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On convex iterative roots of non-monotonic mappings

Marek Cezary Zdun

Abstract. Let I be an interval. We consider the non-monotonic convex self-mappings f :
I → I such that f2 is convex. They have the property that all iterates fn are convex. In
the class of these mappings we study three families of functions possessing convex iterative
roots. A function f is said to be iteratively convex if f possesses convex iterative roots of
all orders. A mapping f is said to be dyadically convex if for every n ≥ 2 there exists a

convex iterative root f1/2n of order 2n and the sequence {f1/2n} satisfies the condition of

compatibility, that is f1/2n ◦ f1/2n = f1/2n−1
. A function f is said to be flowly convex if

it possesses a convex semi-flow of f , that is a family of convex functions {f t, t > 0} such
that f t ◦ fs = f t+s, t, s > 0 and f1 = f . We show the relations among these three types
of convexity and we determine all convex iterative roots of non-monotonic functions.
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1. Introduction

Let I be an interval and let f : I → I be a convex continuous function. If f is
increasing then the composition f2 = f ◦ f is also convex, however if f is not
increasing then f2 need not be convex. We will show that if f2 is convex then all
iterates fn of the function f are convex. The natural question is: when does the
converse property hold Namely, which convex functions have the property that
they are the iterates of convex functions. In general even increasing smooth
convex functions do not have to be iterates of convex functions. Ger in paper
[1] discovered a special family of C1 increasing convex functions which are
not the second iterates of convex functions. Up to now we do not have an
exact characterization of such functions, though we can explicitly determine
the family of all increasing C1 functions which posses convex iterative roots.
In this note we concentrate on the problem of characterizing non-monotonic
functions possessing convex iterative roots and their determination. A lot of
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information on convex iterative roots of strictly increasing functions can be
found in [2,6–9,12].

If I is an interval bounded above then every convex function f : I → I is
continuous in Int I and there exist the limits of f at the ends of I (see [3]).
Thus in the case of closed interval we will assume that f is continuous at the
ends of I. Moreover, if the interval I is unbounded above then we will assume
that f is continuous.

2. Preliminary results

Let I = [a, b], where a < b ≤ ∞, and f be a continuous function which maps
I into itself.

Lemma 1. If f and f2 are convex then there exists x0 ∈ I, where f attends
the local minimum, so that f(x0) ≥ x0 or f is strictly decreasing.

Proof. It is well known that for every convex function f there exist a ≤ x1 ≤
x2 ≤ b such that f attends its minimum at x1 and x2, f|[a,x1] is strictly
decreasing (if x1 �= a), f|[x2,b] is strictly increasing (if x2 �= b) and f(x) = f(x1)
for x ∈ [x1, x2] (see e.g. [3]). We will show that f(x1) ≥ x1. Suppose on
the contrary that f(x1) < x1. By the continuity of f at x1 there exists a
neighbourhood Ux1 of x1 such that f [Ux1 ] ⊂ [f(x1), x1). If x1 = b then f is
strictly decreasing. Let x1 �= b. Put

U−
x1

:= Ux1 ∩ [a, x1], U+
x1

:= Ux1 ∩ [x1, b].

Since f1 := f |U−
x1

is strictly decreasing, f2 := f |U+
x1

is increasing and f|[f(x1),x1]

is strictly decreasing, we get that f2|U−
x1

= f |[f(x1),x1) ◦f1 is strictly increasing
and f2|U+

x1
= f |[f(x1),x1) ◦ f2 is decreasing, so f2 has a local maximum at x1

but this contradicts the convexity of f2. �

By the way we have proved more

Remark 1. If f and f2 are convex and [x1, x2] is an interval of constancy of f
then f(x1) ≥ x1.

Applying an obvious fact, that for every convex and increasing h and convex
f the composition h ◦ f is convex, we prove the following

Lemma 2. If f is convex and has a local minimum at x0 ∈ (a, b) so that
f(x0) ≥ x0 then all iterates fn are convex.

Proof. We have f(x) ≥ f(x0) ≥ x0, so f [I] ⊂ [x0, b]. Putting h := f |[x0,b]

we get fn(x) = hn(x) for x ∈ [x0, b]. Since h is convex and increasing, the
functions fn+1 = fn|[x0,b] ◦ f = hn ◦ f for n ≥ 1 are convex as a composition
of the convex function f and the convex increasing mappings hn. �
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Theorem 1. If f and f2 are convex then all iterates fn are convex.

Proof. For increasing functions this assertion is trivial. If f is decreasing then
f2 is increasing and convex. Hence f2n = (f2)n are convex. On the other
hand f2n+1 = f2n ◦ f is convex as a composition of a convex function and a
convex increasing function. If f is not monotonic then the assertion is a simple
consequence of Lemmas 1 and 2. �

As a direct consequence of Lemmas 1 and 2 we get the following.

Theorem 2. If f is convex then f2 is convex if and only if there exists x0 ∈
I, where f attends the local minimum so that f(x0) ≥ x0 or f is strictly
decreasing.

Similarly, applying the fact that the composition h ◦ f of concave functions
f with increasing h is concave, we prove the analogous properties for concave
functions.

Remark 2. Let f be concave. Then f2 is concave if and only if there exists
x0 ∈ I, where f attends the local maximum so that f(x0) ≥ x0 or f is strictly
decreasing. Then all iterates fn are concave.

If f is convex and f2 is not convex then it follows by Theorem 2, that
the iterates fn are piecewise monotonic functions with increasing number of
oscillations.

Let us note the following obvious fact.

Lemma 3. If f and f2 are convex and f has a strict local minimum at x0 < b
then all iterates fn have a strict local minimum at x0.

Every convex function f has one or two fixed points. (If b = ∞ then
limx→∞ f(x) = ∞ and we admit ∞ as a fixed point of f .) If f has two fixed
points then one of them equals b. In this case denote by pf this fixed point
which is different from b. However, if f has one fixed point then we denote it
also by pf .

Lemma 4. If f and f2 are convex and [x1, x2] is the interval of constancy of
f and a < x1 < x2 ≤ pf then [x1, x2] is the interval of constancy of all fn.

Proof. We have pf > f(x) > x for x2 ≤ x < pf and pf < f(x) < x for x > pf .
Hence f maps [x2, b] into itself and all iterates fn|[x2,b] are strictly increasing,
since f |[x2,b] is strictly increasing. The constancy of f in [x1, x2] implies that
fn|[x1,x2] is constant. Put g(x) := f(x) for x ∈ [a, x1]. We have

g([a, x1]) = f([a, x1]) ⊂ [f(x1), b] = [f(x2), b] ⊂ [x2, b],

because x2 ≤ pf . In consequence, fn+1(x) = fn ◦ g(x) = fn|[x2,b] ◦ g(x) for
x ∈ [a, x1]. Thus all fn+1 are strictly decreasing on [a, x1] since g is strictly
decreasing. �
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Lemma 5. If f and f2 are convex and [x1, x2] is the interval of constancy of
f and pf ∈ [x1, x2) then for every n ≥ 2 there exist y1 ≤ x1 and y2 > x2 such
that [y1, y2] is the interval of constancy of fn. If x1 = pf then y1 = pf . If
x1 < pf then y1 < x1. If y1 �= a then fn|[a,y1] is strictly decreasing. If y2 �= b
then fn|[y2,b] is strictly decreasing.

Proof. Define {y1, y2} := f−1[{x2}] and y1 < pf < y2. If y1 with such a
property does not exist we put y1 := a. If such y2 does not exist we put
y2 := b. The rest of the proof is a simple verification analogous to that in
Lemma 4. �

Let f and f2 be convex. The following three cases may occur:
(A) f has a strict minimum at x0,
(B) f has an interval of constancy [x1, x2] such that x2 ≤ pf ,
(C) f has an interval of constancy [x1, x2] such that x1 ≤ pf < x2.

Lemma 6. If f satisfies (A) or (B) then
(i) pf > fn+1(x) > fn(x), n ≥ 0, for x < pf and f(x) < pf ;
(ii) pf ≤ fn+1(x) < fn(x), n ≥ 0 for x < pf and f(x) > pf ;
(iii) pf ≤ fn+1(x) < fn(x) for x > pf .
If f satisfies (C) then pf ≤ fn+1(x) ≤ fn(x) for x ∈ [a, b].

The proof is a simple verification based on the inequalities f(x) > x for
x < pf and pf ≤ f(x) < x for x > pf .

Definition 1. Let f : X → X. Every function g : X → X such that gn = f is
said to be an iterative root of n-th order of f .

If we do not assume any conditions on functions g and f then iterative
roots are not determined uniquely, nevertheless we denote each of them by
f

1
n . This symbol is ambiguous.

It follows by Theorem 1 that every convex function f which possesses a
convex square iterative root f

1
2 has the property that f2 is also convex. Thus

in all theorems concerning convex iterative roots we will assume that f and
f2 are convex.

As a simple consequence of Lemma 6 we get
Corollary 1. Assume f has a convex iterative root of n-th order f

1
n .

If f satisfies (A) then f
1
n satisfies (A) at the same point x0.

If f satisfies (B) then f
1
n satisfies (B) in the same interval [x1, x2].

If f satisfies (C) then f
1
n satisfies (C) in an interval [an, bn] ⊂ [x1, x2] for

some an < pf < bn.
Moreover, in cases (A), (B),

x < f
1
n (x) < f(x) for x < pf and f

1
n (x) > f(x) for x > pf .

However, in cases (C),

f
1
n (x) ≥ f(x) ≥ pf for x ∈ [a, b].
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Example 1. Let p ∈ (a, b) and G be a family of all convex functions g : [a, b] →
[p, b] such that g(x) = p for x ∈ [p, b]. It is easy to see that every function g ∈ G
is an n-th convex iterative root of the constant function f(x) = p, x ∈ [a, b].

Let f and f2 be convex. Define two intervals Ia := [a, y0] and Ib := [y0, b],
where

y0 :=

⎧
⎨

⎩

x0, in cases (A)
x2, in cases (B)
pf , in cases (C)

.

Lemma 7. Let f and f2 be convex and f have a convex iterative root f
1
n . Put

S := f
1
n |Ib and K := f

1
n |Ia . Then S : Ib → Ib is increasing, K : Ia → Ib is

decreasing and
Sn−1 ◦ K = f |Ia . (1)

Proof. By Corollary 1, f
1
n [Ib] ⊂ Ib. Hence S : Ib → Ib and Sn = f |Ib . By

the same Corollary we have K(x) ≥ K(y0) = f
1
n (y0) ≥ y0 for x ∈ Ia. Thus

K : Ia → Ib.
Now, let x ∈ Ia, then K(x) ∈ Ib and f

1
n ◦ K(x) = S ◦ K(x) ∈ Ib. Further,

f
1
n ◦ (f

1
n ◦ K)(x) = f

1
n ◦ (S ◦ K)(x) = S ◦ S ◦ K(x) and so on. Repeating this

operation n − 1 times we get (f
1
n )n−1 ◦ K(x) = Sn−1 ◦ K(x), x ∈ Ia. On the

other hand (f
1
n )n−1 ◦ K(x) = (f

1
n )n−1 ◦ f

1
n (x) = f(x) for x ∈ Ia. Thus we

get (1). �
Let us introduce the following formal notation

f
k
n := (f

1
n )k = f

1
n ◦ . . . ◦ f

1
n

︸ ︷︷ ︸
k times

.

Note that the iterative roots are not unambiguous, thus the equality k
n = p

q

does not imply that f
k
n = f

p
q .

Lemma 8. Let f and f2 be convex and f have a convex iterative root f
1
n .

Putting g := f |Ia and K := f
1
n |Ia we have

f
n−1
n ◦ K = g (2)

and
f(a) ≤ f

n−1
n (b). (3)

Proof. Note that (2) is only a modified notation of (1). It follows, by Lemma 7,
that K(a) ∈ Ib and the mapping f

n−1
n |Ib is increasing. Hence, by (1), we obtain

f(a) = g(a) = f
n−1
n (K(a)) ≤ f

n−1
n (b). �

Remark 3. In cases (A) and (B) inequality (3) is equivalent to

f
1
n (f(a)) ≤ f(b), (4)

however, in cases (C) inequality (3) implies (4).
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Proof. We have f(a) ≥ f(y0) ≥ y0, because f |Ia is non-increasing. Hence, by
(3), f(a), f

n−1
n (b) ∈ [y0, b]. Since f

n−1
n |Ib is increasing, (3) implies that

f
1
n (f(a)) ≤ f

1
n (f

n−1
n (b)) = f(a).

Conversely, in cases (A) and (B), f
n−1
n |Ib is strictly increasing, thus the

last inequality implies (3). �

Theorem 3. Let f and f2 be convex and satisfy (A) or (B) and let g := f |Ia
and h := f |Ib . If f has a convex iterative root f

1
n then h has a convex iterative

root h
1
n ,

f
1
n (x) =

{
h

1
n (x), x ∈ Ib

(h
n−1
n )−1 ◦ g(x), x ∈ Ia,

(5)

and
f(a) ≤ h

n−1
n (b). (6)

Conversely, if h possesses a convex iterative root h
1
n satisfying (6) and such

that (h
n−1
n )−1 ◦ g is convex then (5) defines a convex iterative root of f .

Proof. If f
1
n is a convex iterative root of f then, by Lemma 7 and Corollary 1,

f
1
n [Ib] ⊂ Ib and the mapping h

1
n := f

1
n |Ia is a convex, strictly increasing

iterative root of h. Furthermore Lemma 7 implies, that K : Ia → Ib, so by (2)
in Lemma 8,

h
n−1
n (K(x)) = f

n−1
n (K(x)) = g(x) for x ∈ Ia,

where K := f
1
n |Ia . Hence f

1
n (x) = K(x) = (h

n−1
n )−1 ◦ g(x) for x ∈ Ia. Thus

we get (5). Obviously (3) gives (6).
Conversely, let h

1
n be a convex iterative root of h satisfying (6). Note

that (A) and (B) imply that pf ∈ Int Ib, h(x) > x for x < pf and h(x) < x

for x > pf . By Corollary 1, x < h
1
n (x) for x < pf , and h

1
n (x) < x for

x < pf . We will show that h
n−1
n (x) < h(x) for x < pf . Suppose on the

contrary, that there exists an x < pf such that h
n−1
n (x) ≥ h(x). Then

h(x) = h
1
n (h

n−1
n (x)) ≥ h

1
n (h(x)) = h(h

1
n (x)). Since h

1
n (x) ∈ Ib and h

1
n is

strictly increasing we have x ≥ h
n−1
n (x). A contradiction.

In particular we get
h

n−1
n (y0) < h(y0). (7)

In view of (6) and (7)

g[Ia] = [g(y0), g(a)] = [h(y0), f(a)] ⊂ [h
n−1
n (y0), h

n−1
n (b)] = h

n−1
n [Ib].

Thus we may define the functions

R(x) := (h
n−1
n )−1 ◦ g(x), x ∈ Ia
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and

Q(x) :=
{

h
1
n (x), x ∈ Ia

R(x), x ∈ Ib.

We have Qn = f . In fact, since Q : I → Ib we have Qn = Q ◦ Qn−1 =
h

1
n ◦ Qn−1 = h

1
n ◦ Q ◦ Qn−2 = h

2
n ◦ Qn−2 = · · · = h

n−1
n ◦ Q. If x ∈ Ib then

Qn(x) = h
n−1
n ◦ g(x) = h

n−1
n ◦ h

1
n ◦ h(x) = f(x).

If x ∈ Ia then

Qn(x) = h
n−1
n ◦ R(x) = h

n−1
n ◦ (h

n−1
n )−1 ◦ g(x) = g(x) = f(x).

Put z0 := R(y0) = (h
n−1
n )−1 ◦ g(y0). We have h

n−1
n (z0) = g(y0) = h(y0) =

h
n−1
n ◦ h

1
n (y0). Hence z0 = h

1
n (y0), so the function Q is correctly defined and

continuous. The functions R and h
1
n are convex and Q has a minimum at y0,

so Q is convex. �

An analogous result holds also in case (C) but the formula (5) should be
modified. It has a more complicated form. The method of the proof is also
simple but slightly burdensome.

3. Main results

Definition 2. We will say that a function f is iteratively convex if for every
n ≥ 2 there exists a convex iterative root of n-th order of f .

Definition 3. We will say that a function f is dyadically convex if for every
n ≥ 1 there exists a convex iterative root f

1
2n of 2n-th order and the sequence

{f
1
2n } satisfies the condition of compatibility, that is

f
1
2n ◦ f

1
2n = f

1
2n−1 , n ≥ 1. (8)

Definition 4. We will say that a function f is flowly convex if there exists a
convex semi-flow of f also called an iteration semi-group of f , i.e. a family of
convex functions {f t, t > 0} such that f t ◦ fs = f t+s for t, s > 0 and f1 = f .

Remark 4. Note that if f is dyadically convex then f and f2 are convex and
every flowly convex function is iteratively and dyadically convex.

Let us recall

Ib :=
{

[x0, b] in case (A)
[x2, b] in case (B).
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Theorem 4. If f is dyadically convex then f(a) ≤ f(b). If moreover, f is not
constant in a right side of its fixed point pf and has a convex iterative root f

1
n

then
f

1
n = h

1
n ◦ e, (9)

where h
1
n is a convex strictly increasing iterative root of h := f |Ib . Moreover,

f [Ia] ⊂ h[Ib] and

e(x) :=
{

x, x ∈ Ib

h−1 ◦ f(x), x ∈ Ia
. (10)

Proof. Put gn := f
1
2n |Ib and I−

b := Ib∩(−∞, pf ), I+b := Ib∩(pf ,∞). We have
that g2n = gn−1. In cases (A) and (B), Corollary 1 and Lemma 6 imply, that
for x ∈ I−

b the sequence {gn(x)} is decreasing and for x ∈ I+b it is increasing.
However, in case (C) this sequence is increasing for all x ∈ Ib. Thus the limit

ε(x) := lim
n→∞ gn(x) for x ∈ Ib

exists. Since gn are convex and increasing, ε is also convex and increasing.
Thus ε is continuous in Int Ib. We will show that ε is continuous at the ends
of the interval Ib.

First we consider the left end of Ib. Let (A) or (B) hold. Suppose that ε is
discontinuous at a := inf Ib. Then ε(a) < ε(a+) =: q because ε is decreasing.
Hence there exists n0 ∈ N such that gn0(a) < q. By the continuity of gn0 there
exists a neighbourhood Ua of a such that gn0(x) < q for x ∈ Ua. On the other
hand q ≤ ε(x) ≤ gn0(x) for x ∈ I−

b , since {gn(x)} is decreasing in I−
b . This is

a contradiction.
In case (C) Ib = [pf , b], so a = pf , the sequence {gn(x)} is increasing and

gn(x) < x in the whole Ib. This gives ε(x) ≤ x in Ib and ε(pf+) ≤ pf . Since ε
is increasing, pf = ε(pf ) ≤ ε(pf+), so ε(pf+) = pf = ε(pf ).

Now we prove that ε is continuous at b. Suppose that r := ε(b−) < ε(b). By
Corollary 1 and Lemma 6 we get that for every x ∈ I+b gn(x) ≤ gn+1(x) ≤ ε(x).
Thus there exists n0 such that gn0(b) > r. By the continuity of gn0 at b there
exists a neighbourhood Ub of b such that gn0(x) > r for x ∈ Ub. On the other
hand gn0(x) ≤ ε(x) ≤ ε(b−) = r. This is a contradiction.

Since ε is continuous in Ib and the sequences gn|I−
b

and gn|I+
b

are monotonic,
they converge uniformly to ε|I+

b
and ε|I−

b
, respectively. Hence gn converges to

ε uniformly.
It is easy to verify the following property:

(P) If I is a compact interval and the continuous mappings un, vn : I → I
converge uniformly on I to u and v, respectively then un ◦ vn converges
uniformly to u ◦ v.

Since gn converges uniformly to ε in Ib and gn ◦ gn = gn−1 we get by (P) the
equality

ε(ε(x)) = ε(x) for x ∈ Ib.
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Hence ε(x) = x for x ∈ J := ε[Ib] and J is a closed interval, since ε is
continuous. Obviously pf ∈ J . In view of the inequalities gn(x) ≥ f(x) > pf

for x ∈ I+b we obtain that ε(x) > pf for x ∈ I+b , which implies that pf /∈ ε[I+b ],
so J �= {pf}. Thus α := inf J < sup J =: β and we have α ≤ ε(x) ≤ β for
x ∈ Ib and ε(x) = x for x ∈ [α, β]. Since ε is increasing

ε(x) =

⎧
⎨

⎩

α, x ≤ α
x, x ∈ [α, β]
β, x ≥ β .

The convexity of ε implies the equality β = b.
Now we prove that f(a) ≤ f(b). Suppose on the contrary that f(a) > f(b)

and f(b) < b. By the inequality pf = f(pf ) ≤ f(b) we obtain that f(a) > pf ,
so f(a) > α and ε(f(a)) = f(a). Hence, by Lemma 8 and Remark 3,

f(a) = lim
n→∞ gn(f(a)) = lim

n→∞ f
1
2n (f(a)) ≤ f(b).

If f(b) = b then the inequality is obvious.
Now, assume that (A) or (B) holds and f has a convex iterative root f

1
n .

Then h
1
n := f

1
n |Ib is injective. We have h = h

n−1
n ◦ h

1
n . Hence (h

n−1
n )−1 ◦ h =

h
1
n and (h

n−1
n )−1(x) = h

1
n ◦ h−1(x) for x ∈ h[Ib].

The inequality f(a) ≤ f(b) implies that g[Ia] ⊂ h[Ib], where g = f |Ia ,
whence

(h
n−1
n )−1(g(x)) = h

1
n ◦ h−1(g(x)) = h

1
n ◦ h−1(f(x)) for x ∈ Ia,

so by Theorem 3

f
1
n (x) = h

1
n ◦ h−1 ◦ f(x) = h

1
n ◦ e(x) for x ∈ Ia.

This proves (9). �

Theorem 5. A non-decreasing function is dyadically convex if and only if it is
flowly convex.

Proof. Let f
1
2n , n ≥ 1 be convex iterative roots of f satisfying (8). It follows,

by Corollary 1, that f
1
2n are non-decreasing. Define

f
k
2n := (f

1
2n )k, n, k ∈ N.

The following property holds:

(P1) If l
2n = k

2m then f
l

2n = f
k

2m .

In fact, assume that n ≥ m. Then in view of (8) we get by induction that
f

1
2m = (f

1
2n )2

n−m

which gives that f
k

2m = (f
1

2m )k = (f
1
2n )2

n−mk = (f
1

2m )l =
f

l
2n .

Denote D := { k
2n , k, n ∈ N}. Property (P1) allows us to uniquely define

the functions fw for w ∈ D. We will show more.
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(P2) If w1, w2 ∈ D and x < pf then fw1(x) ≤ fw2(x), however for x > pf

fw1(x) ≥ fw2(x).
In fact, if l

2n < k
2m and x < pf then it follows, by Corollary 1, that x <

f
1
2n (x) ≤ f(x) ≤ pf , so f

k1
2n (x) ≤ f

k2
2n (x) for k1 < k2. Since l

2n < k2n−m

2m , we

have f
l

2n (x) < f
k2n−m

2n (x) = f
k

2m (x).
If pf < x and f(b) �= b we have pf ≤ f(x) ≤ f

1
2n (x) < x, so f

k1
2n (x) ≥

f
k2
2n (x) for k1 < k2. Then as previously we get that f

l
2n (x) ≥ f

k
2m (x). If

f(b) = b then f
l

2n (b) = f
k

2m (b).
For n ≥ m we have

f
l

2n ◦ f
k

2m = f
l

2n ◦ f
k2n−m

2n = f
l+k2n−m

2n = f
l

2n + k
2m ,

which can be written as follows

fu ◦ fu = fu+v for u, v ∈ D.

Define

gt(x) :=
{

inf fw(x), w > t, w ∈ D, x < pf

sup fw(x), w > t, w ∈ D, x > pf .
t > 0 (11)

Since the set of dyadic numbers D is dense in R
+, for every t, s > 0 there

exist the monotonic sequences {un}, {vn} ⊂ D such that un → t and vn → s. In
view of the convexity of gt we infer, similarly as in Theorem 4, that {fun} and
{fwn} converge uniformly on I, respectively, to gt and gs. Thus, by property
(P),

gt ◦ gs = lim
n→∞ fun ◦ lim

n→∞ fvn = lim
n→∞ fun ◦ fvn = lim

n→∞ fun+vn = gt+s.

We will show that f = g1. Let x < pf , w > 1 and w ∈ D. Then by (P2)
fw(x) ≥ f1(x) = f(x), so g1(x) ≥ f(x). Similarly, for x > pf we get the
inequality g1(x) ≤ f(x). Every semi-flow of convex functions is continuous and
monotonic (see Th. 19.2 and Lemma 4.1 in [12]). This means that the mappings
t → gt(x) are continuous and increasing for x < pf they, however for x > pf

are decreasing. Suppose that g1(x0) > f(x0) for an x0 < pf . By the continuity
of t → gt(x0) at 1 there exists and 0 < s < 1 such that gs(x0) > f(x0). Fix
a w ∈ D such that 0 < s < w < 1. In view of (11) gs(x0) ≤ fw(x0). On
the other hand, by (P2), fw(x0) ≤ f(x0), which gives that gs(x0) ≤ f(x0),
but this contradicts the previous inequality. Thus g1(x) = f(x) for x < pf .
Similarly, we prove for x > pf . Thus f is flowly convex.

Conversely, if f has a convex semi-flow {f t : t > 0} then f
1
2n are convex

iterative roots of 2n-th order satisfying (8), thus f is diadically convex. �

Theorem 6. Let f and f2 be convex and f be non-constant in a right side of
its fixed point pf . Then f is dyadically convex if and only if

1◦ f(a) ≤ f(b),
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2◦ the function h := f |Ib is flowly convex,
3◦ the function e defined by (10) is convex.

Proof. Let f be dyadically convex. Note that f satisfies (A) or (B), so h :=
f |Ib is strictly increasing and, by Theorem 5, it is flowly convex. Next, by
Theorem 4, we get assertion 1◦ and f [Ia] ⊂ h[Ib]. This relation allows us to
correctly define the function e by formula (10). Let f

1
2n be convex iterative

roots satisfying (8) and {ht : t > 0} be a convex semi-flow of h constructed
similarly as in the proof of Theorem 5. Moreover, by Theorem 4 we have

f
1
2n (x) = h

1
2n ◦ e(x), n ∈ N, x ∈ I. (12)

Since {ht : t > 0} is a continuous semi-flow, we have limn→∞ h
1
2n (x) = x for

x ∈ Ib. Hence (12) implies the existence of the limit

lim
n→∞ f

1
2n (x) = e(x), x ∈ I,

because e[I] = Ib. The convexity of all f
1
2n yields the convexity of e.

Conversely, if f |Ib is flowly convex then obviously f |Ib is dyadically convex.
The inequality f(a) ≤ f(b) allows us to define a function e by (10). If h

1
2n are

convex iterative roots of f |Ib satisfying (8) and e is convex then in view of (12)
f

1
2n := h

1
2n ◦ e are convex iterative roots of f and

f
1
2n ◦ f

1
2n = h

1
2n ◦ e ◦ h

1
2n ◦ e = h

1
2n ◦ h

1
2n ◦ e = h

1
2n−1 ◦ e = f

1
2n−1 .

�

Theorem 7. A convex function f non-constant in a right side of its fixed point
pf is dyadically convex if and only if f is flowly convex.

Proof. If f is embeddable in a convex semi-flow {f t : t > 0} then f
1
2n are

convex iterative roots of 2n-th order satisfying (8), thus f is dyadically convex.
Conversely, let f be dyadically convex. It follows by Theorem 1 that f2 is
convex. By Theorem 6 f(a) ≤ f(b), (10) correctly defines a convex function
e. Moreover, f |Ib is embeddable in a convex semi-flow {ht : t > 0}. Then the
mappings f t := ht ◦ e for t > 0 are convex semi-flows of f . �

By the last Theorem and Remark 4 we get

Corollary 2. If f is dyadically convex and non-constant in a right neighbour-
hood of its fixed point, then f is iteratively convex.

Theorem 8. Every strictly increasing dyadically convex function is of class C1

except a fixed point pf .

Proof. By Theorem 5 f possesses a convex semi-flow. Hence f |[a,pf ] (if pf �= a)
and f |[pf ,b] (if pf �= b) are embeddable in convex semi-flows. It has been proved
in [7], that every convex semi-flow {gt : t > 0} defined on an open interval of
a strictly increasing function g without fixed points is differentiable, that is
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all functions gt are differentiable. Hence we infer that f |(a,pf ) and f |(pf ,b) are
differentiable. The convexity of f implies the existence of one sided derivatives
at the ends of the intervals (we admit here that f ′(b−) = ∞). Hence by
Theorem 2 in book [3] (see p.156) we infer that f |[a,pf ] and f |[pf ,b] are of class
C1. �

To prove the next theorem we apply the following result.

Lemma 9. ([3,11]) If h : I → I is strictly increasing, convex, of class C1 in
I and h′(pf ) > 0 then for every n ≥ 2 the equation ϕn = h has a unique C1

solution.

Theorem 9. A convex increasing function f of class C1 such that f ′(pf ) �= 0
is iteratively convex if and only if it is flowly convex.

Proof. If f is flowly convex then obviously is iteratively convex.
Assume, now, that f is iteratively convex. We may also assume that f

is injective, since otherwise case (B) holds and f is constant in an interval
[a, x2], where x2 ≤ pf . By Corollary 1 all f

1
n are constant in [a, x2]. Thus we

can consider only iterative roots of f |[x2,b] which are strictly increasing.
It follows by the iterative convexity of f that for every n ∈ N there exits a

convex iterative root f
1
2n . We shall show that f

1
2n is of class C1.

Let J := (α, β) and ϕ : J → J be a convex strictly increasing function
such that ϕ(x) �= x for x ∈ J . Denote by Zϕ(J) the set of all points of
non-differentiability of ϕ. In [6] A. Smajdor showed that Zϕ(J) � Zϕ2(J).
Hence

Z
f

1
2n

(J) � Zf (J),

for J = (a, pf ) and J = (pf , b) if a < pf < b and otherwise for J = (a, b).
Since Zf (J) = ∅, we get Z

f
1
2n

(J) = ∅ which means that f
1
2n is differentiable

in J .
If a < pf < b then f

1
2n as a convex function is one sided differentiable at

pf , and f
1
2n |[a,pf ] and f

1
2n |[pf ,b] are of class C1 (see [3] p. 156). Moreover we

have

[(f
1
2n )′

−(pf )]2
n

= f ′
−(pf ) and [(f

1
2n )′

+(pf )]2
n

= f ′
+(pf ).

Since f ′
−(pf ) = f ′

+(pf ) we get (f
1
2n )′

−(pf ) = (f
1
2n )′

+(pf ), which shows that
f

1
2n is of class C1 in [a, b]. If pf = a or pf = b then, by analogous argumenta-

tion, we get the same property.
By Lemma 9 for every n ≥ 1 f has a unique C1 iterative root hn of 2n

order. We have h 2n

n = f , so

(h 2
n )2

n−1
= (hn ◦ hn)2

n−1
= h 2n

n = f.
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Hence by the uniqueness we get

h 2
n = hn−1. (13)

On the other hand f
1
2n is also a C1 iterative root of f of 2n order. Thus, by the

uniqueness, f
1
2n = hn and consequently, by (13), we get (8), so f is dyadically

convex and by Theorem 7 it is flowly convex. �

Lemma 10. ([4,5] p. 436) Every convex strictly increasing C1 function with
positive derivative has at most one convex iterative root of every order.

Theorem 10. Let f be convex, of class C1 and f ′(pf ) �= 0. If f is iteratively
convex then f(a) ≤ f(b).

Proof. We may assume that f(b) < b. Note that f2 is convex and the assump-
tion f ′(pf ) �= 0 implies that f satisfies condition (A) or (B). Let f

1
n , n ≥ 2

be convex iterative roots of f . It follows by Theorem 9 that the function
h := f |Ib possesses a convex semi-flow {ht : t > 0}. Lemma 10 yields the
equality f

1
n |Ib = h

1
n . Thus f

1
n |Ib is uniquely determined and consequently

f
n−1
n |Ib = h

n−1
n for n ≥ 2. Every convex semi-flow is continuous (see [12]).

This means that for every x ∈ Ib the mapping t → ht(x) is continuous. Hence
limn→∞ f

n−1
n (b) = limn→∞ h

n−1
n (b) = h1(b) = h(b) = f(b). By Lemma 8

f(a) ≤ f
n−1
n (b) for n ≥ 2, so f(a) ≤ f(b). �

Theorem 11. Let f be convex, of class C1 and f ′(pf ) �= 0. Then f is iteratively
convex if and only if it is flowly convex.

Proof. Let f be iteratively convex. Note that f2 is convex and f satisfies (A)
or (B). By Theorem 9 the function h := f |Ib is flowly convex. We will show
that the function e defined by (10) is convex.

Let h
1
n be a convex iterative root of h. Let {ht : t ≥ 0} be a convex semi-

flow of h. Convex iterative roots are uniquely determined, so h
1
n = h

1
n . We

have h
n−1
n ◦h

1
n = h, so (h

n−1
n )−1(x) = h

1
n ◦h−1(x) for x ∈ h[Ib]. By Theorem 3

f
1
n (x) = (h

n−1
n )−1 ◦f(x) for x ∈ Ia. However, by Theorem 10, we have f [Ia] ⊂

h[Ib]. Combining these conditions we obtain f
1
n (x) = h

1
n ◦h−1◦f(x) for x ∈ Ia,

so f
1
n (x) = h

1
n ◦ e(x) for x ∈ Ia, where e is defined by (10), which gives that

f
1
n (x) = h

1
n ◦ e(x), for x ∈ I. (14)

The semi-flow {ht : t ≥ 0} is continuous as it is convex, so that there exists the
limit limt→0 ht(x) = h0(x) for x ∈ Ib. Since h1 = h is injective, h0(x) = x for
x ∈ Ib. Hence, by (14), there exists the limit limn→∞ f

1
n (x) = e(x) for x ∈ I,

so the convexity of the functions f
1
n implies the convexity of e.

By Theorem 9 f(a) ≤ f(b). Thus the assumptions of Theorem 6 are fulfilled,
so f is flowly convex and in consequence, by Theorem 7, f is flowly convex.

�



798 M. C. Zdun AEM

Example 2. Let I = [a, b] and x0 ∈ (a, b). Define

f(x) :=
{

g(x), x < x0

h(x), x ≥ x0,

where h(x0) = g(x0) and f(a) ≤ f(b). Consider two cases:

10 g : [a, x0] → (x0, b] is decreasing and affine,
h : [x0, b] → (x0, b] is increasing, convex, not affine and

20 g : [a, x0] → (x0, b] is decreasing and convex,
h : [x0, b] → (x0, b] is increasing and affine.

At first glance the graphs are similar to each other, but in case 10, the mapping
f is never iteratively convex. However, in case 20 f is iteratively convex.

In fact, in case 10 the function e defined by (10) is not convex, since g ◦h−1

is concave. In case 20 e is convex, since g ◦ h−1 is convex. Obviously, an affine
function is flowly convex. Hence by Theorems 6 and 9 we get our assertions.

The criteria on the iterative convexity of a given convex function are still
unknown, however, we can determine all strictly increasing flowly convex func-
tions with one fixed point. To give a complete construction it suffices to restrict
the construction to the case of the functions which have one fixed point on the
left end of their domains. In fact, we can consider independently constructions
for functions restricted to the intervals [a, p] and [p, b], where p is their fixed
point. If g is a function defined on [a, p] such that x < g(x) < p for x ∈ [a, p)
and f := γ ◦ g ◦ γ−1, where γ(x) := −x + 2p, then p < f(x) < x for [p, 2p − a].
Note that f is convex if and only if g is concave and f t := γ ◦ gt ◦ γ−1, t > 0
is a convex semi-flow if and only if gt is a concave semi-flow.

To construct flowly iterative functions we apply the following result of Sma-
jdor.

Lemma 11. ([7]) Let f be convex (concave) and of class C1 in [p, b) and p <
f(x) < x for x ∈ (p, b) and f ′(p) �= 0. Then f is flowly convex (concave) if
and only if the functional equation

G(f(x)) = f ′(x)G(x), t ≥ 0 (15)

has a convex (concave) solution.

Theorem 12. Let G be a convex (concave) function defined on [p, b] such that
G < 0 in (p, b], G(p) = 0, G′(p+) �= −∞ and

∫ b

a
du

G(u) = −∞. Then f(x) :=

α−1(1 + α(x)), x ∈ (p, b], where α(x) := − ∫ b

x
du

G(x) is flowly convex (concave),
of class C1, f(p) = p and f ′(p) �= 0.

Conversely, every flowly convex (concave) strictly increasing function f
defined on [p, a], of class C1, with fixed point p and f ′(p) �= 0 is of the above
form.
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Proof. Define f t(x) := α−1(t + α(x)), t ≥ 0. It is easy to see that f t are of
class C1 in (p, b),

G(x) =
∂f t(x)

∂x
and

G(f t(x)) = (f t)′(x)G(x), t ≥ 0.

Putting t = 1 we see that G satisfies (15). It was shown in [10] (Th.4) that f t

are differentiable at p and (f t)′(p) = exp tG′(p), so 0 < (f1)′(p) ≤ 1. Now, it
follows, by Lemma 11, that f := f1 is flowly convex.

Conversely, let f be flowly convex. By Lemma 11 there exists a convex
solution G0 ≤ 0 of (15). Obviously, G0(p) = 0 and G0(x) < 0 for x ∈ (p, b).
Put β(x) := − ∫ b

x
du

G0(x)
. It is easy to see that β(f(x)) = β(x) + c for a c > 0

and limx→p β(x) = ∞. Define α(x) := 1
cβ(x) and G(x) = cG0(x). Hence

f(x) := α−1(1 + α(x)) and α(x) := − ∫ b

x
du

G(x) , which proves the theorem. �
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