=, [ viw)n(dn) ZAk

n—1A1— A1)
e [ vt
Since, by (8),

> 0 [ o) ( [ vem)ra) = e,

jointly with (7), it gives

n—1k—1
Jm 5SS [ ([ mldz)elay) -
k=1 1=0

Hence and from (12) we have (10).
From the weak convergence of (7, (o, ))n ¢y to m it follows that

n—1
1
lim — dP>™ = m(dy) =

and
1n 1
i > [ gap = [ wiwPata)
which shows that (11) also holds and ends the proof. O

Since continuous real functions defined on a compact metric space can
be uniformly approximated by Lipschitz functions (see [3, Theorem 11.2.4]),
Theorem 4.1 implies the following corollary.

Corollary 4.2. Assume (X, p) is a compact metric space. If (1) holds with a
A € (0,1) and (2) is satisfied, then there exists a distribution m on X such
that for every x € X and for every continuous v : X — R the sequence

(% EZ;; Yo fr(x, ~))n€N converges in probability to [ ¥ (y)m(dy).
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Remark 4.3. In the results presented we cannot replace the sequence of means

( Zk 01100 ( ))nEN by (’(/)Ofn(x,'))neN.
To see it fix a A € (0,1) and an A-measurable £ : Q@ — [0,1 — A}, and
consider the rv-function f : [0,1] x Q — [0, 1] given by
Fl,w) = A + ().

We shall show that if (dj o f™(x, ~))n€N converges in probability for an
2 € [0,1] and for a Borel 4 : [0,1] — R such that

cle =z < |p(x) = ¢(2)] for 2,z €]0,1]

with a ¢ € (0,00), then ¢ is a.s. constant.

Proof. For every n € N we have

fn(xa ) = Afn71($7 ) +§na

where

En(wr,wa,...) =&(wy) for (wy,ws,...) € Q%

and
c|f”(a:,w) JA w| W(f” T w)) w(f" Yo w))| for w € Q%°,

which implies that the sequence (f"~!(z,-) + t25&n)
bility to zero. Since

1 1 1
n . — &, =\ n—1 . R -
f(xa)+)\_1§+1 (f (:L‘,)+)\_1£)+)\_1
for n € N, it proves that the sequence (£,+1 — &, )nen converges in probability
to zero. But (&,)nen is a sequence of independent and identically distributed
random variables, the distribution of &, is just the distribution of £ for every
n € N, whence (cf. [3, Theorem 9.1.3])

oy converges in proba-

(gn-‘rl - fn)

(pg * pi—¢) ((—00, —€] U [e,00)) =0 for € € (0, 00),

where e and p_¢ denote the distributions of & and —¢&, respectively. Conse-
quently,

(ke * p—g) (R\{0}) = 0,

from which

1= (e * pe) ({0}) = / ne({—2}pe(dz) = / e ({2})pe (d2),

and so £ is a.s. constant. O
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