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1. Introduction

The Go�la̧b–Schinzel functional equation

f(x + f(x)y) = f(x)f(y) (1)

has its origins in various algebraic problems. For more details concerning ap-
plications of Eq. (1) and its generalized versions in determining substructures
of algebraic structures we refer to the monograph [1], a survey paper [5] and
references therein.

It turns out (cf. [11]) that Eq. (1) on a restricted domain expresses the
symmetries of nonlinear differential equations corresponding to some problems
in mathematical meteorology and fluid mechanics (e.g. evaporation of cloud
droplets and water discharging from a reservoir). Therefore, it is natural to
ask on the form of solutions of (1) on various types of restricted domains.
Several results concerning this problem can be found e.g. in [2], [4–7], [11,12],
[14,15] and [17–19]. All of them concern the case where an unknown function
f is a real function of a real variable. In a recent paper [8] equation (1) has
been investigated in a more general setting, namely on a convex cone in a real
linear space.

In this paper we study the Go�la̧b–Schinzel functional equation on a spe-
cial type of restricted domain, called a cylinder. More precisely we determine
continuous solutions f : R → R of the functional equations
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f(x + f(x)y) = f(x)f(y) for (x, y) ∈ R × A (2)

and
f(x + f(x)y) = f(x)f(y) for (x, y) ∈ A × R, (3)

where A is a non-empty subset of R. In [14] equation (3) was studied in the case
where A consists of two elements and f satisfies some additional assumptions.
Further functional equations on cylinders have also been already investigated.
In particular, several results concerning the solutions of the Cauchy equations
on cylinders can be found in [9] and [10]. The analogous problem for the
d’Alembert equation has been recently studied in [3].

In the sequel, for every non-empty subset A of R\{0}, by 〈A〉 we denote
the subgroup of the multiplicative group of non-zero reals generated by A.
Furthermore, for f : R → R and y ∈ R, let φ(f,y) : R → R be given by

φ(f,y)(x) = x + f(x)y for x ∈ R (4)

and let
Zf := {x ∈ R : f(x) = 0}.

Obviously, if f is continuous then, for every y ∈ R, so is φ(f,y). Let us also
recall that f is said to be a projection provided f ◦ f = f , and it is said to be
an involution provided f ◦ f = idR. Note that each involution is bijective and
the only increasing involution on R is the identity.

2. Auxiliary results

Remark 2.1. It is well known (cf. e.g. [20, Theorem 1.4, p. 3]) that every
subgroup of the additive group of reals is either cyclic, or dense in R. Since the
multiplicative group of positive reals is isomorphic to the additive group of reals
(by the logarithm), every subgroup of the multiplicative group of positive reals
is either dense in (0,∞), or cyclic. Moreover, if the second possibility holds,
the subgroup is of the form {dn : n ∈ Z} for some d ∈ (0,∞).

Remark 2.2. Assume that C ⊂ R\{0} and C\{−1, 1} 	= ∅. Then 〈C〉∩(0,∞) is
a non-trivial subgroup of the multiplicative group of positive reals. Therefore,
according to Remark 2.1, 〈C〉 ∩ (0,∞) is either dense in (0,∞), or 〈C〉 ∩
(0,∞) = {dn : n ∈ Z} for some d ∈ (0,∞)\{1}. In the second case, for every
c ∈ C ∩ (−∞, 0) there is an n ∈ Z such that c2 = dn. Thus

C ⊂ {−dn/2 : n ∈ Z} ∪ {dn : n ∈ Z}. (5)

Proposition 2.3. Let C ⊂ R\{0} be such that C\{−1, 1} 	= ∅ and let F : R → R

be a continuous function with F (1) = 1.

(A) If 〈C〉 ∩ (0,∞) is dense in (0,∞) then:
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(i) in the case where C ∩ (−∞, 0) 	= ∅, F satisfies the equation

F (cx) = cF (x) for x ∈ R, c ∈ C (6)

if and only if F (x) = x for x ∈ R;
(ii) in the case where C ⊂ (0,∞), F satisfies equation (6) if and only if

there exists α ∈ R such that

F (x) =
{

αx for x ∈ (−∞, 0),
x for x ∈ [0,∞). (7)

(B) If 〈C〉 ∩ (0,∞) = {dn : n ∈ Z} for some d ∈ (0,∞)\{1} then F satisfies
equation (6) if and only if there exist continuous 1-periodic functions
p1, p2 : R → R such that p1(0) = 1,

F (x) =

⎧⎨
⎩

−xp2(logd(−x)) for x ∈ (−∞, 0),
0 for x = 0,
xp1(logd x) for x ∈ (0,∞),

(8)

p2 = −p1 whenever − dn ∈ C for some n ∈ Z

and
p2(x + 1/2) = −p1(x) for x ∈ R (9)

whenever −dn/2 ∈ C for some odd n ∈ Z.

Proof. Setting x = 1 in (6), we get F (c) = c for c ∈ C. Furthermore, as
C\{−1, 1} 	= ∅, applying (6) with x = 0, we obtain F (0) = 0. Hence, in view
of (6), we get

∅ 	= C ⊂ CF := {c ∈ R\{0} : F (cx) = cF (x) for x ∈ R}
= {c ∈ R\{0} : F (cx) = F (c)F (x) for x ∈ R\{0}}.

Therefore, according to [13, Lemma 18.5.1, p. 552], CF is a subgroup of the
multiplicative group of non-zero reals. Thus, 〈C〉 ⊂ CF , which gives

F (cx) = cF (x) for x ∈ R, c ∈ 〈C〉. (10)

Since F (1) = 1, this implies that

F (c) = c for c ∈ 〈C〉. (11)

Suppose that 〈C〉 ∩ (0,∞) is dense in (0,∞). Then, as F is continuous,
from (11) we derive that

F (x) = x for x ∈ [0,∞). (12)

Furthermore, making use of (6) and (12), we obtain cx = F (cx) = cF (x) for
x ∈ (−∞, 0), c ∈ C ∩ (−∞, 0). Thus, if C ∩ (−∞, 0) 	= ∅, we have F (x) = x
for x ∈ (−∞, 0). Hence, taking (12) into account, we conclude that F (x) = x
for x ∈ R. Obviously, F of this form satisfies (6) and so (i) is proved. If
C ⊂ (0,∞) then, setting x = −1 in (6), we get F (−c) = F (−1)c for c ∈ 〈C〉.
Hence F (x) = −F (−1)x for x ∈ −〈C〉. Therefore, as F is continuous and
〈C〉 ∩ (0,∞) is dense in (0,∞), taking (12) into account, we obtain (7) with
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α := −F (−1). It it easy to check that if C ⊂ (0,∞) then, for every α ∈ R, F
of the form (7) satisfies (6). This proves (ii).

Now, assume that 〈C〉 ∩ (0,∞) = {dn : n ∈ Z} for some d ∈ (0,∞)\{1}. In
view of (10), we get

F (dx) = dF (x) for x ∈ R. (13)

Since d 	= 1, this gives F (0) = 0. Furthermore, the function p1 : R → R given
by p1(x) = F (dx)d−x for x ∈ R, is continuous and 1-periodic. Obviously, we
also have

F (x) = xp1(logd x) for x ∈ (0,∞). (14)

Moreover, the function F− : R → R given by F−(x) = F (−x) for x ∈ R, also
satisfies equation (13). So, as previously we get that F−(x) = xp2(logd x) for
x ∈ (0,∞) with some continuous 1-periodic function p2 : R → R. Thus

F (x) = F−(−x) = −xp2(logd(−x)) for x ∈ (−∞, 0).

Therefore, as F (0) = 0, taking (14) into account, we obtain (8). Note also that,
making use of (13) and (14), we get d = dF (1) = F (d) = dp1(1) = dp1(0).
Hence p1(0) = 1.

Suppose that −dn ∈ C for some n ∈ Z. Then, in view of (6) and (8), we
obtain

−xp2(logd(−x)) = F (x) = F (−dn(−x/dn)) = −dnF (−x/dn)
= −dn(−x/dn)p1(logd(−x/dn)) = xp1(logd(−x)) for x ∈ (−∞, 0).

Therefore, p2 = −p1.
If −dn/2 ∈ C for some odd n ∈ Z then, applying (6) and (8), we get

dn/2xp2(logd x + 1/2) = dn/2xp2(logd(d
n/2x))

= F (−dn/2x) = −dn/2F (x) = −dn/2xp1(logd x) for x ∈ (0,∞),

which implies (9). The converse is easy to check. �

Corollary 2.4. Assume that C ⊂ R\{0} is such that 〈C〉∩(0,∞) = {dn : n ∈ Z}
for some d ∈ (0,∞)\{1} and C has non-empty intersections with the sets
{−dn : n ∈ Z} and {−dn/2 : n ∈ Z is odd}. Then a continuous function
F : R → R, with F (1) = 1, satisfies Eq. (6) if and only if there exists a
continuous 1/2-periodic function p : R → R with p(0) = 1 such that

F (x) =
{

xp(logd |x|) for x ∈ R\{0},
0 for x = 0.
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3. Solutions of Eq. (2)

Remark 3.1. If a not identically zero function f : R → R satisfies Eq. (2) with
some A ⊂ R such that 0 ∈ A then, setting y = 0 in (2), we get

f(x) = f(x)f(0) for x ∈ R. (15)

Hence
f(0) = 1 provided 0 ∈ A. (16)

Remark 3.2. If A = {0}, then (2) becomes (15). Hence, a function f : R → R

satisfies Eq. (2) if and only if either f = 0 or f(0) = 1. So, from now on,
dealing with the solutions of (2), we will assume that A\{0} 	= ∅.

Remark 3.3. Assume that f : R → R is a non-constant continuous function
satisfying Eq. (2) with some A ⊂ R such that A\{0} 	= ∅. Then, taking (4)
into account, for every a ∈ A\{0} and x ∈ R, we obtain

(φ(f,a) ◦ φ(f,a))(x) = φ(f,a)(x) + (f ◦ φ(f,a))(x)a = φ(f,a)(x) + f(x + f(x)a)a
= φ(f,a)(x) + f(x)f(a)a = (1 + f(a))φ(f,a)(x) − f(a)x.

Hence, for every a ∈ A\{0}, the function φ(f,a) is continuous and it satisfies

(φ(f,a) ◦ φ(f,a))(x) = (1 + f(a))φ(f,a)(x) − f(a)x for x ∈ R. (17)

Continuous solutions of Eq. (17) were studied in [16]. In the proof of the
following lemma we will apply some results from [16].

Lemma 3.4. Assume that f : R → R is a non-constant continuous function
satisfying Eq. (2) with some A ⊂ R such that A\{0} 	= ∅.

(i) If f(A\{0})∩ (−∞, 0) contains an element different from −1 then there
exist c ∈ R\{0} and d ∈ R such that

f(x) = cx + d for x ∈ R. (18)

(ii) If f(A\{0}) ∩ (−∞, 0) = {−1} then there exist a continuous decreasing
involution φ : R → R and a ∈ R\{0} such that φ(a) = 0 and

f(x) =
φ(x) − x

a
for x ∈ R. (19)

(iii) If f(A\{0}) ∩ (0,∞) 	= ∅ then either f is of the form (18) with some
c ∈ R\{0} and d ∈ R, or

f(x) =

⎧⎨
⎩

c(x − α) for x ∈ (−∞, α],
0 for x ∈ (α, β),
c(x − β) for x ∈ [β,∞),

(20)

with some c ∈ R\{0} and −∞ ≤ α < β ≤ ∞.
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Proof. According to Remark 3.3, for every a ∈ A\{0}, the function φ(f,a)

satisfies (17). Suppose that f(A\{0}) ∩ (−∞, 0) contains an element different
from −1 and fix an a ∈ A\{0} such that f(a) ∈ (−∞, 0)\{−1}. Then, as φ(f,a)

is continuous, applying [16, Theorem 9], we obtain that either φ(f,a)(x) = x
for x ∈ R, or φ(f,a)(x) = f(a)x + δ for x ∈ R with some δ ∈ R. In view
of (4), the first possibility implies that f(x)a = 0 for x ∈ R, which yields a
contradiction, as a 	= 0 and f is not identically 0. The second one gives (18)
with c := (f(a) − 1)/a 	= 0 and d := δ/a. Therefore, (i) holds.

Now, assume that f(A\{0})∩ (−∞, 0) = {−1}. Fix a ∈ A\{0} with f(a) =
−1 and put φ := φ(f,a). Then, according to (17), φ is a continuous involution.
Furthermore, in view of (4), we get (19) and φ(a) = 0. Note also that, as f is
not identically 0 and the only increasing involution on R is the identity, from
(19) it follows that φ is decreasing. Thus, (ii) is valid.

Finally, assume that f(A\{0}) ∩ (0,∞) 	= ∅. Let a ∈ A\{0} be such that
f(a) > 0. Suppose that f(a) = 1. Then, applying [16, Theorem 10], from (17)
we derive that φ(f,a)(x) = x + δ for x ∈ R with some δ ∈ R, which yields a
contradiction, as f is non-constant. Hence f(a) 	= 1 and so, according to [16,
Theorem 8], either φ(f,a)(x) = f(a)x + δ for x ∈ R with some δ ∈ R, or

φ(f,a)(x) =

⎧⎨
⎩

f(a)x + (1 − f(a))α for x ∈ (−∞, α],
x for x ∈ (α, β),
f(a)x + (1 − f(a))β for x ∈ [β,∞)

(21)

with some −∞ ≤ α < β ≤ ∞. Therefore, taking c := (f(a) − 1)/a 	= 0 and
d := δ/a, in the first case we get (18) and in the second one we obtain (20).
Hence (iii) holds. �

Theorem 3.5. Let A ⊂ R be such that A\{0} 	= ∅. A continuous function
f : R → R satisfies Eq. (2) if and only if either f = 0 or f = 1 or one of the
following possibilities holds:

(i) there exists c ∈ R\{0} such that

f(x) = 1 + cx for x ∈ R; (22)

(ii) there exists c ∈ R\{0} such that

f(x) = max{1 + cx, 0} for x ∈ R; (23)

(iii) there exist c ∈ (−∞, 0) and d ∈ (−1/c,∞) such that A ⊂ (−∞, d],
(A\{0}) ∩ (−∞,−1/c) 	= ∅ and

f(x) =

⎧⎨
⎩

1 + cx for x ∈ (−∞,−1/c],
0 for x ∈ (−1/c, d),
c(x − d) for x ∈ [d,∞);

(24)
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(iv) there exist c ∈ (0,∞) and d ∈ (−∞,−1/c) such that A ⊂ [d,∞),
(A\{0}) ∩ (−1/c,∞) 	= ∅ and

f(x) =

⎧⎨
⎩

c(x − d) for x ∈ (−∞, d],
0 for x ∈ (d,−1/c),
1 + cx for x ∈ [−1/c,∞);

(25)

(v) A = {a} or A = {a, 0} with some a ∈ R\{0} and f is of the form
(19), where φ : R → R is a continuous decreasing involution such that
φ(a) = 0 and

φ(0) = a whenever A = {a, 0}; (26)

(vi) A = {a} or A = {a, 0} with some a ∈ R\{0} and f is of the form (19),
where φ : R → R is a continuous projection such that φ|A = a;

(vii) A\{0} contains at least two elements, (16) is valid and there exist a ∈
(0,∞) and b ≤ a such that A\{0} ⊂ [a,∞), f|[b,∞) = 0 and

f(x) ≥ b − x

a
for x ∈ (−∞, b); (27)

(viii) A\{0} contains at least two elements, (16) is valid and there exist a ∈
(−∞, 0) and b ≥ a such that A\{0} ⊂ (−∞, a], f|(−∞,b] = 0 and

f(x) ≥ b − x

a
for x ∈ (b,∞);

(ix) A\{0} contains at least two elements and there exist a, b ∈ (0,∞), with
a < b, such that A ⊂ [a, b], f|(−∞,b] = 0 and

f(x) ≤ b − x

a
for x ∈ (b,∞);

(x) A\{0} contains at least two elements and there exist a, b ∈ (−∞, 0),
with b < a, such that A ⊂ [b, a], f|[b,∞) = 0 and

f(x) ≤ b − x

a
for x ∈ (−∞, b). (28)

Proof. Assume that f satisfies Eq. (2). If f is constant then either f = 0 or
f = 1. So, assume that f is not constant.

First consider the case where f(A\{0}) ∩ (0,∞) 	= ∅. Then, by Lemma 3.4
(iii), f is either of the form (18) with some c ∈ R\{0} and d ∈ R, or it is of
the form (20) with some c ∈ R\{0} and −∞ ≤ α < β ≤ ∞. In the first case,
inserting into (2) f of the form (18), we get (1 − d)(cx + d) = 0 for x ∈ R.
Thus d = 1 and so, in view of (18), f is of the form (22). Hence, (i) is valid.
Assume that the second case holds. Then, making use of (20), we get

f(x) = 0 for x ∈ (α, β). (29)

Note that if f(A\{0})∩ (−∞, 0) contained an element different from −1 then,
according to Lemma 3.4(i), f would be injective, which is excluded by (29). On
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the other hand, if f(A\{0}) ∩ (−∞, 0) = {−1}, then applying Lemma 3.4(ii),
we conclude that f is of the form (19) with a continuous decreasing involution
φ : R → R and some a ∈ R\{0}. Hence, in view of (29), we get φ(x) = x
for x ∈ (α, β), which is not possible, as φ is decreasing. Therefore {0} 	=
f(A\{0}) ⊂ [0,∞). Let a ∈ A\{0} be such that f(a) > 0. If c > 0, then
from (20) we derive that β < a and f(a) = c(a − β). Thus, applying (2) with
x = y = a, we get f(a+ac(a−β)) = c2(a−β)2 > 0. Hence, in view of (20), we
conclude that a+ac(a−β) > β and so f(a+ac(a−β)) = c(a+ac(a−β)−β).
Therefore, we have c(a + ac(a − β) − β) = c2(a − β)2, which implies that
β = −1/c. Thus, if α = −∞, then (20) becomes (23) and so (ii) holds. If
α > −∞ then we get (25) with d := α < β = −1/c < 0. Note also that as
{0} 	= f(A\{0}) ⊂ [0,∞), we have A ⊂ [d,∞) and (A\{0}) ∩ (−1/c,∞) 	= ∅.
Therefore, (iv) holds. For c < 0 similar arguments lead to (ii) whenever β = ∞
and to (iii) (with d := β), whenever β < ∞.

If f(A\{0})∩(−∞, 0) contains an element different from −1 then, according
to Lemma 3.4(i), f is of the form (18) with some c ∈ R\{0} and d ∈ R. Thus,
repeating arguments from the beginning of the proof, we conclude that (i)
holds.

Suppose that either f(A\{0}) = {−1} or f(A\{0}) = {−1, 0}. Then, ac-
cording to Lemma 3.4(ii), f is of the form (19) with a continuous decreasing
involution φ : R → R and a ∈ R \ {0} such that φ(a) = 0. Therefore, if
f(A \ {0}) = {−1, 0} then taking z ∈ A \ {0} with f(z) = 0 and setting y = z
in (2), we obtain that f(x + f(x)z) = 0 for x ∈ R. Thus x + f(x)z ∈ Zf for
x ∈ R. Moreover, in view of (19), every element of Zf is a fixed point of φ.
Since z ∈ Zf and φ, being decreasing, has at most one fixed point, this means
that x + f(x)z = z for x ∈ R. Hence f is of the form (22) with c := −1/z and
so (i) holds. If f(A \ {0}) = {−1} then, as φ(a) = 0, taking b ∈ A \ {0} and
making use of (19), we obtain φ(b)−φ(a) = φ(b) = b+f(b)a = b−a. Hence, if
a and b were different, φ(b) − φ(a) and b − a would be of the same sign, which
is not possible, as φ is decreasing. Thus b = a. In this way we have proved that
either A = {a} or A = {a, 0}. Furthermore, if 0 ∈ A, we may derive from (16)
and (19) that φ(0) = a. Thus, (v) holds.

Finally, consider the case where f(A \ {0}) = {0}. If A \ {0} is a singleton,
say A \ {0} = {a} with some a ∈ R \ {0}, then in view of (4), we get (19)
with φ = φ(f,a). Moreover, from (4) and (17) we derive that φ(a) = a and
φ is a continuous projection, respectively. Furthermore, (4) and (16) imply
that φ(0) = a, provided 0 ∈ A. Thus φ|A = a and so (vi) holds. Assume that
A \ {0} contains at least two elements. From (2) it follows that f ◦ φ(f,y) = 0
for y ∈ A \ {0}, that is φ(f,y)(R) ⊂ Zf for y ∈ A \ {0}. On the other hand, if
x ∈ Zf then according to (4), we get x = x+f(x)y = φ(f,y)(x) for y ∈ A\{0},
which means that Zf ⊂ φ(f,y)(R) for y ∈ A \ {0}. Therefore

φ(f,y)(R) = Zf for y ∈ A \ {0}. (30)
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Since f is continuous, (30) implies that Zf is a closed interval. Suppose that it
is bounded. Then, in virtue of (30), φ(f,y)(R) is bounded for every y ∈ A\{0}.
Note that, taking y1, y2 ∈ A \ {0} with y1 	= y2, in view of (4), we get f =
φ(f,y1)−φ(f,y2)

y1−y2
. Hence f is bounded and so, applying (4) and (30), we obtain

that Zf = φ(f,y)(R) = R for y ∈ A \ {0}, which yields a contradiction. Thus
Zf is an unbounded closed interval, that is there exists b ∈ R such that either
Zf = [b,∞) or Zf = (−∞, b]. Assume that the first possibility is valid. Then
f|[b,∞) = 0, A \ {0} ⊂ [b,∞) and, in view of (4) and (30), we get

x + f(x)y ≥ b for x ∈ R, y ∈ A \ {0}. (31)

Suppose that there exist a1, a2 ∈ A with a1 < 0 < a2. Then, applying (31), we
obtain (b − x)/a2 ≤ f(x) ≤ (b − x)/a1 for x ∈ R, which yields a contradiction.
Therefore, by (16), either b < 0 and A ⊂ [b, 0), or A ⊂ [0,∞). In the first case,
putting a := sup A, we get b < a ≤ 0 and A ⊂ [b, a]. Furthermore, from (31)
we derive that x+f(x)a ≥ b for x ∈ (−∞, b). Thus a < 0 and (28) holds, so (x)
is valid. If A ⊂ [0,∞), then setting a := inf(A \ {0}), we get A \ {0} ⊂ [a,∞).
Moreover, arguing as previously, we conclude that a > 0, b ≤ a and (27) is
valid. Since, according to Remark 3.1, (16) holds, we get (vii).

Using similar arguments, one can show that if Zf = (−∞, b] then either
(viii) or (ix) holds.

The converse is easy to check. �

4. Solutions of Eq. (3)

Remark 4.1. Assume that A ⊂ R and a function f : R → R satisfies Eq. (3).
Then, applying (3) with y = 0, we get f(x) = f(x)f(0) for x ∈ A. Hence,
either f|A = 0 or f(0) = 1.

Proposition 4.2. Assume that f : R → R is a continuous function satisfying
equation (3) with some non-empty subset A of R and f(A) \ {−1, 0, 1} 	= ∅.
Then there exists c ∈ R \ {0} such that

f(x) = 1 + cx for x ∈ A \ Zf . (32)

Proof. Since f(A) \ {−1, 0, 1} 	= ∅, according to Remark 4.1, we obtain that
f(0) = 1. Therefore, taking z ∈ A \ Zf with |f(z)| 	= 1, we get z 	= 0. If
A \ Zf = {z}, then (32) trivially holds. So, assume that there is x ∈ A \ Zf

with x 	= z. Then, applying (3), for every y ∈ R, we obtain

f(x)(f(z)f(y)) = f(x)f(z + f(z)y) = f(x + f(x)z + f(x)f(z)y)

and

f(z)(f(x)f(y)) = f(z)f(x + f(x)y) = f(z + f(z)x + f(z)f(x)y).
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Hence,

f(x + f(x)z + f(x)f(z)y) = f(z + f(z)x + f(z)f(x)y) for y ∈ R.

Replacing y by y−z−f(z)x
f(z)f(x) , in this equality we get

f(y + (x + f(x)z − z − f(z)x)) = f(y) for y ∈ R. (33)

Suppose that x + f(x)z − z − f(z)x 	= 0. Then from (33) we derive that f is
a periodic function. Thus f , being continuous, is bounded. Therefore, in view
of (3), we obtain

sup{|f(y)| : y ∈ R} = sup{|f(z + f(z)y)| : y ∈ R}
= sup{|f(z)f(y)| : y ∈ R} = |f(z)| sup{|f(y)| : y ∈ R}.

Since |f(z)| 	= 1, this means that f = 0, which yields a contradiction. In this
way we have proved that

x + f(x)z − z − f(z)x = 0 for x ∈ A \ Zf .

Hence, we obtain (32) with c := (f(z) − 1)/z. �
Theorem 4.3. Assume that A is a non-empty subset of R and f : R → R is a
continuous function. Then f satisfies Eq. (3) if and only if one of the following
possibilities holds:
(i) there exists c ∈ R \ {0} such that f is of the form (22);
(ii) there exist c ∈ R \ {0} and α ∈ R such that

A ⊂ (−∞,−1/c] whenever α 	= 0, c < 0; (34)

A ⊂ [−1/c,∞) whenever α 	= 0, c > 0 (35)
and

f(x) =
{

α(1 + cx) whenever 1 + cx < 0,
1 + cx otherwise; (36)

(iii) there exist (possibly empty) subsets A−1, A1 of A such that every non-
zero element of A1 is a period of f , for every x ∈ A−1, the function
ψx : R → R given by

ψx(y) = f(y + x/2) for y ∈ R, (37)

is odd and

f(x) =
{

i for x ∈ Ai, i ∈ {−1, 1},
0 for x ∈ A \ (A−1 ∪ A1);

(38)

(iv) there exist B ⊂ A, c ∈ R\{0}, d ∈ (0,∞)\{1} and continuous 1-periodic
functions p1, p2 : R → R such that p1(0) = 1,

〈{1 + cx : x ∈ B}〉 ∩ (0,∞) = {dn : n ∈ Z}, (39)

p1(logd(1 + cx)) = 0 for x ∈ A \ B with 1 + cx > 0, (40)
p2(logd(−(1 + cx))) = 0 for x ∈ A \ B with 1 + cx < 0, (41)
p2 = −p1 whenever − (1 + dn)/c ∈ B for some n ∈ Z, (42)
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(9) holds whenever − (1 + dn/2)/c ∈ B for some odd n ∈ Z (43)
and

f(x) =

⎧⎨
⎩

−(1 + cx)p2(logd(−(1 + cx))) whenever 1 + cx < 0,
0 whenever x = − 1

c ,
(1 + cx)p1(logd(1 + cx)), whenever 1 + cx > 0.

(44)

Proof. Assume that f satisfies (3). First consider the case where f(A) ⊂
{−1, 0, 1}. Let Ai := {x ∈ A : f(x) = i} for i ∈ {−1, 1}. Then (38) holds.
Furthermore, if x ∈ A1 \ {0} then, in view of (3), we get f(x + y) = f(y) for
y ∈ R. So, every non-zero element of A1 is a period of f . Note also that if
x ∈ A−1 then, in view of (3) and (37), we get

ψx(−y) = f(−y + x/2) = f(x − (y + x/2)) = f(x + f(x)(y + x/2))
= f(x)f(y + x/2) = −f(y + x/2) = −ψx(y) for y ∈ R.

Thus ψx is odd and so (iii) holds.
Now, assume that f(A)\{−1, 0, 1} 	= ∅. Then, according to Proposition 4.2,

(32) holds with some c ∈ R\{0}. Moreover, in view of (3) and (32), we obtain

f(x + (1 + cx)y) = (1 + cx)f(y) for x ∈ A \ Zf , y ∈ R.

Hence the function F : R → R given by

F (x) = f((x − 1)/c) for x ∈ R, (45)

satisfies the equation

F ((1 + cx)(1 + cy)) = (1 + cx)F (1 + cy) for x ∈ A \ Zf , y ∈ R.

Thus, replacing y by (y − 1)/c, we obtain

F ((1 + cx)y) = (1 + cx)F (y) for x ∈ A \ Zf , y ∈ R,

that is F satisfies equation (6) with

C := {1 + cx : x ∈ A \ Zf}. (46)

Obviously, F is continuous and, in view of (32), C ⊂ R\{0}. Note that, as f|A
is not identically 0, applying Remark 4.1, we obtain f(0) = 1. Thus, making
use of (45), we get F (1) = f(0) = 1. Since f(A) \ {−1, 0, 1} 	= ∅, we also have
C \ {−1, 1} 	= ∅. Moreover, in view of (45), we get

f(x) = F (1 + cx) for x ∈ R. (47)

Suppose that 〈C〉 ∩ (0,∞) is dense in (0,∞). If C ∩ (−∞, 0) 	= ∅, then
applying Proposition 2.3 and making use of (47), we obtain (22). Hence (i)
holds. If C ⊂ (0,∞) then from (46) we derive that

1 + cx > 0 for x ∈ A \ Zf . (48)

Furthermore, taking (47) into account and applying Proposition 2.3, we obtain
that f is of the form (36) with some α ∈ R. Note also that (36) and (48) imply
(34) and (35) and so (ii) is valid.
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If 〈C〉∩ (0,∞) is not dense in (0,∞) then from Remark 2.2 we deduce that
〈C〉 ∩ (0,∞) = {dn : n ∈ Z} for some d ∈ (0,∞) \ {1}. Thus, in view of (8)
and (47), we get (44). Moreover, taking B := A \ Zf and making use of (46),
we obtain that (39) is valid,

p2 = −p1 whenever 1 + cx = −dn for some x ∈ B, n ∈ Z

and (9) holds whenever 1+cx = −dn/2 for some x ∈ B and an odd n ∈ Z. The
last two assertions imply (42) and (43), respectively. Since A \ B = A ∩ Zf ,
from (44) we derive (40) and (41). Hence, (iv) holds.

The converse is easy to check. �

Remark 4.4. Applying Remark 4.1 we conclude that, if possibility (iii) in
Theorem 4.3 is valid and 0 ∈ A, then either 0 ∈ A1, or A−1 = A1 = ∅ (and so
f|A = 0).

Example 4.5. Let f : R → R be given by

f(x) = cos
π

2
x for x ∈ R.

Then (38) holds with A = Z, A1 = {4k : k ∈ Z} and A−1 = {4k + 2 : k ∈ Z}.
Moreover, every non-zero element of A1 is a period of f and, for every x ∈ A−1,
we have

f
(
y +

x

2

)
= cos

π

2

(
y +

x

2

)
= (−1)(x+2)/4 sin

π

2
y for y ∈ R.

Thus, for every x ∈ A−1, the function ψx : R → R given by (37) is odd.
Therefore, according to Theorem 4.3, f satisfies the equation

f(x + f(x)y) = f(x)f(y) for (x, y) ∈ Z × R.

Example 4.6. Let f : R → R be given by

f(x) =
{ |1 + x|p(log8 |1 + x|) for x 	= −1,

0 for x = −1,

where p : R → R is a continuous 1-periodic function such that p(0) = 1 and
p(x) = 0 for x ∈ [log8 6, log8 7]. Then f is of the form (44) with c = 1, d = 8
and p1 = p2 = p. Moreover, it is easy to check that taking A = (5, 6) ∪ {7}
and B = {7}, we get (39)–(43). So, applying Theorem 4.3, we obtain that f
satisfies (3).

It turns out that if A is a non-degenerate interval, then the description
of solutions of Eq. (3) is significantly simpler. Namely, we have the following
result.

Proposition 4.7. Assume that A ⊂ R is a non-degenerate interval and f :
R → R is a continuous function. Then f satisfies Eq. (3) if and only if either
f|A = 0 or f = 1 or one of the possibilities (i)–(ii) of Theorem 4.3 holds.
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Proof. Assume that f satisfies (3). Then, according to Theorem 4.3, one of
the possibilities (i)–(iv) holds.

Assume that (iii) is valid. We are going to show that in this case either
f = 1 or f|A = 0. Since f is continuous, from (38) it follows that either f|A = 0
or A = Ai for some i ∈ {−1, 1}. If A = A1 then every non-zero element of
A is a period of f . As A is a non-degenerate interval, this means that f is
constant and so f = 1. Suppose that A = A−1. Then, for every x ∈ A, the
function ψx given by (37) is odd. Thus, we have f(x/2) = ψx(0) = 0 for x ∈ A.
So, taking x1 ∈ int A, for some t ∈ (0,∞), we get ψx1(y) = f(y + x1/2) =
0 for y ∈ [−t, t]. Hence, as f is continuous and not identically 0, the set
T := {t ∈ [0,∞) : ψx1([−t, t]) = {0}} is non-empty, closed and bounded with
M := max T > 0. Let x2 ∈ A be such that 0 < x2 − x1 < M . Note that,
according to (37), we get

ψx2(y) = ψx1(y + (x2 − x1)/2) for y ∈ R. (49)

Therefore, we have ψx2([−M − x2−x1
2 ,M − x2−x1

2 ]) = ψx1([−M,M ]) = {0}.
Since 0 < x2−x1 < M and ψx2 is odd, this means that ψx2([−M − x2−x1

2 ,M +
x2−x1

2 ]) = {0}. Hence, in view of (49), we get ψx1([−M,M +(x2 −x1)]) = {0}
and so, as x2 − x1 > 0 and ψx1 is odd, we obtain ψx1([−M − (x2 − x1),M +
(x2 − x1)]) = {0}, which contradicts the definition of M .

Now, assume that (iv) holds and suppose that f|A is not identically 0. Fix
x0 ∈ A with f(x0) 	= 0. Then, in view of (40), (41) and (44), we get 1+cx0 	= 0
and x0 ∈ B. Suppose that 1+ cx0 < 0. Then, making use of (39) and applying
Remark 2.2, we conclude that 1 + cx0 = −d

n
2 for some n ∈ Z. Let (xk) be a

sequence of elements of A \ {x0} such that limk→∞ xk = x0 and f(xk) 	= 0 for
k ∈ N. Then xk ∈ B for k ∈ N and 1 + cxk < 0 for sufficiently large k ∈ N. So,
arguing as previously, we obtain that for every sufficiently large k ∈ N there
is an n(k) ∈ Z such that 1 + cxk = −dn(k)/2. Then, we have

(1/c)(−dn/2 − 1) = x0 = lim
k→∞

xk = lim
k→∞

(1/c)(−dn(k)/2 − 1),

which implies that limk→∞ n(k) = n. Hence, for sufficiently large k ∈ N, we
get n(k) = n and so xk = x0, which yields a contradiction.

If 1 + cx0 > 0 then, applying Remark 2.2, we get 1 + cx0 = dn for some
n ∈ Z. Thus, repeating the previous arguments, we again get a contradiction.
In this way we have proved that f|A = 0.

The converse is easy to check. �

Remark 4.8. In view of Example 4.6, the assumption that A is an interval is
essential in Proposition 4.7.
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746 01 Opava
Czech Republic

Received: November 18, 2016

Revised: February 15, 2017


	Goła̧b–Schinzel equation on cylinders
	Abstract
	1. Introduction
	2. Auxiliary results
	3. Solutions of Eq. (2)
	4. Solutions of Eq. (3)
	Acknowledgements
	Open Access
	References




