
Aequat. Math. 91 (2017), 429–444
c© The Author(s) 2017. This article is published
with open access at Springerlink.com
0001-9054/17/030429-16
published online March 10, 2017
DOI 10.1007/s00010-017-0472-0 Aequationes Mathematicae

On the K-Riemann integral and Hermite–Hadamard inequalities
for K-convex functions

Andrzej Olbryś
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1. Introduction

Throughout this paper I ⊆ R stands for an interval and K denotes a subfield
of the field of real numbers R. Clearly, Q ⊆ K, where Q denotes the field of
rational numbers. We denote the set of the positive elements of K by K+. In
the sequel the symbol [a, b]A will denote an A-convex hull of the set {a, b},
where A ⊆ R i.e.

[a, b]A = {αa + (1 − α)b : α ∈ A ∩ [0, 1]}.

In the case when A = R we will use the standard symbol [a, b] instead of [a, b]R.

Definition 1. A mapping f : R → R is called additive if it satisfies Cauchy’s
functional equation

f(x + y) = f(x) + f(y),

for every x, y ∈ R. A mapping f is called K-linear if f is additive and K-
homogeneous i.e.

f(αx) = αf(x),
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is fulfilled for every x ∈ R and α ∈ K.

It is well-known that every additive function is Q-homogeneous.

Definition 2. A function f : I → R is said to be Jensen-convex if

f
(x + y

2

)
≤ f(x) + f(y)

2
,

for every x, y ∈ I. A map f is called K-convex if

f(αx + (1 − α)y) ≤ αf(x) + (1 − α)f(y),

for every x, y ∈ I and α ∈ K ∩ (0, 1).

It is known that a given function f is Jensen-convex if and only if it is Q-
convex (see [2,9]). On the other hand, if f is K-convex then it is also Q-convex.

In this place we introduce the following definitions

Definition 3. A function f : I → R is called radially K-continuous at a point
x0 ∈ I if for every u ∈ I

lim
K+�α→0

f((1 − α)x0 + αu) = f(x0).

We say that f is radially K-continuous if it is radially K-continuous at every
point from the domain.

Definition 4. We say that a function f : I → R is uniformly radially K-
continuous if for any x0 ∈ I and u ∈ I the mapping

[0, 1] ∩ K � α −→ f(x0 + α(u − x0))

is uniformly continuous.

It is easy to see that any continuous and any uniformly continuous func-
tion f : I → R in the usual sense is radially K-continuous, and uniformly
radially K-continuous, respectively. However, it can happen that a uniformly
radially K-continuous function is discontinuous at every point in the usual
sense. An easy example is provided by any discontinuous K-linear map. On
the other hand, every uniformly radially K-continuous function is also radi-
ally K-continuous, but the converse is not true. We start with the following
easy-to-prove propositions.

Proposition 5. A function f : I → R is radially K-continuous if and only if
for every a, b ∈ I the function f|[a,b]

K

is continuous.

Proposition 6. A function f : I → R is uniformly radially K-continuous if and
only if for any a, b ∈ I the map f|[a,b]

K

is uniformly continuous.
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2. Construction of the K-Riemann integral

Now, we introduce a notion of the K-Riemann integral as a natural generaliza-
tion of the classical Riemann integral. For the theory of the classical Riemann
integral see for instance [10,14,15].

Let P[a,b] denote the set of partitions of the interval [a, b] i.e.

P[a,b] :=
∞⋃

n=1

{(t0, t1, . . . , tn) : a = t0 < t1 < · · · < tn = b}.

Following Zs. Páles [12] we define the set of K-partitions of the interval [a, b]
in the following way

PK

[a,b] : =
{

(t0, t1, . . . , tn) ∈ P[a,b] :
ti − a

b − a
∈ K, i = 1, 2, . . . , n

}

=
{

(t0, t1, . . . , tn) ∈ P[a,b] : ti = a + αi(b − a) : αi (1)

∈ K ∩ [0, 1], i = 1, 2, . . . , n
}

=
{

(t0, t1, . . . , tn) ∈ P[a,b] : ti ∈ [a, b]K, i = 1, 2, . . . , n
}

.

Now, suppose that f : [a, b] → R is a bounded function on the set [a, b]K
with

M := sup
x∈[a,b]K

f(x), m := inf
x∈[a,b]K

f(x).

For a given K-partition π = (t0, t1, . . . , tn) ∈ PK

[a,b] let

Mi := sup
x∈[ti−1,ti]K

f(x), mi := inf
x∈[ti−1,ti]K

f(x), i = 1, 2, . . . , n.

These suprema and infima are well-defined, finite real numbers since f is
bounded on [a, b]K . Moreover,

m ≤ mi ≤ Mi ≤ M, i = 1, 2, . . . , n.

We define the upper K-Riemann sum of f with respect to the partition π by

UK(f, π) :=
n∑

i=1

Mi(ti − ti−1),

and the lower K-Riemann sum of f with respect to the partition π by

LK(f, π) :=
n∑

i=1

mi(ti − ti−1).

Note that

m(b − a) ≤ LK(f, π) ≤ UK(f, π) ≤ M(b − a).
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Now, we define the upper K-Riemann integral of f on [a, b] by
∫

a

b

f(t)dKt := inf
{

UK(f, π) : π ∈ PK

[a,b]

}

and the lower K-Riemann integral by
∫ b

a

f(t)dKt := sup
{

LK(f, π) : π ∈ PK

[a,b]

}
.

Definition 7. A function f : [a, b] → R bounded on [a, b]K is said to be K-
Riemann integrable on [a, b] if its upper and lower integrals are equal. In that
case, the K-Riemann integral of f on [a, b] is denoted by

b∫

a

f(t)dKt.

In the case when K = R we will use the standard symbol
∫ b

a
f(t)dt instead

of
∫ b

a
f(t)dRt.

The following theorem gives a criterion for K-Riemann integrability.

Theorem 8. A function f : [a, b] → R is K-Riemann integrable on [a, b] if and
only if for every ε > 0 there exists a partition π ∈ PK

[a,b] such that

UK(f, π) − LK(f, π) < ε.

Proof. Let ε > 0 and choose a partition π ∈ PK

[a,b] that satisfies the above
condition. Then, since

∫ b

a

f(t)dKt ≤ UK(f, π), and LK(f, π) ≤
∫ b

a

f(t)dKt ≤ UK(f, π)

we have

0 ≤
∫ b

a

f(t)dKt −
∫ b

a

f(t)dKt ≤ UK(f, π) − LK(f, π) < ε.

Since this inequality holds for every ε > 0,
∫ b

a

f(t)dKt =
∫ b

a

f(t)dKt.

Conversely, suppose that f is K-Riemann integrable. Given any ε > 0, there
are partitions π1, π2 ∈ PK

[a,b] such that

UK(f, π1) <

∫ b

a

f(t)dKt +
ε

2
, LK(f, π2) >

∫ b

a

f(t)dKt − ε

2
.
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Now, let π := π1 ∪ π2 be the common refinement. Keeping in mind that the

K-Riemann integrability of f means
∫ b

a
f(t)dKt =

∫ b

a
f(t)dKt we can write

UK(f, π) − LK(f, π) ≤ UK(f, π1) − LK(f, π2)

=
(
UK(f, π1) −

∫ b

a

f(t)dKt
)

+
(∫ b

a

f(t)dKt − LK(f, π2)
)

<
ε

2
+

ε

2
= ε.

�
Using the above theorem we can easily obtain the following

Corollary 9. A function f : [a, b] → R is K-Riemann integrable on [a, b] if
and only if for every sequence {πn}n∈N ⊆ PK

[a,b], πn = (t(n)0 , t
(n)
1 , . . . , t

(n)
kn

) such
that

max
1≤j≤kn

(
t
(n)
j − t

(n)
j−1

)
→n→∞ 0,

and for any choice s
(n)
j ∈

[
t
(n)
j−1, t

(n)
j

]
K

of the partition πn we have

∫ b

a

f(t)dKt = lim
n→∞

kn∑
j=1

f
(
s
(n)
j

) (
t
(n)
j − t

(n)
j−1

)
.

Proposition 10. Let K1 ⊆ K2 be subfields of R. If a function f : [a, b] → R is
K2-Riemann integrable then it is also K1-Riemann integrable, and

∫ b

a

f(t)dK1t =
∫ b

a

f(t)dK2t.

Proof. Let πn =
(
t
(n)
0 , t

(n)
1 , . . . , t

(n)
kn

)
∈ PK1

[a,b], n ∈ N be an arbitrary sequence
such that

max
1≤j≤kn

(
t
(n)
j − t

(n)
j−1

)
→n→∞ 0.

By the K2-Riemann integrability, for any choice s
(n)
j ∈ [t(n)j−1, t

(n)
j ]K1 of the

partition πn we have
∫ b

a

f(t)dK2t = lim
n→∞

kn∑
j=1

f
(
s
(n)
j

) (
t
(n)
j − t

(n)
j−1

)
.

Due to the arbitrariness of πn ∈ PK1
[a,b] we infer that

∫ b

a

f(t)dK1t = lim
n→∞

kn∑
j=1

f
(
s
(n)
j

) (
t
(n)
j − t

(n)
j−1

)
.

�
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As an immediate consequence of the above proposition we obtain the fol-
lowing.

Corollary 11. If a function f : [a, b] → R is Riemann integrable in the usual
sense, then for an arbitrary field K ⊆ R f is K-Riemann integrable, moreover,

∫ b

a

f(t)dKt =
∫ b

a

f(t)dt.

Example 1. Let K1 ⊆ K2, K1 	= K2 be two subfields of R. Consider the
following function f : [a, b] → R

f(x) =
{

0, x ∈ [a, b]K1

1, x ∈ [a, b]K2 \ [a, b]K1 .

It is easy to observe that f is K1-Riemann integrable, and
∫ b

a
f(t)dK1t = 0. On

the other hand for every partition π ∈ PK2
[a,b] \ PK1

[a,b] one can check that

SK2(π, f) = 1, and LK2(π, f) = 0.

Therefore,

0 =
∫ b

a

f(t)dK2t 	=
∫ b

a

f(t)dK2t = 1.

Observe that if we replace in the formula on f the set K1 by the set D of
diadic numbers from the interval [0, 1] i.e.

D :=
{

x ∈ [0, 1] | x =
k

2n
, k ∈ Z, n ∈ N

}
,

then we obtain an example of a function which is non-K-Riemann integrable
for any subfield K ⊆ R.

3. Properties of the K-Riemann integral

We start our investigation with the following.

Proposition 12. If f : [a, b] → R is a function such that f|[a,b]K is monotone
then it is K-Riemann integrable on [a, b].

Proof. Assume that f|[a,b]K is monotonic increasing, meaning that

f(x) ≤ f(y), for x ≤ y, x, y ∈ [a, b]K.

Fix an arbitrary sequence of partitions

πn =
(
t
(n)
0 , t

(n)
1 , . . . , t

(n)
kn

)
∈ PK

[a,b], n ∈ N,
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where

max
1≤j≤kn

(
t
(n)
j − t

(n)
j−1

)
→n→∞ 0.

Since f|[a,b]K is increasing, for all j ∈ {1, . . . , kn}
Mj := sup

t∈[tj−1,tj ]K

f(t) = f(tj), mj := inf
t∈[tj−1,tj ]K

f(t) = f(tj−1).

Hence, summing a telescoping series, we get

U(f, πn) − L(f, πn) =
kn∑

j=1

(Mj − mj)(t
(n)
j − t

(n)
j−1)

≤ max
1≤j≤kn

(
t
(n)
j − t

(n)
j−1

) kn∑
j=1

[f(tj) − f(tj−1)]

= max
1≤j≤kn

(
t
(n)
j − t

(n)
j−1

)
[f(b) − f(a)].

It follows that U(f, πn)−L(f, πn) → 0 as n → ∞ and Corollary 9 implies that
f is K-Riemann integrable. The proof for a monotonic decreasing function f
is similar. �

In our next result we use a well-known fact from mathematical analysis
that every uniformly continuous function on a set A ⊂ R

n can be uniquely
extended onto clA to a continuous function (see for instance [4] p. 206).

Proposition 13. If f : [a, b] → R is uniformly radially K-continuous, then it is
K-Riemann integrable on any subset [c, d] ⊂ [a, b].

Proof. Fix arbitrary c, d ∈ [a, b], c < d. From Proposition 6 we infer that
f|[c,d]K is uniformly continuous. Since cl([c, d]K) = [c, d], there exists a unique
continuous function gcd : [c, d] → R such that

gcd(t) = f(t), t ∈ [c, d]K.

On account of Corollary 11 f is K-Riemann integrable, moreover,
∫ d

c

f(t)dKt =
∫ d

c

gcd(t)dt.

�

In the sequel we will use the following well-known theorems (see [8] p.147)
(actually these theorems were proved for Jensen-convex functions, but the
proof in our case runs without any essential changes).

Theorem 14. Let I ⊆ R be an open interval, and let f : I → R be a K-convex
function. Then for arbitrary a, b ∈ I, a < b the function f|[a,b]K is uniformly
continuous.
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Theorem 15. Let I ⊆ R be an open interval, and let f : I → R be a K-convex
function. Then for arbitrary a, b ∈ I, a < b there exists a unique continuous
function gab : [a, b] → R such that

gab(x) = f(x), x ∈ [a, b]K.

The function gab satisfies the inequality

gab

(
a + b

2

)
≤ gab(x) + gab(y)

2
,

for every x, y ∈ [a, b], in particular gab is a convex function.

Now, we calculate an integral of a K-linear function. Note that such a func-
tion can be discontinuous at every point and non-measurable in the Lebesgue
sense (see [8]), so the usual Riemann integral may not exist.

Proposition 16. Let f : R → R be K-linear function. Then it is a K-Riemann
integrable on every interval [a, b], moreover,

∫ b

a

f(t)dKt = f

(
a + b

2

)
(b − a).

Proof. Suppose that f is a K-linear function. On account of Proposition 13
and Theorem 14 it is K-Riemann integrable on every interval [a, b]. Consider
the following sequence of partitions:

πn :=
(
t
(n)
0 , t

(n)
1 , . . . , t(n)n

)
, where, t

(n)
j := a +

j

n
(b − a), j = 0, 1, . . . , n.

From Corollary 9 we obtain
∫ b

a

f(t)dKt = lim
n→∞

n∑
j=1

f
(
t
(n)
j

) 1
n

(b − a)

= lim
n→∞ f

(
na +

n(n + 1)
2n

(b − a)
)

1
n

(b − a)

= lim
n→∞ f

(
a +

n + 1
2n

(b − a)
)

(b − a)

= lim
n→∞

[
f(a) +

n + 1
2n

f(b − a)
]

(b − a)

=
[
f(a) + f

(
b − a

2

)]
(b − a) = f

(
a + b

2

)
(b − a).

�

Now, we record some basic properties of K-Riemann integration. We omit
the proofs of these properties because they run in a similar way as for the
usual Riemann integral.
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Theorem 17. Let f, g be K-Riemann integrable on [a, b] and let c, d ∈ R. Then
(i) the function cf + dg is K-Riemann integrable on [a, b], moreover,

∫ b

a

[cf(t) + dg(t)]dKt = c

∫ b

a

f(t)dKt + d

∫ b

a

g(t)dKt.

(ii) If f(t) ≥ 0, t ∈ [a, b]K, then
∫ b

a
f(t)dKt ≥ 0, moreover, if f is radially

K-continuous on [a, b] and f(t) > 0, t ∈ [a, b]K then
∫ b

a

f(t)dKt > 0.

(iii) The absolute value |f | is K-Riemann integrable on [a, b] and
∣∣∣
∫ b

a

f(t)dKt
∣∣∣ ≤

∫ b

a

|f(t)|dKt.

Theorem 18. Suppose that f : [a, b] → R and c ∈ [a, b]K. Then f is K-Riemann
integrable on [a, b] if and only if it is K-Riemann integrable on [a, c] and [c, b].
Moreover, in that case,

∫ b

a

f(t)dKt =
∫ c

a

f(t)dKt +
∫ b

c

f(t)dKt.

Proof. Assume that f is K-Riemann integrable on [a, b]. Then, given ε > 0
there is a partition π ∈ PK

[a,b] such that

UK(f, π) − LK(f, π) < ε.

Let π be the refinement of π obtained by adding c to the endpoints of π. Then
π = π1 ∪ π2, where

π1 := π ∩ [a, c]K, π2 := π ∩ [c, b]K.

Obviously, π1 ∈ PK

[a,c] and π2 ∈ PK

[c,b], moreover,

UK(f, π) = UK(f, π1) + UK(f, π2), L(f, π) = LK(f, π1) + LK(f, π2).

It follows that

UK(f, π1) − LK(f, π1) = UK(f, π) − LK(f, π) − [UK(f, π2) − LK(f, π2)]
≤ UK(f, π) − LK(f, π) < ε,

which proves that f is K-Riemann integrable on [a, c]. Exchanging π1 and π2,
we get the proof for [c, b].

Conversely, if f is K-Riemann integrable on [a, c] and [c, b] then there are
partitions π1 ∈ PK

[a,c] and π2 ∈ PK

[c,b] such that

UK(f, π1) − LK(f, π1) <
ε

2
, UK(f, π2) − LK(f, π2) <

ε

2
.
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Let π := π1 ∪ π2. Then

UK(f, π) − LK(f, π) = UK(f, π1) − LK(f, π1) + UK(f, π2) − LK(f, π2) < ε,

which proves that f is K-Riemann integrable on [a, b].
Finally, if f is K-Riemann integrable, then with partitions π, π1, π2 as

above, we have
∫ b

a

f(t)dKt ≤ UK(f, π) = UK(f, π1) + UK(f, π2)

< LK(f, π1) + LK(f, π2) + ε

<

∫ c

a

f(t)dKt +
∫ b

c

f(t)dKt + ε.

Similarly,
∫ b

a

f(t)dKt ≥ LK(f, π) = LK(f, π1) + LK(f, π2)

> UK(f, π1) + UK(f, π2) − ε

>

∫ c

a

f(t)dKt +
∫ b

c

f(t)dKt − ε.

Since ε > 0 is arbitrary, we see that
∫ b

a

f(t)dKt =
∫ c

a

f(t)dKt +
∫ b

c

f(t)dKt.

�

Remark 19. Observe that for a K-linear function f : R → R, where K 	= R

and a point c = αa + (1 − α)b ∈ (a, b), where α ∈ (0, 1) we have
∫ b

a

f(t)dKt −
∫ c

a

f(t)dKt −
∫ b

c

f(t)dKt =
1
2

(
f(α(a − b)) − αf(a − b)

)
(a − b).

Therefore, it can happen that for some α ∈ (0, 1) \ K the above expression is
different from zero.

4. Connections between the radial K-derivative and the K-Riemann
integral

In 2006 Z. Boros and Zs. Páles in [1] introduced and examined the notion of
radial K-derivative of a map at a point in the given direction.

Definition 20. A map f : I → R (I stands for an open interval) is said to have
a radial K-derivative at a point x ∈ I in the direction u ∈ R provided that
there exists a finite limit
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DKf(x, u) := lim
K+�r→0

f(x + ru) − f(x)
r

.

We will say that f is radially K-differentiable at a point x whenever DKf(x, u)
does exist for every u ∈ R. A function f : I → R is termed radially K-
differentiable if f is radially K-differentiable at every point x ∈ R.

It is known that each K-convex function f : I → R is radially K-differen-
tiable. In particular, such is every K-linear function a : R → R with

DKa(x, u) = a(u), x, u ∈ R.

On the other hand, if a function f : I → R is differentiable in the usual sense
at a point x ∈ I then it is radially K-differentiable at x with

DKf(x, u) = f ′(x)u, for u ∈ R.

We have the following relationship between the radial K-derivative and the
K-Riemann integral.

Theorem 21. Suppose that f : [a, b] → R is K-Riemann integrable on each
subset of the form [a, x]K, for any x ∈ (a, b]. Let us define the function F :
[a, b] → R by the formula

F (x) :=
∫ x

a

f(t)dKt.

Then, if f is radially K-continuous at a point x ∈ (a, b] then F is radially
K-differentiable at x in the direction x − a, moreover,

DKF (x, x − a) = f(x)(x − a).

Proof. Fix x ∈ [a, b] and ε > 0 arbitrarily. For α ∈ K+, since x ∈ [a, x + α(x −
a)]K, on account of Theorem 18 and condition (iii) from Theorem 17 we obtain

∣∣∣F (x+α(x−a))−F (x)
α − f(x)(x − a)

∣∣∣
=

∣∣∣ 1α
( ∫ x+α(x−a)

a
f(t)dKt − ∫ x

a
f(t)dKt

)
− 1

α

∫ x+α(x−a)

x
f(x)dKt

∣∣∣

=
∣∣∣ 1α

∫ x+α(x−a)

x
f(t)dKt − 1

α

∫ x+α(x−a)

x
f(x)dKt

∣∣∣

= 1
α

∣∣∣ ∫ x+α(x−a)

x
(f(t) − f(x))dKt

∣∣∣ ≤ 1
α

∫ x+α(x−a)

x
|f(t) − f(x)|dKt.

Let α ∈ K+ be so small that

|f(t) − f(x)| <
ε

x − a
, for t ∈ [x, x + α(x − a)]K.
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Then,

1
α

∫ x+α(x−a)

x

|f(t) − f(x)|dKt

≤ 1
α

∫ x+α(x−a)

x

ε

x − a
dKt =

1
α

· α(x − a) · ε

x − a
= ε.

�

Now, we are in a position to prove the following characterization of K-
convex functions.

Theorem 22. Let I ⊆ R be an interval, and let f : I → R be a K-convex
function. Then, for every a, x ∈ I, we have

f(x) = f(a) +
1

x − a

∫ x

a

DKf(t, x − a)dKt.

Proof. Take arbitrary a, x ∈ I, a 	= x, say a < x. Since f is a K-convex
function, on account of Theorem 15 there exists a uniformly continuous, convex
function g : [a, x] → R such that

f(t) = g(t), t ∈ [a, x]K.

Therefore, for t ∈ [a, x]K we get

DKf(t, x − a) = lim
K+�α→0

f(t + α(x − a)) − f(t)
α

= (x − a) · lim
K+�α→0

g(t + α(x − a)) − g(t)
α(x − a)

= (x − a)g′
+(t).

It follows from the above formula and from the fundamental theorem of cal-
culus for the usual Riemann integral that

1
x − a

∫ x

a

DKf(t, x − a)dKt =
∫ x

a

g′
+(t)dt = g(x) − g(a) = f(x) − f(a),

which was to be proved. �

5. Hermite–Hadamard inequalities

There are many inequalities valid for convex functions. Probably two of the
most well-known ones are the Hermite–Hadamard [3,5–8,11,16] inequalities.

f
(a + b

2

)
≤ 1

b − a

∫ b

a

f(t)dt ≤ f(a) + f(b)
2

, a < b. (2)

They play an important role in convex analysis. In the literature one can find
their various generalizations and applications. For more information on this
type of inequalities see the book [3] and the references therein. We just note
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here that first Hermite [7] published these inequalities with some important
applications and then, 10 years later, Hadamard [5] rediscovered their left-hand
side.

It turns out that each of the two sides of (2) in fact characterizes convex
functions. More precisely, if I is an interval and f : I → R a continuous
function whose restriction to every compact subinterval [a, b] verifies the left-
hand side then f is convex. The same works when the left-hand side is replaced
by the right-hand side. More general results are given by Rado [13].

Now, we are in a position to prove our main result. The following theorem
establishes the Hermite–Hadamard inequalities for K-convex functions.

Theorem 23. Let I ⊆ R be a nonempty open interval and let f : I → R be a
K-convex function. Then for arbitrary a, b ∈ I, a < b the inequalities

f
(a + b

2

)
≤ 1

b − a

∫ b

a

f(t)dKt ≤ f(a) + f(b)
2

, a < b, (3)

hold.

Proof. Let a, b ∈ I, a < b be arbitrarily fixed. It follows from Theorem 15 that
there exists a unique continuous and convex function gab : [a, b] → R such
that

gab(x) = f(x), x ∈ [a, b]K.

Since gab is convex, it satisfies the classical Hermite–Hadamard inequalities,
namely

f
(a + b

2

)
= gab

(a + b

2

)
≤ 1

b − a

∫ b

a

gab(t)dt ≤ gab(a) + gab(b)
2

=
f(a) + f(b)

2
.

However, on account of Corollary 11
∫ b

a

gab(t)dt =
∫ b

a

f(t)dKt,

which finishes the proof. �

Since in the proof of the above theorem we used the classical Hermite–
Hadamard inequalities, we can not say that it is a more general result. There-
fore, now we give another proof without using these inequalities.

Proof. To prove the right-hand side of (3) observe that

f(x) ≤ f(a) +
f(b) − f(a)

b − a
(x − a), x ∈ [a, b]K,

so, integrating the above inequality over [a, b] and dividing by b − a we get

1
b − a

∫ b

a

f(x)dKx ≤ f(a) + f(b)
2

.
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To obtain the left-hand side of (2) we use the following easy-to-prove expres-
sion ∫ b

a

f(t)dKt = (b − a)
∫ 1

0

f(sa + (1 − s)b)dKs.

Using the above formula and the Jensen-convexity of f we get

1
b−a

∫ b

a
f(t)dKt = 1

b−a

( ∫ a+b
2

a
f(t)dKt +

∫ b
a+b
2

f(t)dKt
)

= 1
2

∫ 1

0

[
f
(

a+b−t(b−a)
2

)
+ f

(
a+b+t(b−a)

2

)]
dKt ≥ f

(
a+b
2

)
.

�

It turns out, that as with convex functions, in the class of uniformly radially
K-continuous functions each of the inequalities (3) is equivalent to K-convexity.
Namely, the following theorem holds true.

Theorem 24. If a function f : I → R is uniformly radially K-continuous and,
for all elements a < b of I, satisfies either the inequality

f
(a + b

2

)
≤ 1

b − a

∫ b

a

f(t)dKt,

or
1

b − a

∫ b

a

f(t)dKt ≤ f(a) + f(b)
2

,

then it is K-convex.

Proof. Suppose that f satisfies the first inequality (for the second inequality
the proof runs in a similar way). It is enough to prove that for every a, b ∈
I, a < b a unique extension gab of f|[a,b]K onto [a, b] to a continuous function
is convex. To see it, fix arbitrarily c, d ∈ [a, b], c < d. There exist sequences
{cn}n∈N and {dn}n∈N such that cn, dn ∈ [a, b]K, cn < dn, n ∈ N, and

lim
n→∞ cn = c, lim

n→∞ dn = d.

Since cn, dn ∈ [a, b]K, the extension gcndn
onto [cn, dn] to a continuous function

by virtue of uniqueness satisfies the condition

gab(t) = gcndn
(t) = f(t), t ∈ [cn, dn]K, n ∈ N.

By the assumption for all n ∈ N

gab

(cn + dn

2

)
= f

(cn + dn

2

)
≤ 1

dn − cn

∫ dn

cn

f(t)dKt =
1

dn − cn

∫ dn

cn

gab(t)dt.

Taking limits as n → ∞ gives

gab

(c + d

2

)
≤ 1

d − c

∫ d

c

gab(t)dt.
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We have shown that a continuous function gab satisfies the left-hand side of
the classical Hermite–Hadamard inequalities, so as we know, it is convex. Due
to the arbitrariness of a, b ∈ I we infer that f is K-convex, which finishes the
proof. �
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