Aequat. Math. 90 (2016), 47–55 © The Author(s) 2015. This article is published with open access at Springerlink.com 0001-9054/16/010047-9 published online June 26, 2015 DOI 10.1007/s00010-015-0360-4

Aequationes Mathematicae

Strong convexity and separation theorems

Nelson Merentes and Kazimierz Nikodem

Dedicated to Professor Roman Ger on his 70th birthday

Abstract. Characterizations of pairs of functions that can be separated by a strongly convex, approximately concave or c-quadratic-affine function are presented. As consequences, stability results of the Hyers-Ulam type are obtained.

Mathematics Subject Classification. Primary 26A51; Secondary 39B62.

Keywords. Strongly convex functions, approximately concave functions, c-quadratic-affine functions, separation theorems, Hyers-Ulam stability.

1. Introduction

It is known, from the classical Hahn-Banach theorem, that if a function f is concave, g is convex and $f \leq g$, then there exists an affine function h such that $f \leq h \leq g$. This separation (sandwich) theorem plays a crucial role especially in the field of convex analysis. Many other results about the separation of two given functions by a function from some special class (for instance, by a convex, affine, midconvex, Jensen, sublinear, linear, subadditive, additive, quasiconvex, monotonic, quadratic function) can be found in the literature (see, e.g. [1,3-5,7,10,12-16] and the references therein).

In this note we present a characterization of pairs of functions that can be separated by a strongly convex, approximately concave or c-quadratic-affine function. As consequences, we obtain stability results of the Hyers-Ulam type. Strongly convex functions have applications in optimization, mathematical economics and approximation theory. Many properties of them can be found, for instance, in [6,8,11,17-19].

Let $D \subset \mathbb{R}^n$ be a convex set and c be a positive number. A function $f: D \to \mathbb{R}$ is called:

strongly convex with modulus c if

$$f(tx + (1-t)y) \le tf(x) + (1-t)f(y) - ct(1-t)||x-y||^2, \tag{1}$$

for all $x, y \in D$ and $t \in [0, 1]$;

- approximately concave with modulus c if

$$f(tx + (1-t)y) \ge tf(x) + (1-t)f(y) - ct(1-t)\|x - y\|^2, \tag{2}$$

for all $x, y \in D$ and $t \in [0, 1]$;

- c-quadratic-affine if it is strongly convex with modulus c and simultaneously approximately concave with modulus c, that is

$$f(tx + (1-t)y) = tf(x) + (1-t)f(y) - ct(1-t)||x-y||^2,$$
 (3) for all $x, y \in D$ and $t \in [0, 1]$.

2. Connections with generalized convexity

In the case n=1 the definitions of strong convexity and approximate concavity are strictly connected with the notion of generalized convexity introduced by Beckenbach [2]. Let us recall that a family \mathcal{F} of continuous real functions defined on an interval $I \subset \mathbb{R}$ is called a two-parameter family if for any two points (x_1, y_1) , $(x_2, y_2) \in I \times \mathbb{R}$ with $x_1 \neq x_2$ there exists exactly one $\varphi \in \mathcal{F}$ such that

$$\varphi(x_i) = y_i$$
 for $i = 1, 2$.

The unique function $\varphi \in \mathcal{F}$ determined by the points (x_1, y_1) , (x_2, y_2) will be denoted by $\varphi_{(x_1, y_1), (x_2, y_2)}$. Following Beckenbach a function $f: I \to \mathbb{R}$ is said to be \mathcal{F} -convex if for any $x_1, x_2 \in I$, $x_1 < x_2$

$$f(x) \le \varphi_{(x_1, f(x_1)), (x_2, f(x_2))}(x)$$
 for all $x \in [x_1, x_2]$;

f is said to be \mathcal{F} -concave if for any $x_1, x_2 \in I$, $x_1 < x_2$

$$f(x) \ge \varphi_{(x_1, f(x_1)), (x_2, f(x_2))}(x)$$
 for all $x \in [x_1, x_2]$.

Clearly, these definitions are motivated by the fact that if

$$\mathcal{F} = \{ax + b : a, b \in \mathbb{R}\},\$$

then \mathcal{F} -convexity (\mathcal{F} -concavity) coincides with the classical convexity (concavity). In a similar way we can characterize strong convexity and approximate concavity. Let c be a positive number and

$$\mathcal{F}_c = \{cx^2 + ax + b : a, b \in \mathbb{R}\}.$$

Clearly, \mathcal{F}_c is also a two parameter family. Moreover, the following theorem holds:

Theorem 1. Let $f: I \to \mathbb{R}$. Then

- (1) f is strongly convex with modulus c if and only if f is \mathcal{F}_c -convex;
- (2) f is approximately concave with modulus c if and only if f is \mathcal{F}_c -concave;
- (3) f is c-quadratic-affine if and only if $f \in \mathcal{F}_c$.

Proof. Part (1) is proved in [8]. To prove (2) fix $x_1, x_2 \in I$ and take $\varphi = \varphi_{(x_1, f(x_1)), (x_2, f(x_2))} \in \mathcal{F}_c$. Then $\varphi(x) = cx^2 + ax + b$, where the coefficients a, b are uniquely determined by the conditions $\varphi(x_i) = f(x_i)$, i = 1, 2. Hence, for every $t \in [0, 1]$, we have

$$\varphi(tx_1 + (1-t)x_2) = c(tx_1 + (1-t)x_2)^2 + a(tx_1 + (1-t)x_2) + b$$

$$= c(t^2x_1^2 + 2t(1-t)x_1x_2 + (1-t)^2x_2^2)$$

$$+ a(tx_1 + (1-t)x_2) + b$$

$$= t(cx_1^2 + ax_1 + b) + (1-t)(cx_2^2 + ax_2 + b)$$

$$-ct(1-t)(x_1^2 - 2x_1x_2 + x_2^2)$$

$$= tf(x_1) + (1-t)f(x_2) - ct(1-t)(x_1 - x_2)^2.$$

Consequently, if f is approximately concave with modulus c, then

$$f(tx_1 + (1-t)x_2) \ge tf(x_1) + (1-t)f(x_2) - ct(1-t)(x_1 - x_2)^2$$

= $\varphi_{(x_1, f(x_1)), (x_2, f(x_2))}(tx_1 + (1-t)x_2),$

which means that f is \mathcal{F}_c -concave.

Conversely, if f is \mathcal{F}_c -convex, then

$$f(tx_1 + (1-t)x_2) \ge \varphi_{(x_1, f(x_1)), (x_2, f(x_2))}(tx_1 + (1-t)x_2)$$

= $tf(x_1) + (1-t)f(x_2) - ct(1-t)(x_1 - x_2)^2$,

which shows that f is approximately concave with modulus c.

Part (3) follows from (1) and (2) and the fact that f is \mathcal{F}_c -convex and, simultaneously, \mathcal{F}_c -approximately concave if and only if $f \in \mathcal{F}_c$.

3. Separation by strongly convex and approximately concave functions

In what follows we assume that D is a convex subset of $(\mathbb{R}^n, \|\cdot\|)$ and c is a positive number. We start with the following statement which is a useful tool in our investigations (see [6, Proposition 1.1.2.]; cf. also [10]).

Lemma 2. Let $f: D \to \mathbb{R}$. Then

- (1) f is strongly convex with modulus c if and only if $f c||x||^2$ is convex;
- (2) f is approximately concave with modulus c if and only if $f c||x||^2$ is concave;
- (3) f is c-quadratic-affine if and only if $f c||x||^2$ is affine.

Proof. It is enough to use the equality

$$||tx + (1-t)y||^2 + t(1-t)||x - y||^2 = t||x||^2 + (1-t)||y||^2.$$

The following result characterizes pairs of functions which can be separated by a strongly convex one. It is a counterpart of the sandwich theorem obtained in [1]. For n = 1 an analogous result is given in [8].

Theorem 3. Let $f, g: D \to \mathbb{R}$. There exists a function $h: D \to \mathbb{R}$ strongly convex with modulus c such that $f \leq h \leq g$ on D if and only if

$$f\left(\sum_{i=1}^{n+1} t_i x_i\right) \le \sum_{i=1}^{n+1} t_i g(x_i) - c \sum_{i=1}^{n+1} t_i \|x_i - m\|^2$$
(4)

for all $x_1, \ldots, x_{n+1} \in D$, $t_1, \ldots, t_{n+1} \ge 0$ with $t_1 + \cdots + t_{n+1} = 1$ and $m = t_1x_1 + \cdots + t_{n+1}x_{n+1}$.

Proof. Assume first that $f \leq h \leq g$ where h is strongly convex with modulus c. Using the Jensen inequality for strongly convex functions (see [9, Theorem 2]), we get

$$f\left(\sum_{i=1}^{n+1} t_i x_i\right) \le h\left(\sum_{i=1}^{n+1} t_i x_i\right) \le \sum_{i=1}^{n+1} t_i h(x_i) - c \sum_{i=1}^{n+1} t_i \|x_i - m\|^2$$
$$\le \sum_{i=1}^{n+1} t_i g(x_i) - c \sum_{i=1}^{n+1} t_i \|x_i - m\|^2.$$

To prove the converse implication, assume that f, g satisfy (4) and consider the functions $f_1, g_1 : D \to \mathbb{R}$ defined by

$$f_1(x) = f(x) - c||x||^2$$
, $g_1(x) = g(x) - c||x||^2$, $x \in I$.

Using (4) and the fact that

$$\sum_{i=1}^{n+1} t_i ||x_i - m||^2 = \sum_{i=1}^{n+1} t_i ||x_i||^2 - ||m||^2,$$

we obtain

$$f_1\left(\sum_{i=1}^{n+1} t_i x_i\right) = f\left(\sum_{i=1}^{n+1} t_i x_i\right) - c \left\|\sum_{i=1}^{n+1} t_i x_i\right\|^2 \le \sum_{i=1}^{n+1} t_i g(x_i)$$
$$-c \sum_{i=1}^{n+1} t_i \|x_i - m\|^2 - c \|m\|^2$$
$$= \sum_{i=1}^{n+1} t_i \left(g(x_i) - c \|x_i\|^2\right) = \sum_{i=1}^{n+1} t_i g_1(x_i).$$

Hence, by the Baron-Matkowski-Nikodem sandwich theorem [1], there exists a convex function $h_1: D \to \mathbb{R}$ such that $f_1 \leq h_1 \leq g_1$ on D. Define $h(x) = h_1(x) + c||x||^2$ for $x \in D$. Then, by Lemma 2, h is strongly convex with modulus c and $f \leq h \leq g$ on D.

In a similar way we can characterize functions which can be separated by an approximately concave one.

Theorem 4. Let $f, g: D \to \mathbb{R}$. There exists a function $h: D \to \mathbb{R}$ approximately concave with modulus c such that $f \leq h \leq g$ on D if and only if

$$\sum_{i=1}^{n+1} t_i f(x_i) \ge g\left(\sum_{i=1}^{n+1} t_i x_i\right) + c\sum_{i=1}^{n+1} t_i \|x_i - m\|^2, \tag{5}$$

for all $x_1, \ldots, x_{n+1} \in D$, $t_1, \ldots, t_{n+1} \ge 0$ with $t_1 + \cdots + t_{n+1} = 1$ and $m = t_1x_1 + \cdots + t_{n+1}x_{n+1}$.

As a consequence of the above theorems we obtain the following Hyers-Ulam-type stability results for strongly convex and approximately concave functions.

Corollary 5. Let $\varepsilon > 0$. If $f: D \to \mathbb{R}$ satisfies the condition

$$f\left(\sum_{i=1}^{n+1} t_i x_i\right) \le \sum_{i=1}^{n+1} t_i f(x_i) - c \sum_{i=1}^{n+1} t_i ||x_i - m||^2 + \varepsilon$$
 (6)

for all $x_1, \ldots, x_{n+1} \in D$, $t_1, \ldots, t_{n+1} \geq 0$ with $t_1 + \cdots + t_{n+1} = 1$ and $m = t_1x_1 + \cdots + t_{n+1}x_{n+1}$, then there exists a function $h: D \to \mathbb{R}$ strongly convex with modulus c such that

$$|f(x) - h(x)| \le \frac{\varepsilon}{2}, \ x \in D.$$
 (7)

Proof. Condition (6) means that f and $g = f + \varepsilon$ satisfy (4). Therefore, by Theorem 3, there exists a function h_1 strongly convex with modulus c such that $f \leq h_1 \leq f + \varepsilon$. Putting $h = h_1 - \varepsilon/2$, we get (7).

In an analogous way, using Theorem 4, we also get the next result.

Corollary 6. Let $\varepsilon > 0$. If $f: D \to \mathbb{R}$ satisfies the condition

$$f\left(\sum_{i=1}^{n+1} t_i x_i\right) \ge \sum_{i=1}^{n+1} t_i f(x_i) - c \sum_{i=1}^{n+1} t_i ||x_i - m||^2 + \varepsilon$$

for all $x_1, \ldots, x_{n+1} \in D$, $t_1, \ldots, t_{n+1} \geq 0$ with $t_1 + \cdots + t_{n+1} = 1$ and $m = t_1x_1 + \cdots + t_{n+1}x_{n+1}$, then there exists a function $h: D \to \mathbb{R}$ approximately concave with modulus c such that

$$|f(x) - h(x)| \le \frac{\varepsilon}{2}, \ x \in D.$$

4. Separation by c-quadratic-affine functions

In this section we consider the problem of separating two given functions by a c-quadratic-affine one. Obviously, if there exists a c-quadratic-affine function h such that $f \leq h \leq g$ on $D \subset \mathbb{R}^n$, then f and g satisfy conditions (4) and (5) (because h is strongly convex and approximately concave). For n=1 the converse implication is also true (see Corollary 8 below). However, for n>1 conditions (4) and (5) together are not sufficient for the separation of f and g by a c-quadratic-affine function (we can build a counterexample using the functions f and g described in [14, Remark 2] and Lemma 2). An appropriate necessary and sufficient condition is given in the following theorem. It is a counterpart of the result on separation by affine functions proved in [3].

Theorem 7. Let $f, g: D \to \mathbb{R}$. There exists a c-quadratic-affine function $h: D \to \mathbb{R}$ such that $f \leq h \leq g$ on D if and only if

$$\sum_{i=1}^{k} s_i (f(x_i) - c \|x_i - m\|^2) \le \sum_{j=k+1}^{n+2} t_j (g(x_j) - c \|x_j - m\|^2)$$
 (8)

for all $x_1, \ldots, x_{n+2} \in D$, $k \in \{1, \ldots, n+1\}$, $s_1, \ldots, s_k, t_{k+1}, \ldots, t_{n+2} \ge 0$, such that $s_1 + \cdots + s_k = t_{k+1} + \cdots + t_{n+2} = 1$ and $m = s_1 x_1 + \cdots + s_k x_k = t_{k+1} x_{k+1} + \cdots + t_{n+2} x_{n+2}$.

Proof. To prove the "only if" part assume that $f \leq h \leq g$ with a c-quadratic-affine function h and fix $x_1, \ldots, x_{n+2}, k, s_1, \ldots, s_k$ and t_{k+1}, \ldots, t_{n+2} as above. Then

$$\sum_{i=1}^{k} s_i h(x_i) = h\left(\sum_{i=1}^{k} s_i x_i\right) + c \sum_{i=1}^{k} s_i \|x_i - m\|^2$$

$$= h\left(\sum_{j=k+1}^{n+2} t_j x_i\right) + c \sum_{i=1}^{k} s_i \|x_i - m\|^2$$

$$= \sum_{j=k+1}^{n+2} t_j h(x_j) - c \sum_{j=k+1}^{n+2} t_j \|x_j - m\|^2 + c \sum_{i=1}^{k} s_i \|x_i - m\|^2.$$

Hence

$$\sum_{i=1}^{k} s_i (f(x_i) - c \|x_i - m\|^2) \le \sum_{i=1}^{k} s_i h(x_i) - c \sum_{i=1}^{k} s_i \|x_i - m\|^2$$

$$= \sum_{j=k+1}^{n+2} t_j h(x_j) - c \sum_{j=k+1}^{n+2} t_j \|x_j - m\|^2$$

$$\le \sum_{j=k+1}^{n+2} t_j (g(x_j) - c \|x_j - m\|^2).$$

To prove the "if" part consider the functions $f_1, g_1: D \to \mathbb{R}$ defined by

$$f_1(x) = f(x) - c||x||^2$$
, $g_1(x) = g(x) - c||x||^2$, $x \in D$.

Using (8) and the fact that

$$\sum_{i=1}^{k} s_i \|x_i - m\|^2 = \sum_{i=1}^{k} s_i \|x_i\|^2 - \|m\|^2 \text{ and}$$

$$\sum_{j=k+1}^{n+2} t_i \|x_j - m\|^2 = \sum_{j=k+1}^{n+2} t_j \|x_j\|^2 - \|m\|^2,$$

we obtain

$$\sum_{i=1}^{k} s_i f_1(x_i) = \sum_{i=1}^{k} s_i f(x_i) - c \sum_{i=1}^{k} s_i ||x_i||^2$$

$$= \sum_{i=1}^{k} s_i f(x_i) - c \left(\sum_{i=1}^{k} s_i ||x_i - m||^2 - ||m||^2 \right)$$

$$\leq \sum_{j=k+1}^{n+2} t_j g(x_j) - c \left(\sum_{j=k+1}^{n+2} t_j ||x_j - m||^2 - ||m||^2 \right)$$

$$= \sum_{j=k+1}^{n+2} t_j g(x_j) - c \sum_{j=k+1}^{n+2} t_j ||x_j||^2 = \sum_{j=k+1}^{n+2} t_j g_1(x_j).$$

This implies, on account of the Behrends-Nikodem separation theorem [3], that there exists an affine function $h_1: \mathbb{R}^n \to \mathbb{R}$ such that $f_1 \leq h_1 \leq g_1$ on D. Define $h(x) = h_1(x) + c||x||^2$ for $x \in D$. Then, by Lemma 2, h is strongly convex with modulus c and $f \leq h \leq g$ on D.

In the case n = 1 condition (8) reduces to the system of two inequalities obtained for k = 1 and k = 2. Therefore, as a consequence of Theorem 7 we get the following counterpart of the sandwich theorem obtained in [14]. This result follows also from Lemma 2 and the separation theorem proved in [10].

Corollary 8. Let $I \subset \mathbb{R}$ be an interval and $f, g : I \to \mathbb{R}$. The following conditions are equivalent

- 1. there exists a c-quadratic-affine function $h: I \to \mathbb{R}$ such that $f \leq h \leq g$ on I:
- 2. there exist functions $h_1: I \to \mathbb{R}$ strongly convex with modulus c and $h_2: I \to \mathbb{R}$ approximately concave with modulus c such that $f \leq h_1 \leq g$ and $f \leq h_2 \leq g$ on I;

3.
$$f(tx_1 + (1-t)x_2) \le tg(x_1) + (1-t)g(x_2) - ct(1-t)(x_1 - x_2)^2$$
$$g(tx_1 + (1-t)x_2) \ge tf(x_1) + (1-t)f(x_2) - ct(1-t)(x_1 - x_2)^2$$
$$for \ all \ x_1, x_2 \in I \ and \ t \in [0, 1].$$

Proof. The implications $1 \Rightarrow 2$ and $2 \Rightarrow 3$ are obvious, whereas $3 \Rightarrow 1$ follows from Theorem 7.

As another consequence of Theorem 7 we also obtain the following Hyers-Ulam stability result for c-quadratic-affine functions.

Corollary 9. Let $\varepsilon > 0$. If $f: D \to \mathbb{R}$ satisfies the condition

$$\sum_{i=1}^{k} s_i (f(x_i) - c \|x_i - m\|^2) \le \sum_{j=k+1}^{n+2} t_j (f(x_j) - c \|x_j - m\|^2) + \varepsilon$$
 (9)

for all $x_1, \ldots, x_{n+2} \in D$, $k \in \{1, \ldots, n+1\}$, $s_1, \ldots, s_k, t_{k+1}, \ldots, t_{n+2} \ge 0$, such that $s_1 + \cdots + s_k = t_{k+1} + \cdots + t_{n+2} = 1$ and $m = s_1 x_1 + \cdots + s_k x_k = t_{k+1} x_{k+1} + \cdots + t_{n+2} x_{n+2}$, then there exists a c-quadratic-affine function $h: D \to \mathbb{R}$ such that

$$|f(x) - h(x)| \le \frac{\varepsilon}{2}, \ x \in D.$$
 (10)

Proof. Condition (9) implies that f and $g = f + \varepsilon$ satisfy (8). Therefore, by Theorem 7, there exists a c-quadratic-affine function h_1 such that $f \leq h_1 \leq f + \varepsilon$. Putting $h = h_1 - \varepsilon/2$, we get (10).

Open Access. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

References

- Baron, K., Matkowski, J., Nikodem, K.: A sandwich with convexity. Math. Pannonica 5(1), 139–144 (1994)
- [2] Beckenbach, E.F.: Generalized convex functions. Bull. Am. Math. Soc. 43, 363–371 (1937)
- [3] Behrends, E., Nikodem, K.: A selection theorem of Helly type and its applications. Stud. Math. 116, 43–48 (1995)
- [4] Bessenyei, M., Szokol, P.: Separation by convex interpolation families. J. Conv. Anal. 20(4), 937–946 (2013)
- [5] Förg-Rob, W., Nikodem, K., Páles, Z.: Separation by monotonic functions. Math. Pannonica 7, 191–196 (1996)
- [6] Hiriart-Urruty, J.-B., Lemaréchal, C.: Fundamentals of Convex Analysis. Springer-Verlag, Berlin-Heidelberg (2001)
- [7] König, H.: On the Abstract Hahn-Banach Theorem due to Rodé. Aequationes Math. 34, 89-95 (1987)

- [8] Merentes, N., Nikodem, K.: Remarks on strongly convex functions. Aequationes Math. 80, 193–199 (2010)
- [9] Nikodem, K.: Strongly Convex Functions and Related Classes of Functions. In: Rassias, T.M. (eds.) Handbook of Functional Equations. Functional Inequalities, vol. 95, pp. 365-405. Springer Optimizations and Its Applications, New York (2015)
- [10] Nikodem, K., Páles, Z.: Generalized convexity and separation theorems. J. Conv. Anal. 14(2), 239–247 (2007)
- [11] Nikodem, K., Páles, Z.: Characterizations of inner product spaces by strongly convex functions. Banach J. Math. Anal. 5(1), 83–87 (2011)
- [12] Nikodem, K., Páles, Z., Wąsowicz, S.: Abstract separation theorems of Rode type and their applications. Ann. Pol. Math. 72, 207–217 (1999)
- [13] Nikodem, K., Sadowska, E., Wąsowicz, S.: A note on separation by subadditive and sublinear functions. Ann. Math. Silesianae 14, 33–39 (2000)
- [14] Nikodem, K., Wąsowicz, S.: A sandwich theorem and Hyers-Ulam stability of affine functions. Aequationes Math. 49, 160-164 (1995)
- [15] Páles, Z.: Separation by approximately convex functions. Grazer Math. Ber. 344, 43–50 (2001)
- [16] Páles, Z., Zeiden, V.: Separation via quadratic functions. Aequationes Math. 51, 209–229 (1996)
- [17] Polovinkin, E.S.: Strongly convex analysis. Sb. Math. 187(2), 103–130 (1996)
- [18] Polyak, B.T.: Existence theorems and convergence of minimizing sequences in extremum problems with restrictions. Soviet Math. Dokl. 7, 72–75 (1966)
- [19] Roberts, A.W., Varberg, D.E.: Convex Functions. Academic Press, New York– London (1973)

Nelson Merentes Escuela de Matemáticas Universidad Central de Venezuela Caracas, Venezuela e-mail: nmerucv@gmail.com

Kazimierz Nikodem Department of Mathematics University of Bielsko-Biala ul. Willowa 2 43-309 Bielsko-Biała, Poland e-mail: knikodem@ath.bielsko.pl

Received: March 6, 2015 Revised: May 12, 2015