Aequationes Mathematicae

Weak law of large numbers for iterates of random-valued functions

KAROL BARON

To the memory of Professor Marek Kuczma and Professor Győrgy Targoński.

Abstract. Given a probability space (Ω, \mathcal{A}, P) , a complete and separable metric space X with the σ -algebra \mathcal{B} of all its Borel subsets and a $\mathcal{B} \otimes \mathcal{A}$ -measurable $f : X \times \Omega \to X$ we consider its iterates f^n defined on $X \times \Omega^{\mathbb{N}}$ by $f^0(x, \omega) = x$ and $f^n(x, \omega) = f(f^{n-1}(x, \omega), \omega_n)$ for $n \in \mathbb{N}$ and provide a simple criterion for the existence of a probability Borel measure π on X such that for every $x \in X$ and for every Lipschitz and bounded $\psi : X \to \mathbb{R}$ the sequence $\left(\frac{1}{n} \sum_{k=0}^{n-1} \psi(f^k(x, \cdot))\right)_{n \in \mathbb{N}}$ converges in probability to $\int_X \psi(y) \pi(dy)$.

Mathematics Subject Classification. Primary 39B12, 26A18, 60B12, 60F05.

Keywords. Random-valued functions, Iterates, Weak law of large numbers, Convergence in law, Convergence in probability.

1. Introduction

Fix a probability space (Ω, \mathcal{A}, P) and a complete and separable metric space (X, ρ) .

Let \mathcal{B} denote the σ -algebra of all Borel subsets of X. We say that f: $X \times \Omega \to X$ is a *random-valued* function (shortly: an *rv-function*) if it is measurable with respect to the product σ -algebra $\mathcal{B} \otimes \mathcal{A}$. The iterates of such an *rv*-function are given by

$$f^{0}(x,\omega_{1},\omega_{2},\ldots) = x, \quad f^{n}(x,\omega_{1},\omega_{2},\ldots) = f(f^{n-1}(x,\omega_{1},\omega_{2},\ldots),\omega_{n})$$

for $n \in \mathbb{N}$, $x \in X$ and $(\omega_1, \omega_2, \ldots)$ from Ω^{∞} defined as $\Omega^{\mathbb{N}}$. Note that $f^n : X \times \Omega^{\infty} \to X$ is an rv-function on the product probability space $(\Omega^{\infty}, \mathcal{A}^{\infty}, P^{\infty})$. More exactly, for $n \in \mathbb{N}$ the *n*th iterate f^n is $\mathcal{B} \otimes \mathcal{A}_n$ -measurable, where \mathcal{A}_n

🕲 Birkhäuser

denotes the σ -algebra of all sets of the form

$$\{(\omega_1,\omega_2,\ldots)\in\Omega^\infty:(\omega_1,\ldots,\omega_n)\in A\}$$

with A from the product σ -algebra \mathcal{A}^n . (See [4], [5, Sec. 1.4].)

A result on the a.s. convergence of $(f^n(x, \cdot))_{n \in \mathbb{N}}$ for X being the unit interval may be found in [5, Sec. 1.4B]. The paper [4] by Rafał Kapica brings theorems on the convergence a.s. and in L^1 of those sequences of iterates in the case where X is a closed subset of a Banach lattice. A simple criterion for the convergence in law of $(f^n(x, \cdot))_{n \in \mathbb{N}}$ to a random variable independent of $x \in X$ was proved in [1] and applied to the equation

$$\varphi(x) = \int_{\Omega} \varphi(f(x,\omega)) P(d\omega) + F(x)$$

with φ as the unknown function. In [2] this criterion was applied to the equation

$$\varphi(x) = F(x) - \int_{\Omega} \varphi(f(x,\omega)) P(d\omega).$$

In the present paper it is strengthened and applied to get a weak law of large numbers for iterates of random-valued functions.

2. Wasserstein metric

By a distribution (on X) we mean any probability measure defined on \mathcal{B} . Recall that a sequence $(\pi_n)_{n\in\mathbb{N}}$ of distributions converges weakly to a distribution π if $\lim_{n\to\infty} \int_X u(x)\pi_n(dx) = \int_X u(x)\pi(dx)$ for any continuous and bounded $u: X \to \mathbb{R}$. It is well known (see [3, Th. 11.3.3]) that this convergence is metrizable by the (Fortet-Mourier, Lévy-Prohorov, Wasserstein) metric

$$\|\pi_1 - \pi_2\|_W = \sup\left\{ \left| \int_X u d\pi_1 - \int_X u d\pi_2 \right| : \ u \in \operatorname{Lip}_1(X), \|u\|_{\infty} \le 1 \right\},\$$

where

$$\operatorname{Lip}_1(X) = \{ u : X \to \mathbb{R} | |u(x) - u(z)| \le \varrho(x, z) \text{ for } x, z \in X \}$$

and $||u||_{\infty} = \sup\{|u(x)|: x \in X\}$ for a bounded $u: X \to \mathbb{R}$.

3. Convergence in law

Fix an rv-function $f: X \times \Omega \to X$ and let $\pi_n(x, \cdot)$ denote the distribution of $f^n(x, \cdot)$, i.e.,

$$\pi_n(x,B) = P^{\infty}(f^n(x,\cdot) \in B) \quad \text{for } n \in \mathbb{N} \cup \{0\}, \ x \in X \text{ and } B \in \mathcal{B}.$$

The above mentioned strengthening of [1, Th. 3.1] reads as follows.

Theorem 3.1. If

$$\int_{\Omega} \varrho \big(f(x,\omega), f(z,\omega) \big) P(d\omega) \le \lambda \varrho(x,z) \quad for \ x, z \in X$$
(1)

with $a \lambda \in (0,1)$, and

$$\int_{\Omega} \varrho \big(f(x,\omega), x \big) P(d\omega) < \infty \quad for \ x \in X,$$
(2)

then there exists a distribution π on X such that for every $x \in X$ the sequence $(\pi_n(x, \cdot))_{n \in \mathbb{N}}$ converges weakly to π ; moreover,

$$\|\pi_n(x,\cdot) - \pi\|_W \le \frac{\lambda^n}{1-\lambda} \int_X \varrho(f(x,\omega), x) P(d\omega) \quad \text{for } x \in X \text{ and } n \in \mathbb{N}$$
(3)

and

$$\int_{X} \varrho(x, y) \pi(dy) < \infty \quad for \ x \in X.$$
(4)

Proof. It follows from [1, Th. 3.1] that there exists a distribution π on X such that (3) holds. We shall show that (4) is also satisfied. To this end note first that by (1) we have

$$\int_{\Omega^{\infty}} \varrho \big(f^n(x,\omega), f^n(z,\omega) \big) P^{\infty}(d\omega) \le \lambda^n \varrho(x,z) \quad \text{for } x, z \in X \text{ and } n \in \mathbb{N}.$$
(5)

Fix $x \in X$ and for every $n \in \mathbb{N}$ define $\tau_n : [0, \infty) \to [0, \infty)$ by

$$\tau_n(t) = \min\{t, n\}.$$

Since, by (3),

$$\left| \int_{X} \tau_n \big(\rho(x, y) \big) \pi_n(x, dy) - \int_{X} \tau_n \big(\rho(x, y) \big) \pi(dy) \right| \le n \|\pi_n(x, \cdot) - \pi\|_W$$
$$\le \frac{n\lambda^n}{1-\lambda} \int_{X} \varrho \big(f(x, \omega), x \big) P(d\omega)$$

for $n \in \mathbb{N}$ and by the monotone convergence theorem

$$\int_X \rho(x, y) \pi(dy) = \lim_{n \to \infty} \int_X \tau_n \big(\rho(x, y) \big) \pi(dy),$$

it is enough to prove that the sequence $\left(\int_X \tau_n(\rho(x,y))\pi_n(x,dy)\right)_{n\in\mathbb{N}}$, i.e., the sequence $\left(\int_{\Omega^{\infty}} \tau_n\left(\rho(x,f^n(x,\omega))\right)P^{\infty}(d\omega)\right)_{n\in\mathbb{N}}$, is bounded.

To show it observe that for every $n \in \mathbb{N}$ and $(\omega_1, \omega_2, \ldots) \in \Omega^{\infty}$ we have

$$\tau_n \left(\rho \left(f^n(x, \omega_1, \omega_2, \ldots), x \right) \right) \le \rho \left(f^n(x, \omega_1, \omega_2, \ldots), x \right)$$

= $\rho \left(f^{n-1} \left(f(x, \omega_1), \omega_2, \omega_3, \ldots \right), x \right)$
$$\le \sum_{k=1}^n \rho \left(f^{n-k} \left(f(x, \omega_k), \omega_{k+1}, \omega_{k+2}, \ldots \right), f^{n-k}(x, \omega_{k+1}, \omega_{k+2}, \ldots) \right)$$

and for every $y \in X$ the value $f^n(y, \omega_1, \omega_2, \ldots)$ depends only on y and on $(\omega_1, \ldots, \omega_n)$. Hence, applying the Fubini theorem and (5), for every $n \in \mathbb{N}$ we get

$$\int_{\Omega^{\infty}} \tau_n \left(\rho \left(f^n(x,\omega), x \right) \right) P^{\infty}(d\omega)$$

$$\leq \sum_{k=1}^n \int_{\Omega^{\infty}} \rho \left(f^{n-k} \left(f(x,\omega_1), \omega_2, \omega_3, \ldots \right), f^{n-k}(x,\omega_2, \omega_3, \ldots) \right) P^{\infty} \left(d(\omega_1, \omega_2, \ldots) \right)$$

$$\leq \sum_{k=1}^n \lambda^{n-k} \int_{\Omega} \rho \left(f(x,\omega), x \right) P(d\omega) \leq \frac{1}{1-\lambda} \int_{\Omega} \rho \left(f(x,\omega), x \right) P(d\omega).$$

Remark 3.2. If (1) holds with a $\lambda \in (0, \infty)$ and (2) is satisfied, then the function $v: X \to [0, \infty)$ defined by

$$\upsilon(x) = \int_{\Omega} \varrho(f(x,\omega), x) P(d\omega)$$
(6)

is Lipschitz.

4. Weak law of large numbers

Theorem 4.1. If (1) holds with a $\lambda \in (0,1)$ and (2) is satisfied, then there exists a distribution π on X such that for every $x \in X$ and for every Lipschitz and bounded $\psi : X \to \mathbb{R}$ the sequence $\left(\frac{1}{n} \sum_{k=0}^{n-1} \psi \circ f^k(x, \cdot)\right)_{n \in \mathbb{N}}$ converges in probability to $\int_X \psi(y) \pi(dy)$.

Proof. Making use of Theorem 3.1 let π be a distribution on X such that (3) and (4) hold. It follows from Remark 3.2 and (4) that

$$\int_{X} \upsilon(y)\pi(dy) < \infty.$$
(7)

Fix $x_0 \in X$, a Lipschitz and bounded $\psi : X \to \mathbb{R}$ and an $\epsilon \in (0, \infty)$. Put

$$\xi_n = \psi \circ f^n(x_0, \cdot) \quad \text{for} \quad n \in \mathbb{N}, \quad c = \int_X \psi(y) \pi(dy). \tag{8}$$

We shall show that

$$\lim_{n \to \infty} P^{\infty} \left(\left| \frac{1}{n} \sum_{k=0}^{n-1} \xi_k - c \right| \ge \epsilon \right) = 0.$$

~

Since by Chebyshev's inequality

$$P^{\infty}\left(\left|\frac{1}{n}\sum_{k=0}^{n-1}\xi_{k}-c\right| \ge \epsilon\right) \le \frac{1}{n^{2}\epsilon^{2}}\int_{\Omega^{\infty}}\left(\sum_{k=0}^{n-1}(\xi_{k}-c)\right)^{2}dP^{\infty} \quad \text{for} \ n \in \mathbb{N},$$

it is enough to prove that

$$\lim_{n \to \infty} \frac{1}{n^2} \int_{\Omega^{\infty}} \left(\sum_{k=0}^{n-1} (\xi_k - c) \right)^2 dP^{\infty} = 0.$$

We may assume that

 $\psi \in \operatorname{Lip}_1(X) \quad \text{and} \quad \|\psi\|_{\infty} \le 1.$ (9)

We shall prove that

$$\lim_{n \to \infty} \frac{1}{n^2} \sum_{k=1}^{n-1} \sum_{l=0}^{k-1} \int_{\Omega^{\infty}} \xi_k \xi_l dP^{\infty} = \frac{c^2}{2},\tag{10}$$

$$\lim_{n \to \infty} \frac{1}{n^2} \sum_{k=0}^{n-1} \int_{\Omega^{\infty}} \xi_k^2 dP^{\infty} = 0, \quad \lim_{n \to \infty} \frac{1}{n} \sum_{k=0}^{n-1} \int_{\Omega^{\infty}} \xi_k dP^{\infty} = c.$$
(11)

Since

$$\int_{\Omega^{\infty}} \left(\sum_{k=0}^{n-1} (\xi_k - c) \right)^2 dP^{\infty} = 2 \sum_{k=1}^{n-1} \sum_{l=0}^{k-1} \int_{\Omega^{\infty}} \xi_k \xi_l dP^{\infty} + \sum_{k=0}^{n-1} \int_{\Omega^{\infty}} \xi_k^2 dP^{\infty} - 2nc \sum_{k=0}^{n-1} \int_{\Omega^{\infty}} \xi_k dP^{\infty} + n^2 c^2$$

for every integer $n \ge 2$, it will complete the proof.

Fix integers $n \ge 2$, $k \in [1, n-1]$ and $l \in [0, k-1]$. Then

$$f^{k}(x_{0},\omega_{1},\omega_{2},\ldots) = f^{k-l} \left(f^{l}(x_{0},\omega_{1},\omega_{2},\ldots),\omega_{l+1},\omega_{l+2},\ldots \right)$$

for $(\omega_1, \omega_2, \ldots) \in \Omega^{\infty}$. Hence, by (8) and the Fubini theorem,

$$\int_{\Omega^{\infty}} \xi_k \xi_l dP^{\infty} = \int_{\Omega^{\infty}} \left(\int_X \psi \big(f^{k-l}(y,\omega) \big) \psi(y) \pi_l(x_0,dy) \right) P^{\infty}(d\omega).$$

It follows from (9) and (5) that the function

$$x \mapsto \int_{\Omega^{\infty}} \psi(f^{k-l}(x,\omega)) P^{\infty}(d\omega), \quad x \in X,$$

has values in [-1,1] and is Lipschitz with a Lipschitz constant $\lambda^{k-l},$ whence the function

$$x \mapsto \psi(x) \int_{\Omega^{\infty}} \psi(f^{k-l}(x,\omega)) P^{\infty}(d\omega), \quad x \in X,$$

has value in [-1, 1] and is Lipschitz with a Lipschitz constant $1 + \lambda^{k-l}$. Hence and from (3) and (6) we infer that

$$\begin{split} \left| \int_{X} \psi(y) \left(\int_{\Omega^{\infty}} \psi(f^{k-l}(y,\omega)) P^{\infty}(d\omega) \right) \pi_{l}(x_{0},dy) \\ - \int_{X} \psi(y) \left(\int_{\Omega^{\infty}} \psi(f^{k-l}(y,\omega)) P^{\infty}(d\omega) \right) \pi(dy) \right| \\ \leq 2 \|\pi_{l}(x_{0},\cdot) - \pi\|_{W} \leq \frac{2\lambda^{l}}{1-\lambda} \upsilon(x_{0}). \end{split}$$

Consequently, for every integer $n \ge 2$,

$$\left| \sum_{k=1}^{n-1} \sum_{l=0}^{k-1} \left(\int_{\Omega^{\infty}} \xi_k \xi_l dP^{\infty} - \int_X \psi(y) \left(\int_X \psi(z) \pi_{k-l}(y, dz) \right) \pi(dy) \right) \right|$$

$$\leq \sum_{k=1}^{n-1} \sum_{l=0}^{k-1} \frac{2\lambda^l}{1-\lambda} \psi(x_0) = \frac{2\psi(x_0)}{1-\lambda} \sum_{k=1}^{n-1} \frac{1-\lambda^k}{1-\lambda} \leq \frac{2(n-1)\psi(x_0)}{(1-\lambda)^2}.$$

It shows that

$$\lim_{n \to \infty} \frac{1}{n^2} \sum_{k=1}^{n-1} \sum_{l=0}^{k-1} \left(\int_{\Omega^{\infty}} \xi_k \xi_l dP^{\infty} - \int_X \psi(y) \Big(\int_X \psi(z) \pi_{k-l}(y, dz) \Big) \pi(dy) \Big) = 0.$$
(12)

Further, for every integer $n \ge 2$,

$$\sum_{k=1}^{n-1} \sum_{l=0}^{k-1} \int_X \psi(y) \Big(\int_X \psi(z) \pi_{k-l}(y, dz) \Big) \pi(dy) \\ = \sum_{k=1}^{n-1} (n-k) \int_X \psi(y) \Big(\int_X \psi(z) \pi_k(y, dz) \Big) \pi(dy)$$

and, by (9), (3) and (6),

$$\left|\int_{X} \psi(z)\pi_{k}(y,dz) - \int_{X} \psi(z)\pi(dz)\right| \le \|\pi_{k}(y,\cdot) - \pi\|_{W} \le \frac{\lambda^{k}}{1-\lambda}\upsilon(y)$$

for $y \in X$ and $k \in \mathbb{N}$, whence

$$\begin{split} \sum_{k=1}^{n-1} (n-k) \int_X \psi(y) \Big(\int_X \psi(z) \pi_k(y, dz) \Big) \pi(dy) \\ &- \sum_{k=1}^{n-1} (n-k) \int_X \psi(y) \Big(\int_X \psi(z) \pi(dz) \Big) \pi(dy) \Big| \\ &\leq \sum_{k=1}^{n-1} (n-k) \int_X |\psi(y)| \left| \int_X \psi(z) \pi_k(y, dz) - \int_X \psi(z) \pi(dz) \right| \pi(dy) \\ &\leq \sum_{k=1}^{n-1} (n-k) \int_X \frac{\lambda^k}{1-\lambda} \psi(y) \pi(dy) \leq \frac{n-1}{1-\lambda} \int_X \psi(y) \pi(dy) \sum_{k=1}^{n-1} \lambda^k \\ &= \frac{(n-1)\lambda(1-\lambda^{n-1})}{(1-\lambda)^2} \int_X \psi(y) \pi(dy). \end{split}$$

Since, by (8),

$$\sum_{k=1}^{n-1} (n-k) \int_X \psi(y) \Big(\int_X \psi(z) \pi(dz) \Big) \pi(dy) = \frac{n(n-1)}{2} c^2,$$

jointly with (7), it gives

$$\lim_{n \to \infty} \frac{1}{n^2} \sum_{k=1}^{n-1} \sum_{l=0}^{k-1} \int_X \psi(y) \Big(\int_X \psi(z) \pi_{k-l}(y, dz) \Big) \pi(dy) = \frac{c^2}{2}.$$

Hence and from (12) we have (10).

From the weak convergence of $(\pi_n(x_0, \cdot))_{n \in \mathbb{N}}$ to π it follows that

$$\lim_{n \to \infty} \frac{1}{n} \sum_{k=0}^{n-1} \int_{\Omega^{\infty}} \xi_k dP^{\infty} = \int_X \psi(y) \pi(dy) = c$$

and

$$\lim_{n \to \infty} \frac{1}{n} \sum_{k=0}^{n-1} \int_{\Omega^{\infty}} \xi_k^2 dP^{\infty} = \int_X \psi(y)^2 \pi(dy),$$

which shows that (11) also holds and ends the proof.

Since continuous real functions defined on a compact metric space can be uniformly approximated by Lipschitz functions (see [3, Theorem 11.2.4]), Theorem 4.1 implies the following corollary.

Corollary 4.2. Assume (X, ρ) is a compact metric space. If (1) holds with a $\lambda \in (0, 1)$ and (2) is satisfied, then there exists a distribution π on X such that for every $x \in X$ and for every continuous $\psi : X \to \mathbb{R}$ the sequence $(\frac{1}{n} \sum_{k=0}^{n-1} \psi \circ f^k(x, \cdot))_{n \in \mathbb{N}}$ converges in probability to $\int_X \psi(y) \pi(dy)$.

 \square

Remark 4.3. In the results presented we cannot replace the sequence of means $\left(\frac{1}{n}\sum_{k=0}^{n-1}\psi\circ f^k(x,\cdot)\right)_{n\in\mathbb{N}}$ by $\left(\psi\circ f^n(x,\cdot)\right)_{n\in\mathbb{N}}$.

To see it fix a $\lambda \in (0,1)$ and an \mathcal{A} -measurable $\xi : \Omega \to [0, 1 - \lambda]$, and consider the *rv*-function $f : [0,1] \times \Omega \to [0,1]$ given by

$$f(x,\omega) = \lambda x + \xi(\omega).$$

We shall show that if $(\psi \circ f^n(x, \cdot))_{n \in \mathbb{N}}$ converges in probability for an $x \in [0, 1]$ and for a Borel $\psi : [0, 1] \to \mathbb{R}$ such that

 $c|x - z| \le |\psi(x) - \psi(z)|$ for $x, z \in [0, 1]$

with a $c \in (0, \infty)$, then ξ is a.s. constant.

Proof. For every $n \in \mathbb{N}$ we have

$$f^{n}(x,\cdot) = \lambda f^{n-1}(x,\cdot) + \xi_{n}$$

where

$$\xi_n(\omega_1, \omega_2, \ldots) = \xi(\omega_n) \text{ for } (\omega_1, \omega_2, \ldots) \in \Omega^{\infty}$$

and

$$c|f^n(x,\omega) - f^{n-1}(x,\omega)| \le |\psi(f^n(x,\omega)) - \psi(f^{n-1}(x,\omega))|$$
 for $\omega \in \Omega^{\infty}$,

which implies that the sequence $(f^{n-1}(x, \cdot) + \frac{1}{\lambda-1}\xi_n)_{n \in \mathbb{N}}$ converges in probability to zero. Since

$$f^{n}(x,\cdot) + \frac{1}{\lambda - 1}\xi_{n+1} = \lambda \left(f^{n-1}(x,\cdot) + \frac{1}{\lambda - 1}\xi_{n} \right) + \frac{1}{\lambda - 1}(\xi_{n+1} - \xi_{n})$$

for $n \in \mathbb{N}$, it proves that the sequence $(\xi_{n+1} - \xi_n)_{n \in \mathbb{N}}$ converges in probability to zero. But $(\xi_n)_{n \in \mathbb{N}}$ is a sequence of independent and identically distributed random variables, the distribution of ξ_n is just the distribution of ξ for every $n \in \mathbb{N}$, whence (cf. [3, Theorem 9.1.3])

$$(\mu_{\xi} * \mu_{-\xi}) \big((-\infty, -\epsilon] \cup [\epsilon, \infty) \big) = 0 \quad \text{for } \epsilon \in (0, \infty),$$

where μ_{ξ} and $\mu_{-\xi}$ denote the distributions of ξ and $-\xi$, respectively. Consequently,

$$(\mu_{\xi} * \mu_{-\xi})(\mathbb{R} \setminus \{0\}) = 0,$$

from which

$$1 = (\mu_{\xi} * \mu_{-\xi})(\{0\}) = \int_{\mathbb{R}} \mu_{-\xi}(\{-z\})\mu_{\xi}(dz) = \int_{\mathbb{R}} \mu_{\xi}(\{z\})\mu_{\xi}(dz),$$

and so ξ is a.s. constant.

Acknowledgements

I thank Professor Rafał Kapica for calling my attention to the problem. This research was supported by the University of Silesia Mathematics Department (Iterative Functional Equations and Real Analysis program).

Open Access. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

References

- Baron, K.: On the convergence in law of iterates of random-valued functions. Aust. J. Math. Anal. Appl. 6(1), 9 (2009). (Art. 3)
- [2] Baron, K., Kapica, R., Morawiec, J.: On Lipschitzian solutions to an inhomogeneous linear iterative equation. Aequ. Math. 90, 77–85 (2016)
- [3] Dudley, R.M.: Real Analysis and Probability. Cambridge Studies in Advanced Mathematics, vol. 74. Cambridge University Press, Cambridge (2002)
- [4] Kapica, R.: Convergence of sequences of iterates of random-valued vector functions. Colloq. Math. 97, 1–6 (2003)
- [5] Kuczma, M., Choczewski, B., Ger, R.: Iterative Functional Equations. Encyclopedia of Mathematics and Its Applications, vol. 32. Cambridge University Press, Cambridge (1990)

Karol Baron Instytut Matematyki Uniwersytet Śląski Bankowa 14 40-007 Katowice Poland e-mail: baron@us.edu.pl

Received: January 29, 2018