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Abstract. Given a probability space (Ω, A, P ), a complete and separable metric space X with
the σ-algebra B of all its Borel subsets and a B ⊗ A-measurable f : X × Ω → X we consider
its iterates fn defined on X × ΩN by f0(x, ω) = x and fn(x, ω) = f

(
fn−1(x, ω), ωn

)
for

n ∈ N and provide a simple criterion for the existence of a probability Borel measure π on
X such that for every x ∈ X and for every Lipschitz and bounded ψ : X → R the sequence(

1
n

∑n−1
k=0 ψ

(
fk(x, ·))

)

n∈N

converges in probability to
∫
X ψ(y)π(dy).

Mathematics Subject Classification. Primary 39B12, 26A18, 60B12, 60F05.

Keywords. Random-valued functions, Iterates, Weak law of large numbers, Convergence in

law, Convergence in probability.

1. Introduction

Fix a probability space (Ω,A, P ) and a complete and separable metric space
(X, ρ).

Let B denote the σ-algebra of all Borel subsets of X. We say that f :
X × Ω → X is a random-valued function (shortly: an rv-function) if it is
measurable with respect to the product σ-algebra B ⊗ A. The iterates of such
an rv-function are given by

f0(x, ω1, ω2, . . .) = x, fn(x, ω1, ω2, . . .) = f
(
fn−1(x, ω1, ω2, . . .), ωn

)

for n ∈ N, x ∈ X and (ω1, ω2, . . .) from Ω∞ defined as ΩN. Note that fn : X ×
Ω∞ → X is an rv-function on the product probability space (Ω∞,A∞, P∞).
More exactly, for n ∈ N the nth iterate fn is B ⊗ An-measurable, where An
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denotes the σ-algebra of all sets of the form

{(ω1, ω2, . . .) ∈ Ω∞ : (ω1, . . . , ωn) ∈ A}
with A from the product σ-algebra An. (See [4], [5, Sec. 1.4].)

A result on the a.s. convergence of
(
fn(x, ·))

n∈N
for X being the unit in-

terval may be found in [5, Sec. 1.4B]. The paper [4] by Rafa�l Kapica brings
theorems on the convergence a.s. and in L1 of those sequences of iterates in
the case where X is a closed subset of a Banach lattice. A simple criterion for
the convergence in law of (fn(x, ·))n∈N to a random variable independent of
x ∈ X was proved in [1] and applied to the equation

ϕ(x) =
∫

Ω

ϕ
(
f(x, ω)

)
P (dω) + F (x)

with ϕ as the unknown function. In [2] this criterion was applied to the equa-
tion

ϕ(x) = F (x) −
∫

Ω

ϕ
(
f(x, ω)

)
P (dω).

In the present paper it is strengthened and applied to get a weak law of
large numbers for iterates of random-valued functions.

2. Wasserstein metric

By a distribution (on X) we mean any probability measure defined on B. Recall
that a sequence (πn)n∈N of distributions converges weakly to a distribution π if
lim

n→∞
∫

X
u(x)πn(dx) =

∫
X

u(x)π(dx) for any continuous and bounded u : X →
R. It is well known (see [3, Th. 11.3.3]) that this convergence is metrizable by
the (Fortet–Mourier, Lévy–Prohorov, Wasserstein) metric

‖π1 − π2‖W = sup
{∣

∣
∣
∣

∫

X

udπ1 −
∫

X

udπ2

∣
∣
∣
∣ : u ∈ Lip1(X), ‖u‖∞ ≤ 1

}
,

where

Lip1(X) = {u : X → R| |u(x) − u(z)| ≤ �(x, z) for x, z ∈ X}
and ‖u‖∞ = sup{|u(x)| : x ∈ X} for a bounded u : X → R.

3. Convergence in law

Fix an rv-function f : X × Ω → X and let πn(x, ·) denote the distribution of
fn(x, ·), i.e.,

πn(x,B) = P∞(
fn(x, ·) ∈ B

)
for n ∈ N ∪ {0}, x ∈ X and B ∈ B.

The above mentioned strengthening of [1, Th. 3.1] reads as follows.
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Theorem 3.1. If
∫

Ω

�
(
f(x, ω), f(z, ω)

)
P (dω) ≤ λ�(x, z) for x, z ∈ X (1)

with a λ ∈ (0, 1), and
∫

Ω

�
(
f(x, ω), x

)
P (dω) < ∞ for x ∈ X, (2)

then there exists a distribution π on X such that for every x ∈ X the sequence(
πn(x, ·))

n∈N
converges weakly to π; moreover,

‖πn(x, ·) − π‖W ≤ λn

1 − λ

∫

X

�
(
f(x, ω), x

)
P (dω) for x ∈ X and n ∈ N (3)

and ∫

X

�(x, y)π(dy) < ∞ for x ∈ X. (4)

Proof. It follows from [1, Th. 3.1] that there exists a distribution π on X such
that (3) holds. We shall show that (4) is also satisfied. To this end note first
that by (1) we have

∫

Ω∞
�
(
fn(x, ω), fn(z, ω)

)
P∞(dω) ≤ λn�(x, z) for x, z ∈ X and n ∈ N. (5)

Fix x ∈ X and for every n ∈ N define τn : [0,∞) → [0,∞) by

τn(t) = min{t, n}.

Since, by (3),
∣
∣
∣
∣

∫

X

τn

(
ρ(x, y)

)
πn(x, dy) −

∫

X

τn

(
ρ(x, y)

)
π(dy)

∣
∣
∣
∣ ≤ n‖πn(x, ·) − π‖W

≤ nλn

1 − λ

∫

X

�
(
f(x, ω), x

)
P (dω)

for n ∈ N and by the monotone convergence theorem
∫

X

ρ(x, y)π(dy) = lim
n→∞

∫

X

τn

(
ρ(x, y)

)
π(dy),

it is enough to prove that the sequence
(∫

X
τn

(
ρ(x, y)

)
πn(x, dy)

)
n∈N

, i.e., the
sequence

(∫
Ω∞ τn

(
ρ
(
x, fn(x, ω)

))
P∞(dω)

)
n∈N

, is bounded.
To show it observe that for every n ∈ N and (ω1, ω2, . . .) ∈ Ω∞ we have

τn (ρ (fn(x, ω1, ω2, . . .), x)) ≤ ρ
(
fn(x, ω1, ω2, . . .), x

)

= ρ
(
fn−1

(
f(x, ω1), ω2, ω3, . . .

)
, x

)

≤
n∑

k=1

ρ
(
fn−k

(
f(x, ωk), ωk+1, ωk+2, . . .

)
, fn−k(x, ωk+1, ωk+2, . . .)

)



418 K. Baron AEM

and for every y ∈ X the value fn(y, ω1, ω2, . . .) depends only on y and on
(ω1, . . . , ωn). Hence, applying the Fubini theorem and (5), for every n ∈ N we
get

∫

Ω∞
τn

(
ρ
(
fn(x, ω), x

))
P ∞(dω)

≤
n∑

k=1

∫

Ω∞

ρ
(
fn−k(

f(x, ω1), ω2, ω3, . . .
)
, fn−k(x, ω2, ω3, . . .)

)
P ∞(

d(ω1, ω2, . . .)
)

≤
n∑

k=1

λn−k

∫

Ω

ρ
(
f(x, ω), x

)
P (dω) ≤ 1

1 − λ

∫

Ω

�
(
f(x, ω), x

)
P (dω).

�

Remark 3.2. If (1) holds with a λ ∈ (0,∞) and (2) is satisfied, then the
function υ : X → [0,∞) defined by

υ(x) =
∫

Ω

�
(
f(x, ω), x

)
P (dω) (6)

is Lipschitz.

4. Weak law of large numbers

Theorem 4.1. If (1) holds with a λ ∈ (0, 1) and (2) is satisfied, then there
exists a distribution π on X such that for every x ∈ X and for every Lipschitz
and bounded ψ : X → R the sequence

(
1
n

∑n−1
k=0 ψ ◦ fk(x, ·))

n∈N
converges in

probability to
∫

X
ψ(y)π(dy).

Proof. Making use of Theorem 3.1 let π be a distribution on X such that (3)
and (4) hold. It follows from Remark 3.2 and (4) that

∫

X

υ(y)π(dy) < ∞. (7)

Fix x0 ∈ X, a Lipschitz and bounded ψ : X → R and an ε ∈ (0,∞). Put

ξn = ψ ◦ fn(x0, ·) for n ∈ N, c =
∫

X

ψ(y)π(dy). (8)

We shall show that

lim
n→∞ P∞

(∣
∣
∣
∣
∣
1
n

n−1∑

k=0

ξk − c

∣
∣
∣
∣
∣
≥ ε

)

= 0.
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Since by Chebyshev’s inequality

P∞
(∣

∣
∣
∣
∣
1
n

n−1∑

k=0

ξk − c

∣
∣
∣
∣
∣
≥ ε

)

≤ 1
n2ε2

∫

Ω∞

(
n−1∑

k=0

(ξk − c)

)2

dP∞ for n ∈ N,

it is enough to prove that

lim
n→∞

1
n2

∫

Ω∞

(
n−1∑

k=0

(ξk − c)

)2

dP∞ = 0.

We may assume that

ψ ∈ Lip1(X) and ‖ψ‖∞ ≤ 1. (9)

We shall prove that

lim
n→∞

1
n2

n−1∑

k=1

k−1∑

l=0

∫

Ω∞
ξkξldP∞ =

c2

2
, (10)

lim
n→∞

1
n2

n−1∑

k=0

∫

Ω∞
ξ2
kdP∞ = 0, lim

n→∞
1
n

n−1∑

k=0

∫

Ω∞
ξkdP∞ = c. (11)

Since
∫

Ω∞

(
n−1∑

k=0

(ξk − c)

)2

dP∞ = 2
n−1∑

k=1

k−1∑

l=0

∫

Ω∞
ξkξldP∞

+
n−1∑

k=0

∫

Ω∞
ξ2
kdP∞ − 2nc

n−1∑

k=0

∫

Ω∞
ξkdP∞ + n2c2

for every integer n ≥ 2, it will complete the proof.
Fix integers n ≥ 2, k ∈ [1, n − 1] and l ∈ [0, k − 1]. Then

fk(x0, ω1, ω2, . . .) = fk−l
(
f l(x0, ω1, ω2, . . .), ωl+1, ωl+2, . . .

)

for (ω1, ω2, . . .) ∈ Ω∞. Hence, by (8) and the Fubini theorem,
∫

Ω∞
ξkξldP∞ =

∫

Ω∞

(∫

X

ψ
(
fk−l(y, ω)

)
ψ(y)πl(x0, dy)

)
P∞(dω).

It follows from (9) and (5) that the function

x �→
∫

Ω∞
ψ

(
fk−l(x, ω)

)
P∞(dω), x ∈ X,

has values in [−1, 1] and is Lipschitz with a Lipschitz constant λk−l, whence
the function

x �→ ψ(x)
∫

Ω∞
ψ

(
fk−l(x, ω)

)
P∞(dω), x ∈ X,
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has value in [−1, 1] and is Lipschitz with a Lipschitz constant 1 + λk−l. Hence
and from (3) and (6) we infer that

∣
∣
∣
∣

∫

X

ψ(y)
(∫

Ω∞
ψ

(
fk−l(y, ω)

)
P∞(dω)

)
πl(x0, dy)

−
∫

X

ψ(y)
(∫

Ω∞
ψ

(
fk−l(y, ω)

)
P∞(dω)

)
π(dy)

∣
∣
∣
∣

≤ 2‖πl(x0, ·) − π‖W ≤ 2λl

1 − λ
υ(x0).

Consequently, for every integer n ≥ 2,

∣
∣
∣
∣
∣

n−1∑

k=1

k−1∑

l=0

(∫

Ω∞
ξkξldP∞ −

∫

X

ψ(y)
( ∫

X

ψ(z)πk−l(y, dz)
)
π(dy)

)∣
∣
∣
∣
∣

≤
n−1∑

k=1

k−1∑

l=0

2λl

1 − λ
υ(x0) =

2υ(x0)
1 − λ

n−1∑

k=1

1 − λk

1 − λ
≤ 2(n − 1)υ(x0)

(1 − λ)2
.

It shows that

lim
n→∞

1
n2

n−1∑

k=1

k−1∑

l=0

(∫

Ω∞
ξkξldP∞ −

∫

X

ψ(y)
( ∫

X

ψ(z)πk−l(y, dz)
)
π(dy)

)
= 0.

(12)

Further, for every integer n ≥ 2,

n−1∑

k=1

k−1∑

l=0

∫

X

ψ(y)
( ∫

X

ψ(z)πk−l(y, dz)
)
π(dy)

=
n−1∑

k=1

(n − k)
∫

X

ψ(y)
( ∫

X

ψ(z)πk(y, dz)
)
π(dy)

and, by (9), (3) and (6),

∣
∣
∣
∣

∫

X

ψ(z)πk(y, dz) −
∫

X

ψ(z)π(dz)
∣
∣
∣
∣ ≤ ‖πk(y, ·) − π‖W ≤ λk

1 − λ
υ(y)
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for y ∈ X and k ∈ N, whence
∣
∣
∣
∣
∣

n−1∑

k=1

(n − k)
∫

X

ψ(y)
( ∫

X

ψ(z)πk(y, dz)
)
π(dy)

−
n−1∑

k=1

(n − k)
∫

X

ψ(y)
( ∫

X

ψ(z)π(dz)
)
π(dy)

∣
∣
∣
∣
∣

≤
n−1∑

k=1

(n − k)
∫

X

|ψ(y)|
∣
∣
∣
∣

∫

X

ψ(z)πk(y, dz) −
∫

X

ψ(z)π(dz)
∣
∣
∣
∣ π(dy)

≤
n−1∑

k=1

(n − k)
∫

X

λk

1 − λ
υ(y)π(dy) ≤ n − 1

1 − λ

∫

X

υ(y)π(dy)
n−1∑

k=1

λk

=
(n − 1)λ(1 − λn−1)

(1 − λ)2

∫

X

υ(y)π(dy).

Since, by (8),
n−1∑

k=1

(n − k)
∫

X

ψ(y)
( ∫

X

ψ(z)π(dz)
)
π(dy) =

n(n − 1)
2

c2,

jointly with (7), it gives

lim
n→∞

1
n2

n−1∑

k=1

k−1∑

l=0

∫

X

ψ(y)
( ∫

X

ψ(z)πk−l(y, dz)
)
π(dy) =

c2

2
.

Hence and from (12) we have (10).
From the weak convergence of

(
πn(x0, ·)

)
n∈N

to π it follows that

lim
n→∞

1
n

n−1∑

k=0

∫

Ω∞
ξkdP∞ =

∫

X

ψ(y)π(dy) = c

and

lim
n→∞

1
n

n−1∑

k=0

∫

Ω∞
ξ2
kdP∞ =

∫

X

ψ(y)2π(dy),

which shows that (11) also holds and ends the proof. �

Since continuous real functions defined on a compact metric space can
be uniformly approximated by Lipschitz functions (see [3, Theorem 11.2.4]),
Theorem 4.1 implies the following corollary.

Corollary 4.2. Assume (X, ρ) is a compact metric space. If (1) holds with a
λ ∈ (0, 1) and (2) is satisfied, then there exists a distribution π on X such
that for every x ∈ X and for every continuous ψ : X → R the sequence(

1
n

∑n−1
k=0 ψ ◦ fk(x, ·))

n∈N
converges in probability to

∫
X

ψ(y)π(dy).
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Remark 4.3. In the results presented we cannot replace the sequence of means(
1
n

∑n−1
k=0 ψ ◦ fk(x, ·))

n∈N
by

(
ψ ◦ fn(x, ·))

n∈N
.

To see it fix a λ ∈ (0, 1) and an A-measurable ξ : Ω → [0, 1 − λ], and
consider the rv-function f : [0, 1] × Ω → [0, 1] given by

f(x, ω) = λx + ξ(ω).

We shall show that if
(
ψ ◦ fn(x, ·))

n∈N
converges in probability for an

x ∈ [0, 1] and for a Borel ψ : [0, 1] → R such that

c|x − z| ≤ |ψ(x) − ψ(z)| for x, z ∈ [0, 1]

with a c ∈ (0,∞), then ξ is a.s. constant.

Proof. For every n ∈ N we have

fn(x, ·) = λfn−1(x, ·) + ξn,

where

ξn(ω1, ω2, . . .) = ξ(ωn) for (ω1, ω2, . . .) ∈ Ω∞,

and

c
∣
∣fn(x, ω) − fn−1(x, ω)

∣
∣ ≤ ∣

∣ψ
(
fn(x, ω)

) − ψ
(
fn−1(x, ω)

)∣∣ for ω ∈ Ω∞,

which implies that the sequence
(
fn−1(x, ·) + 1

λ−1ξn

)
n∈N

converges in proba-
bility to zero. Since

fn(x, ·) +
1

λ − 1
ξn+1 = λ

(
fn−1(x, ·) +

1
λ − 1

ξn

)
+

1
λ − 1

(ξn+1 − ξn)

for n ∈ N, it proves that the sequence (ξn+1 − ξn)n∈N converges in probability
to zero. But (ξn)n∈N is a sequence of independent and identically distributed
random variables, the distribution of ξn is just the distribution of ξ for every
n ∈ N, whence (cf. [3, Theorem 9.1.3])

(μξ ∗ μ−ξ)
(
(−∞,−ε] ∪ [ε,∞)

)
= 0 for ε ∈ (0,∞),

where μξ and μ−ξ denote the distributions of ξ and −ξ, respectively. Conse-
quently,

(μξ ∗ μ−ξ)(R\{0}) = 0,

from which

1 = (μξ ∗ μ−ξ)({0}) =
∫

R

μ−ξ({−z})μξ(dz) =
∫

R

μξ({z})μξ(dz),

and so ξ is a.s. constant. �
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Bankowa 14
40-007 Katowice
Poland
e-mail: baron@us.edu.pl

Received: January 29, 2018

http://creativecommons.org/licenses/by/4.0/

	Weak law of large numbers for iterates of random-valued  functions
	Abstract
	1. Introduction
	2. Wasserstein metric
	3. Convergence in law
	4. Weak law of large numbers
	Acknowledgements
	References




