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Abstract. In the present paper we introduce a notion of the K-Riemann integral as a natural
generalization of a usual Riemann integral and study its properties. The aim of this paper is
to extend the classical Hermite-Hadamard inequalities to the case when the usual Riemann
integral is replaced by the K-Riemann integral and the convexity notion is replaced by
K-convexity.
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1. Introduction

Throughout this paper I C R stands for an interval and K denotes a subfield
of the field of real numbers R. Clearly, Q@ C K, where Q denotes the field of
rational numbers. We denote the set of the positive elements of K by K,. In
the sequel the symbol [a,b]4 will denote an A-convex hull of the set {a,b},
where A C R i.e.
[a,b]a ={aa+(1—a)b:ac ANI0,1]}.
In the case when A = R we will use the standard symbol [a, b] instead of [a, b|g.
Definition 1. A mapping f : R — R is called additive if it satisfies Cauchy’s
functional equation
fla+y)=f@)+ fy),

for every z,y € R. A mapping f is called K-linear if f is additive and K-

homogeneous i.e.

flax) = af(z),
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is fulfilled for every x € R and a € K.
It is well-known that every additive function is Q-homogeneous.

Definition 2. A function f: I — R is said to be Jensen-convex if

r+yy\ _ )+ )
<
f( 2 ) - 2 ’
for every x,y € I. A map f is called K-convex if
flaz + (1 —a)y) <af(z) +(1-a)f(y),
for every z,y € I and e € KN (0, 1).

It is known that a given function f is Jensen-convex if and only if it is Q-
convex (see [2,9]). On the other hand, if f is K-convex then it is also Q-convex.

In this place we introduce the following definitions

Definition 3. A function f : I — R is called radially K-continuous at a point
xg € I if for every u €

o Jim (1 = a)ao -+ aw) = f(ao).

We say that f is radially K-continuous if it is radially K-continuous at every
point from the domain.

Definition 4. We say that a function f : I — R is uniformly radially K-
continuous if for any zo € I and u € I the mapping

0,1]]NK>a — f(zo+ alu —x9))

is uniformly continuous.

It is easy to see that any continuous and any uniformly continuous func-
tion f : I — R in the usual sense is radially K-continuous, and uniformly
radially K-continuous, respectively. However, it can happen that a uniformly
radially K-continuous function is discontinuous at every point in the usual
sense. An easy example is provided by any discontinuous K-linear map. On
the other hand, every uniformly radially K-continuous function is also radi-
ally K-continuous, but the converse is not true. We start with the following
easy-to-prove propositions.

Proposition 5. A function f : I — R is radially K-continuous if and only if
for every a,b € I the function fl[awb][( s continuous.

Proposition 6. A function f : I — R is uniformly radially K-continuous if and
only if for any a,b € I the map thJK is uniformly continuous.
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2. Construction of the K-Riemann integral

Now, we introduce a notion of the K-Riemann integral as a natural generaliza-
tion of the classical Riemann integral. For the theory of the classical Riemann

integral see for instance [10,14,15].
Let Pjq) denote the set of partitions of the interval [a, b] i.e.

o0
Plas) = | J{(tost1, - tn) ra=tg <ty < -+ <t =D}
n=1

Following Zs. Péles [12] we define the set of K-partitions of the interval [a, b]
in the following way

ti — .
,P[E,b] ::{(to,tl,...,tn) € Play) : b_Z ek, i= 1,2,...,n}

z{(to,tl,...,tn)ep[a,b]:ti=a+ai(b—a):ai (1)
GKHMHleﬂw”m}

= {(to,tl,...,tn) S P[a,b] 2t € [a, bk, i = 1,2,...,77,}.

Now, suppose that f : [a,b] — R is a bounded function on the set [a, bk
with

M:= sup f(x), m:= inf f(x).
w€la,blx z€[a,blx

For a given K-partition m = (tg, t1,...,tn) € ’PEIE b let
M;:= sup f(x), m;:= inf  f(z), i=1,2,...,n.

TE€[ti—1,ti]x z€[ti—1,ti]Kk

These suprema and infima are well-defined, finite real numbers since f is
bounded on [a, b]x . Moreover,

mSmiSMigM, ’L'=1,2,...,7?,.

We define the upper K-Riemann sum of f with respect to the partition 7 by
n
U(f,m) =Y Mi(t: —ti1),
i=1
and the lower K-Riemann sum of f with respect to the partition 7 by
n
Lx(f,m) == Zmi(ti —ti-1).
i=1

Note that
m(bi CL) < LK(fvﬂ-) < UK(faﬂ') < M(bia)
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Now, we define the upper K-Riemann integral of f on [a,b] by
—b
/ f(t)dgt := inf {UK(f, T mE Pﬁ’b]}
a

and the lower K-Riemann integral by

/bf(t)th = sup {LK(f, T): wE PE];,,]} .

Definition 7. A function f : [a,b] — R bounded on [a,b]x is said to be K-
Riemann integrable on [a, b] if its upper and lower integrals are equal. In that
case, the K-Riemann integral of f on [a,b] is denoted by

/b F(t)dxt.

In the case when K =R we will use the standard symbol f; f(t)dt instead
of [ f(t)dxt.

The following theorem gives a criterion for K-Riemann integrability.

Theorem 8. A function f : [a,b] — R is K-Riemann integrable on [a,b] if and
only if for every € > 0 there exists a partition ™ € PEE b such that

U[K(f7 71') — L]K(f7 71') < €.

Proof. Let ¢ > 0 and choose a partition © € PFE b that satisfies the above
condition. Then, since

/ f(t)th S U]K(f,ﬂ'), and LK(f,ﬂ') S/ f(t)th S U]K(f,ﬂ')

we have
0 g/ f(t)th—/ F()dt < Ug(f, ) — Lie(f, ) < .

Since this inequality holds for every € > 0,

/if(t)th = /bf(t)dﬂd-

Conversely, suppose that f is K-Riemann integrable. Given any € > 0, there
are partitions mwy, mo € PEI((; b] such that

—b

b
Uv[[g(f7 7T1) < / f(t)d]Kt—l- %, LK(f, 7T2) > / f(t)th — %

—Q
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Now, let 7 := m; U w3 be the common refinement. Keeping in mind that the

—b
K-Riemann integrability of f means [ f(t)dxt = | Z f(t)dgt we can write
U]K(f7 7T) - L]K(fa 7T) S UK(fa 7Tl) - LK(fa 71—2)

= (Ux(rm) - /if(t)th) +(/ F(0det - Le(f.m)

9
+

526.

<<
2

Using the above theorem we can easily obtain the following
Corollary 9. A function f : [a,b] — R is K-Riemann integrable on [a,b] if
and only if for every sequence {mn bnen € PE 1, 1 = (#5787, 0™ such
that

(n) (n)

(N) (n)
j—1 t]

[ s ) 5 2).

Proposition 10. Let Ky C Ky be subfields of R. If a function f : [a,b] — R is
Ks-Riemann integrable then it is also Ki-Riemann integrable, and

/f dKlt—/f )dx,t.

Proof. Let m, = (tén), tg . t(n)) P]Ijlb n € N be an arbitrary sequence
such that

and for any choice S; ") [ ] of the partition m, we have

(n) _ 4(n)
2, (57 60 s

By the Ks-Riemann integrability, for any choice s§n) € [t;?i)17t§»n)]]]<l of the
partition m,, we have

kn
/ab f()di,t = nlinéo; ¥ (S§”)) (én) B tgyi)l) .

Due to the arbitrariness of m,, € Pﬁlb] we infer that

[ e 3 () (47 -2
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As an immediate consequence of the above proposition we obtain the fol-
lowing.

Corollary 11. If a function f : [a,b] — R is Riemann integrable in the usual
sense, then for an arbitrary field K C R f is K-Riemann integrable, moreover,

/abf(t)th - /abf(t)dt.

Example 1. Let K; C Ky, Ky # Ky be two subfields of R. Consider the
following function f : [a,b] — R

, x € la,blg, \ [a, bk,

It is easy to observe that f is K;-Riemann integrable, and fab f(t)dg,t = 0. On
the other hand for every partition m € PEEQb] \Pﬁjlb] one can check that

Sk, (m, f) =1, and Lg,(m, f)=0.

Therefore,

b —b
0:/ f(t)dKzt;«é/ F(t)dg,t = 1.

Observe that if we replace in the formula on f the set K; by the set D of
diadic numbers from the interval [0, 1] i.e.

D::{xe[0,1]|x=2£n, ke, neN},

then we obtain an example of a function which is non-K-Riemann integrable
for any subfield K C R.

3. Properties of the K-Riemann integral

We start our investigation with the following.

Proposition 12. If f : [a,b] — R is a function such that f(, ), s monotone
then it is K-Riemann integrable on [a,b].

Proof. Assume that f4 4}, is monotonic increasing, meaning that

flz) < fly), forx<y, z,yE€]a,blxk.

Fix an arbitrary sequence of partitions

— (tf)”),tg”), . ,t,ﬁ?) ePL,, neN,
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where
(n) _ 4(n)
Since fi[q,5), is increasing, for all j € {1,...,k,}
Mj:= sup f(t) = f(t)), mj = inf  f(t) = f(t;-1).

telt;_1,tsx te[tj—1.t5lx

Hence, summing a telescoping series, we get

U(faﬂ_n) - faﬂ-n :Z i _mj (n) En)1)

=1
J .
< 121}%}2 (t;n) t;i)1> [f(t]) - f(tj—l)]
>J>Fn j=1
= max (6% —4%) [£8) - f(a)]

It follows that U(f,m,) — L(f,m,) — 0 as n — oo and Corollary 9 implies that
f is K-Riemann integrable. The proof for a monotonic decreasing function f
is similar. O

In our next result we use a well-known fact from mathematical analysis
that every uniformly continuous function on a set A C R™ can be uniquely
extended onto clA to a continuous function (see for instance [4] p. 206).

Proposition 13. If f : [a,b] — R is uniformly radially K-continuous, then it is
K-Riemann integrable on any subset [¢,d] C [a,b].

Proof. Fix arbitrary ¢,d € [a,b], ¢ < d. From Proposition 6 we infer that
file.aj 1s uniformly continuous. Since cl([c, d]x) = [c, d], there exists a unique
continuous function g4 : [¢,d] — R such that

gea(t) = f(t), t€ e dx.

On account of Corollary 11 f is K-Riemann integrable, moreover,
d d
/ f(t)dgt = / Gea(t)dt.

In the sequel we will use the following well-known theorems (see [8] p.147)
(actually these theorems were proved for Jensen-convex functions, but the
proof in our case runs without any essential changes).

O

Theorem 14. Let I C R be an open interval, and let f : I — R be a K-convex
Junction. Then for arbitrary a,b € I, a < b the function f[,y), s uniformly
continuous.
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Theorem 15. Let I C R be an open interval, and let f : I — R be a K-convex
function. Then for arbitrary a,b € I, a < b there exists a unique continuous
function gap : [a,b] — R such that

Jar(7) = f(z), we€ [av b]K'
The function gqp satisfies the inequality

Gab (‘H'b) < 9ab(T) + gab(y)

2 2 ’
for every x,y € la,b], in particular g.p is a convex function.

Now, we calculate an integral of a K-linear function. Note that such a func-
tion can be discontinuous at every point and non-measurable in the Lebesgue
sense (see [8]), so the usual Riemann integral may not exist.

Proposition 16. Let f : R — R be K-linear function. Then it is a K-Riemann
integrable on every interval [a,b], moreover,

/f Vit — (a+b>(b—a).

Proof. Suppose that f is a K-linear function. On account of Proposition 13
and Theorem 14 it is K-Riemann integrable on every interval [a, b]. Consider
the following sequence of partitions:

Ty 1= (tén),tgn),...,t%")), where, tg-") =a+ %(b—a), i=0,1,...,n.

From Corollary 9 we obtain

/ et = 1 3 5 CRE
. 2

~ lim f<na+”(”+1)(b—a)) %(b—a)

n—00 2n
:Jg@f( )) (b—a)
= Jin |70+ "0 -0

HORY; (

)} v-a=f("5") 0o

Now, we record some basic properties of K-Riemann integration. We omit
the proofs of these properties because they run in a similar way as for the
usual Riemann integral.

O
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Theorem 17. Let f, g be K-Riemann integrable on [a,b] and let ¢,d € R. Then

(i) the function cf + dg is K-Riemann integrable on [a,b], moreover,
b b b
/ [ef (t) + dg(t))dxt = c/ f(t)th+d/ g(t)dkt.

(i) If f(t) > 0, t € [a,b]k, then f; f(@)dgt > 0, moreover, if f is radially
K-continuous on [a,b] and f(t) > 0, t € [a,b]x then

b
/ f(t)th > 0.

(iii) The absolute value |f| is K-Riemann integrable on [a,b] and

/ N E / ol

Theorem 18. Suppose that f : [a,b] — R and ¢ € [a,blx. Then f is K-Riemann
integrable on [a,b] if and only if it is K-Riemann integrable on [a,c] and [c,b].
Moreover, in that case,

/abf(t)th = /acf(t)th + /be(t)th,

Proof. Assume that f is K-Riemann integrable on [a,b]. Then, given £ > 0
there is a partition 7 € ’P[Hf; ) such that

U]K(ﬁ 7T) — LK(ﬁ 7T) < E.

Let 7 be the refinement of 7 obtained by adding ¢ to the endpoints of 7. Then
7 = w1 Uy, where

T Izﬁﬂ[(LC}K? o ::ﬁﬂ[qb}K.
Obviously, 7, € PEE o and m € PEIE )+ Woreover,

Uk (f,7) = U(f, m) + Uk(f, m2), L(f,7) = Lx(f, m) + Lx(f, m2).
It follows that
Ux(f,m) — Lx(f,m) = Ux(f,7) — Lx(f,7) — [Ux(f, 72) — Lx(f, m2)]
S UK(fvﬂ') - LK(fvﬂ') <g,

which proves that f is K-Riemann integrable on [a, c]. Exchanging 7; and 73,
we get the proof for [e, b].

Conversely, if f is K-Riemann integrable on [a, c] and [c,b] then there are
partitions my € PEE’C] and my € PESb] such that

Us(f.m) = Le(Fim) < 5, Uklfima) = Li(f.ma) <

N ™
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Let 7 := m Umy. Then
Ur(f,7) = Lx(f,7) = Ux(f,m1) — Lx(f,m1) + U (f, m2) — Lx(f,m2) <&,

which proves that f is K-Riemann integrable on [a, b].
Finally, if f is K-Riemann integrable, then with partitions m, 7,7 as
above, we have

b
/ F(O)dect < U (f. ) = Ue(f,m0) + Ui (f. 2)
< Lk f77T1 + Lk fﬂTz +€

/f dKH—/f (t)dkt + e.

b
/ F()dit > Lu(fom) = L fym) + Lie(fom2)
> Uk(f,m) +Ux(f,m) —¢

/f th—i—/f )dgt — €.

Since € > 0 is arbitrary, we see that
b c b
[ ot = [ swdet+ [ s,

Remark 19. Observe that for a K-linear function f : R — R, where K # R
and a point ¢ = aa + (1 — a)b € (a,b), where o € (0,1) we have

/ab F(t)diet — / F(t)dset — /Cb F(t)dt = %(f(a(a b)) —af(a— b))(a —b).

Therefore, it can happen that for some « € (0,1) \ K the above expression is
different from zero.

Similarly,

O

4. Connections between the radial K-derivative and the K-Riemann
integral

In 2006 Z. Boros and Zs. Péles in [1] introduced and examined the notion of
radial K-derivative of a map at a point in the given direction.

Definition 20. A map f : I — R (I stands for an open interval) is said to have
a radial K-derivative at a point x € I in the direction v € R provided that
there exists a finite limit
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Dg f(z,u) := lim flwtru) = f(m

Ki3r—0 r

We will say that f is radially K-differentiable at a point x whenever Dk f(x, u)
does exist for every u € R. A function f : I — R is termed radially K-
differentiable if f is radially K-differentiable at every point x € R.

It is known that each K-convex function f : I — R is radially K-differen-
tiable. In particular, such is every K-linear function a : R — R with

Dga(z,u) = a(u), z,ucR.

On the other hand, if a function f : I — R is differentiable in the usual sense
at a point « € I then it is radially K-differentiable at  with

Dx f(z,u) = f'(z)u, foru€R.

We have the following relationship between the radial K-derivative and the
K-Riemann integral.

Theorem 21. Suppose that f : [a,b] — R is K-Riemann integrable on each
subset of the form [a, x|k, for any x € (a,b]. Let us define the function F :
[a,b] — R by the formula

F(z):= /Jc f(t)dxt.

Then, if [ is radially K-continuous at a point x € (a,b] then F is radially
K-differentiable at x in the direction x — a, moreover,

DgF(z,z —a) = f(z)(z — a).

Proof. Fix z € [a,b] and £ > 0 arbitrarily. For o € K4, since x € [a,z + o(z —
a)]k, on account of Theorem 18 and condition (iii) from Theorem 17 we obtain

‘F(w—i—a(m—a))—F(m) ~ f(@)(z - a)

[e3
— |1
[e3

_ f:t—&-a(rc—a) f(t)th . faT f(t)th) . éf;—i_a(m_a) f(x)d]Kt

_ éf;Jra(i*a) f(t)th - if;ﬂra(a:*a) f(ll?)d]](t’

SO @) = fa)dgt| < L L7 10— fla)ldt.

Let o« € K4 be so small that

1
a

If(t) — f(2)| < xia, for t € [z,2 + oz — a)]x.
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Then
1 z+a(z—a)
S 0 - s
1 z+oa(z—a)
_*/ : dgt = — - a(z —a) < ¢
o S, — T —a

O

Now, we are in a position to prove the following characterization of K-
convex functions.

Theorem 22. Let I C R be an interval, and let f : I — R be a K-convex
function. Then, for every a,x € I, we have

‘/gC DKf(t, T — a)th.

Tr—a

Proof. Take arbitrary a,x € I, a # z, say a < x. Since f is a K-convex
function, on account of Theorem 15 there exists a uniformly continuous, convex
function g : [a,z] — R such that

f(t) = g(t)v te [aax]K~
Therefore, for t € [a, x|k we get
L St ale - a) ~ f()
K4{>a—0 «

. gt t+a(@—a)—g(t)
=@-a): KJ%IHO a(r —a)

Dgf(t,x —a) =

— (¢ — a)g.(1).

It follows from the above formula and from the fundamental theorem of cal-
culus for the usual Riemann integral that

it = | " (Ot = g(2) - g(a) = f(z) — f(a),

which was to be proved. O

5. Hermite-Hadamard inequalities

There are many inequalities valid for convex functions. Probably two of the
most well-known ones are the Hermite-Hadamard [3,5-8,11,16] inequalities.

f(aer )< — /f fdt < Hf() a<b. 2)

2
They play an important role in convex analysis. In the literature one can find
their various generalizations and applications. For more information on this
type of inequalities see the book [3] and the references therein. We just note
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here that first Hermite [7] published these inequalities with some important
applications and then, 10 years later, Hadamard [5] rediscovered their left-hand
side.

It turns out that each of the two sides of (2) in fact characterizes convex
functions. More precisely, if I is an interval and f : I — R a continuous
function whose restriction to every compact subinterval [a, b] verifies the left-
hand side then f is convex. The same works when the left-hand side is replaced
by the right-hand side. More general results are given by Rado [13].

Now, we are in a position to prove our main result. The following theorem
establishes the Hermite-Hadamard inequalities for K-convex functions.

Theorem 23. Let I C R be a nonempty open interval and let f : I — R be a
K-convex function. Then for arbitrary a,b € I,a < b the inequalities

() s [ a0

hold.

Proof. Let a,b € I,a < b be arbitrarily fixed. It follows from Theorem 15 that
there exists a unique continuous and convex function g¢up : [a,b] — R such
that

gar(z) = f(x), = € [a,bk.

Since gqp is convex, it satisfies the classical Hermite-Hadamard inequalities,
namely

f(a—;b) :gab(aT—H)> < bia/bgab(t)dt< gab(a);'_gab(b) _ f(a)—;f(b).

However, on account of Corollary 11

/a ’ gunlt)dt = / " (),

which finishes the proof. U

Since in the proof of the above theorem we used the classical Hermite—
Hadamard inequalities, we can not say that it is a more general result. There-
fore, now we give another proof without using these inequalities.

Proof. To prove the right-hand side of (3) observe that

1@ < @+ OO o) oo

so, integrating the above inequality over [a,b] and dividing by b — a we get

/f i < L+ 10

b—a
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To obtain the left-hand side of (2) we use the following easy-to-prove expres-
sion

b 1
/ f(@®)dxt = (b— a)/o f(sa+ (1 —s)b)dks.

Using the above formula and the Jensen-convexity of f we get

a+b

we Jy 0t = 555 (15 FOdit + [l f(t)dct)
A ) ()2 (),

O

It turns out, that as with convex functions, in the class of uniformly radially
K-continuous functions each of the inequalities (3) is equivalent to K-convexity.
Namely, the following theorem holds true.

Theorem 24. If a function f: I — R is uniformly radially K-continuous and,
for all elements a < b of I, satisfies either the inequality

f(a;b) < ia/abf(t)th,

or

b
bia/ f(t)dgt <

)

fla) + f(b)
2

then it is K-convez.

Proof. Suppose that f satisfies the first inequality (for the second inequality
the proof runs in a similar way). It is enough to prove that for every a,b €
I,a < b a unique extension gup of fi(a,5); onto [a,b] to a continuous function
is convex. To see it, fix arbitrarily ¢,d € [a,b],c < d. There exist sequences
{¢n}nen and {d, }nen such that ¢,,d, € [a,blk, ¢n < dp, n €N, and

lim ¢, =¢, lim d, =d.

n—oo n—0o0

Since ¢y, d,, € [a, b]k, the extension g., 4, onto [¢y,dy] to a continuous function
by virtue of uniqueness satisfies the condition

9ab(t) = ge,a, (t) = f(t), T € [cn.dn]x, neN.
By the assumption for all n € N

(25%) =s(25 %) < o [ o= g1 [ o

Taking limits as n — oo gives

c+d 1 d
gab< 9 )S d—C/ gab(t)dt~
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We have shown that a continuous function g,; satisfies the left-hand side of
the classical Hermite-Hadamard inequalities, so as we know, it is convex. Due
to the arbitrariness of a,b € I we infer that f is K-convex, which finishes the
proof. O
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