Strong convexity and separation theorems

Nelson Merentes and Kazimierz Nikodem
Dedicated to Professor Roman Ger on his 70th birthday

Abstract

Characterizations of pairs of functions that can be separated by a strongly convex, approximately concave or c-quadratic-affine function are presented. As consequences, stability results of the Hyers-Ulam type are obtained.

Mathematics Subject Classification. Primary 26A51; Secondary 39B62.
Keywords. Strongly convex functions, approximately concave functions, c-quadratic-affine functions, separation theorems, Hyers-Ulam stability.

1. Introduction

It is known, from the classical Hahn-Banach theorem, that if a function f is concave, g is convex and $f \leq g$, then there exists an affine function h such that $f \leq h \leq g$. This separation (sandwich) theorem plays a crucial role especially in the field of convex analysis. Many other results about the separation of two given functions by a function from some special class (for instance, by a convex, affine, midconvex, Jensen, sublinear, linear, subadditive, additive, quasiconvex, monotonic, quadratic function) can be found in the literature (see, e.g. $[1,3-5,7,10,12-16]$ and the references therein).

In this note we present a characterization of pairs of functions that can be separated by a strongly convex, approximately concave or c-quadratic-affine function. As consequences, we obtain stability results of the Hyers-Ulam type. Strongly convex functions have applications in optimization, mathematical economics and approximation theory. Many properties of them can be found, for instance, in $[6,8,11,17-19]$.

Let $D \subset \mathbb{R}^{n}$ be a convex set and c be a positive number. A function $f: D \rightarrow \mathbb{R}$ is called:

- strongly convex with modulus c if

$$
\begin{equation*}
f(t x+(1-t) y) \leq t f(x)+(1-t) f(y)-c t(1-t)\|x-y\|^{2}, \tag{1}
\end{equation*}
$$

Birkhäuser
for all $x, y \in D$ and $t \in[0,1]$;

- approximately concave with modulus c if

$$
\begin{equation*}
f(t x+(1-t) y) \geq t f(x)+(1-t) f(y)-c t(1-t)\|x-y\|^{2}, \tag{2}
\end{equation*}
$$

for all $x, y \in D$ and $t \in[0,1]$;

- c-quadratic-affine if it is strongly convex with modulus c and simultaneously approximately concave with modulus c, that is

$$
\begin{equation*}
f(t x+(1-t) y)=t f(x)+(1-t) f(y)-c t(1-t)\|x-y\|^{2}, \tag{3}
\end{equation*}
$$

for all $x, y \in D$ and $t \in[0,1]$.

2. Connections with generalized convexity

In the case $n=1$ the definitions of strong convexity and approximate concavity are strictly connected with the notion of generalized convexity introduced by Beckenbach [2]. Let us recall that a family \mathcal{F} of continuous real functions defined on an interval $I \subset \mathbb{R}$ is called a two-parameter family if for any two points $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right) \in I \times \mathbb{R}$ with $x_{1} \neq x_{2}$ there exists exactly one $\varphi \in \mathcal{F}$ such that

$$
\varphi\left(x_{i}\right)=y_{i} \quad \text { for } \quad i=1,2
$$

The unique function $\varphi \in \mathcal{F}$ determined by the points $\left(x_{1}, y_{1}\right)$, $\left(x_{2}, y_{2}\right)$ will be denoted by $\varphi_{\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)}$. Following Beckenbach a function $f: I \rightarrow \mathbb{R}$ is said to be \mathcal{F}-convex if for any $x_{1}, x_{2} \in I, x_{1}<x_{2}$

$$
f(x) \leq \varphi_{\left(x_{1}, f\left(x_{1}\right)\right),\left(x_{2}, f\left(x_{2}\right)\right)}(x) \text { for all } \quad x \in\left[x_{1}, x_{2}\right] ;
$$

f is said to be \mathcal{F}-concave if for any $x_{1}, x_{2} \in I, x_{1}<x_{2}$

$$
f(x) \geq \varphi_{\left(x_{1}, f\left(x_{1}\right)\right),\left(x_{2}, f\left(x_{2}\right)\right)}(x) \text { for all } \quad x \in\left[x_{1}, x_{2}\right] .
$$

Clearly, these definitions are motivated by the fact that if

$$
\mathcal{F}=\{a x+b: a, b \in \mathbb{R}\}
$$

then \mathcal{F}-convexity (\mathcal{F}-concavity) coincides with the classical convexity (concavity). In a similar way we can characterize strong convexity and approximate concavity. Let c be a positive number and

$$
\mathcal{F}_{c}=\left\{c x^{2}+a x+b: a, b \in \mathbb{R}\right\}
$$

Clearly, \mathcal{F}_{c} is also a two parameter family. Moreover, the following theorem holds:

Theorem 1. Let $f: I \rightarrow \mathbb{R}$. Then
(1) f is strongly convex with modulus c if and only if f is \mathcal{F}_{c}-convex;
(2) f is approximately concave with modulus c if and only if f is \mathcal{F}_{c}-concave;
(3) f is c-quadratic-affine if and only if $f \in \mathcal{F}_{c}$.

Proof. Part (1) is proved in [8]. To prove (2) fix $x_{1}, x_{2} \in I$ and take $\varphi=$ $\varphi_{\left(x_{1}, f\left(x_{1}\right)\right),\left(x_{2}, f\left(x_{2}\right)\right)} \in \mathcal{F}_{c}$. Then $\varphi(x)=c x^{2}+a x+b$, where the coefficients a, b are uniquely determined by the conditions $\varphi\left(x_{i}\right)=f\left(x_{i}\right), i=1,2$. Hence, for every $t \in[0,1]$, we have

$$
\begin{aligned}
\varphi\left(t x_{1}+(1-t) x_{2}\right)= & c\left(t x_{1}+(1-t) x_{2}\right)^{2}+a\left(t x_{1}+(1-t) x_{2}\right)+b \\
= & c\left(t^{2} x_{1}^{2}+2 t(1-t) x_{1} x_{2}+(1-t)^{2} x_{2}^{2}\right) \\
& +a\left(t x_{1}+(1-t) x_{2}\right)+b \\
= & t\left(c x_{1}^{2}+a x_{1}+b\right)+(1-t)\left(c x_{2}^{2}+a x_{2}+b\right) \\
& -c t(1-t)\left(x_{1}^{2}-2 x_{1} x_{2}+x_{2}^{2}\right) \\
= & t f\left(x_{1}\right)+(1-t) f\left(x_{2}\right)-c t(1-t)\left(x_{1}-x_{2}\right)^{2} .
\end{aligned}
$$

Consequently, if f is approximately concave with modulus c, then

$$
\begin{aligned}
f\left(t x_{1}+(1-t) x_{2}\right) & \geq t f\left(x_{1}\right)+(1-t) f\left(x_{2}\right)-c t(1-t)\left(x_{1}-x_{2}\right)^{2} \\
& =\varphi_{\left(x_{1}, f\left(x_{1}\right)\right),\left(x_{2}, f\left(x_{2}\right)\right)}\left(t x_{1}+(1-t) x_{2}\right)
\end{aligned}
$$

which means that f is \mathcal{F}_{c}-concave.
Conversely, if f is \mathcal{F}_{c}-convex, then

$$
\begin{aligned}
f\left(t x_{1}+(1-t) x_{2}\right) & \geq \varphi_{\left(x_{1}, f\left(x_{1}\right)\right),\left(x_{2}, f\left(x_{2}\right)\right)}\left(t x_{1}+(1-t) x_{2}\right) \\
& =t f\left(x_{1}\right)+(1-t) f\left(x_{2}\right)-c t(1-t)\left(x_{1}-x_{2}\right)^{2}
\end{aligned}
$$

which shows that f is approximately concave with modulus c.
Part (3) follows from (1) and (2) and the fact that f is \mathcal{F}_{c}-convex and, simultaneously, \mathcal{F}_{c}-approximately concave if and only if $f \in \mathcal{F}_{c}$.

3. Separation by strongly convex and approximately concave functions

In what follows we assume that D is a convex subset of $\left(\mathbb{R}^{n},\|\cdot\|\right)$ and c is a positive number. We start with the following statement which is a useful tool in our investigations (see [6, Proposition 1.1.2.]; cf. also [10]).

Lemma 2. Let $f: D \rightarrow \mathbb{R}$. Then
(1) f is strongly convex with modulus c if and only if $f-c\|x\|^{2}$ is convex;
(2) f is approximately concave with modulus c if and only if $f-c\|x\|^{2}$ is concave;
(3) f is c-quadratic-affine if and only if $f-c\|x\|^{2}$ is affine.

Proof. It is enough to use the equality

$$
\|t x+(1-t) y\|^{2}+t(1-t)\|x-y\|^{2}=t\|x\|^{2}+(1-t)\|y\|^{2} .
$$

The following result characterizes pairs of functions which can be separated by a strongly convex one. It is a counterpart of the sandwich theorem obtained in [1]. For $n=1$ an analogous result is given in [8].

Theorem 3. Let $f, g: D \rightarrow \mathbb{R}$. There exists a function $h: D \rightarrow \mathbb{R}$ strongly convex with modulus c such that $f \leq h \leq g$ on D if and only if

$$
\begin{equation*}
f\left(\sum_{i=1}^{n+1} t_{i} x_{i}\right) \leq \sum_{i=1}^{n+1} t_{i} g\left(x_{i}\right)-c \sum_{i=1}^{n+1} t_{i}\left\|x_{i}-m\right\|^{2} \tag{4}
\end{equation*}
$$

for all $x_{1}, \ldots, x_{n+1} \in D, t_{1}, \ldots, t_{n+1} \geq 0$ with $t_{1}+\cdots+t_{n+1}=1$ and $m=$ $t_{1} x_{1}+\cdots+t_{n+1} x_{n+1}$.

Proof. Assume first that $f \leq h \leq g$ where h is strongly convex with modulus c. Using the Jensen inequality for strongly convex functions (see $[9$, Theorem 2]), we get

$$
\begin{aligned}
f\left(\sum_{i=1}^{n+1} t_{i} x_{i}\right) & \leq h\left(\sum_{i=1}^{n+1} t_{i} x_{i}\right) \leq \sum_{i=1}^{n+1} t_{i} h\left(x_{i}\right)-c \sum_{i=1}^{n+1} t_{i}\left\|x_{i}-m\right\|^{2} \\
& \leq \sum_{i=1}^{n+1} t_{i} g\left(x_{i}\right)-c \sum_{i=1}^{n+1} t_{i}\left\|x_{i}-m\right\|^{2}
\end{aligned}
$$

To prove the converse implication, assume that f, g satisfy (4) and consider the functions $f_{1}, g_{1}: D \rightarrow \mathbb{R}$ defined by

$$
f_{1}(x)=f(x)-c\|x\|^{2}, \quad g_{1}(x)=g(x)-c\|x\|^{2}, \quad x \in I
$$

Using (4) and the fact that

$$
\sum_{i=1}^{n+1} t_{i}\left\|x_{i}-m\right\|^{2}=\sum_{i=1}^{n+1} t_{i}\left\|x_{i}\right\|^{2}-\|m\|^{2}
$$

we obtain

$$
\begin{aligned}
f_{1}\left(\sum_{i=1}^{n+1} t_{i} x_{i}\right)= & f\left(\sum_{i=1}^{n+1} t_{i} x_{i}\right)-c\left\|\sum_{i=1}^{n+1} t_{i} x_{i}\right\|^{2} \leq \sum_{i=1}^{n+1} t_{i} g\left(x_{i}\right) \\
& -c \sum_{i=1}^{n+1} t_{i}\left\|x_{i}-m\right\|^{2}-c\|m\|^{2} \\
= & \sum_{i=1}^{n+1} t_{i}\left(g\left(x_{i}\right)-c\left\|x_{i}\right\|^{2}\right)=\sum_{i=1}^{n+1} t_{i} g_{1}\left(x_{i}\right) .
\end{aligned}
$$

Hence, by the Baron-Matkowski-Nikodem sandwich theorem [1], there exists a convex function $h_{1}: D \rightarrow \mathbb{R}$ such that $f_{1} \leq h_{1} \leq g_{1}$ on D. Define $h(x)=$ $h_{1}(x)+c\|x\|^{2}$ for $x \in D$. Then, by Lemma $2, h$ is strongly convex with modulus c and $f \leq h \leq g$ on D.

In a similar way we can characterize functions which can be separated by an approximately concave one.

Theorem 4. Let $f, g: D \rightarrow \mathbb{R}$. There exists a function $h: D \rightarrow \mathbb{R}$ approximately concave with modulus c such that $f \leq h \leq g$ on D if and only if

$$
\begin{equation*}
\sum_{i=1}^{n+1} t_{i} f\left(x_{i}\right) \geq g\left(\sum_{i=1}^{n+1} t_{i} x_{i}\right)+c \sum_{i=1}^{n+1} t_{i}\left\|x_{i}-m\right\|^{2} \tag{5}
\end{equation*}
$$

for all $x_{1}, \ldots, x_{n+1} \in D, t_{1}, \ldots, t_{n+1} \geq 0$ with $t_{1}+\cdots+t_{n+1}=1$ and $m=$ $t_{1} x_{1}+\cdots+t_{n+1} x_{n+1}$.

As a consequence of the above theorems we obtain the following Hyers-Ulam-type stability results for strongly convex and approximately concave functions.

Corollary 5. Let $\varepsilon>0$. If $f: D \rightarrow \mathbb{R}$ satisfies the condition

$$
\begin{equation*}
f\left(\sum_{i=1}^{n+1} t_{i} x_{i}\right) \leq \sum_{i=1}^{n+1} t_{i} f\left(x_{i}\right)-c \sum_{i=1}^{n+1} t_{i}\left\|x_{i}-m\right\|^{2}+\varepsilon \tag{6}
\end{equation*}
$$

for all $x_{1}, \ldots, x_{n+1} \in D, t_{1}, \ldots, t_{n+1} \geq 0$ with $t_{1}+\cdots+t_{n+1}=1$ and $m=$ $t_{1} x_{1}+\cdots+t_{n+1} x_{n+1}$, then there exists a function $h: D \rightarrow \mathbb{R}$ strongly convex with modulus c such that

$$
\begin{equation*}
|f(x)-h(x)| \leq \frac{\varepsilon}{2}, x \in D \tag{7}
\end{equation*}
$$

Proof. Condition (6) means that f and $g=f+\varepsilon$ satisfy (4). Therefore, by Theorem 3, there exists a function h_{1} strongly convex with modulus c such that $f \leq h_{1} \leq f+\varepsilon$. Putting $h=h_{1}-\varepsilon / 2$, we get (7).

In an analogous way, using Theorem 4, we also get the next result.
Corollary 6. Let $\varepsilon>0$. If $f: D \rightarrow \mathbb{R}$ satisfies the condition

$$
f\left(\sum_{i=1}^{n+1} t_{i} x_{i}\right) \geq \sum_{i=1}^{n+1} t_{i} f\left(x_{i}\right)-c \sum_{i=1}^{n+1} t_{i}\left\|x_{i}-m\right\|^{2}+\varepsilon
$$

for all $x_{1}, \ldots, x_{n+1} \in D, t_{1}, \ldots, t_{n+1} \geq 0$ with $t_{1}+\cdots+t_{n+1}=1$ and $m=$ $t_{1} x_{1}+\cdots+t_{n+1} x_{n+1}$, then there exists a function $h: D \rightarrow \mathbb{R}$ approximately concave with modulus c such that

$$
|f(x)-h(x)| \leq \frac{\varepsilon}{2}, x \in D
$$

4. Separation by c-quadratic-affine functions

In this section we consider the problem of separating two given functions by a c-quadratic-affine one. Obviously, if there exists a c-quadratic-affine function h such that $f \leq h \leq g$ on $D \subset \mathbb{R}^{n}$, then f and g satisfy conditions (4) and (5) (because h is strongly convex and approximately concave). For $n=1$ the converse implication is also true (see Corollary 8 below). However, for $n>1$ conditions (4) and (5) together are not sufficient for the separation of f and g by a c-quadratic-affine function (we can build a counterexample using the functions f and g described in [14, Remark 2] and Lemma 2). An appropriate necessary and sufficient condition is given in the following theorem. It is a counterpart of the result on separation by affine functions proved in [3].

Theorem 7. Let $f, g: D \rightarrow \mathbb{R}$. There exists a c-quadratic-affine function h : $D \rightarrow \mathbb{R}$ such that $f \leq h \leq g$ on D if and only if

$$
\begin{equation*}
\sum_{i=1}^{k} s_{i}\left(f\left(x_{i}\right)-c\left\|x_{i}-m\right\|^{2}\right) \leq \sum_{j=k+1}^{n+2} t_{j}\left(g\left(x_{j}\right)-c\left\|x_{j}-m\right\|^{2}\right) \tag{8}
\end{equation*}
$$

for all $x_{1}, \ldots, x_{n+2} \in D, k \in\{1, \ldots, n+1\}, s_{1}, \ldots, s_{k}, t_{k+1}, \ldots, t_{n+2} \geq 0$, such that $s_{1}+\cdots+s_{k}=t_{k+1}+\cdots+t_{n+2}=1$ and $m=s_{1} x_{1}+\cdots+s_{k} x_{k}=$ $t_{k+1} x_{k+1}+\cdots+t_{n+2} x_{n+2}$.

Proof. To prove the "only if" part assume that $f \leq h \leq g$ with a c-quadraticaffine function h and fix $x_{1}, \ldots, x_{n+2}, k, s_{1}, \ldots, s_{k}$ and t_{k+1}, \ldots, t_{n+2} as above. Then

$$
\begin{aligned}
\sum_{i=1}^{k} s_{i} h\left(x_{i}\right) & =h\left(\sum_{i=1}^{k} s_{i} x_{i}\right)+c \sum_{i=1}^{k} s_{i}\left\|x_{i}-m\right\|^{2} \\
& =h\left(\sum_{j=k+1}^{n+2} t_{j} x_{i}\right)+c \sum_{i=1}^{k} s_{i}\left\|x_{i}-m\right\|^{2} \\
& =\sum_{j=k+1}^{n+2} t_{j} h\left(x_{j}\right)-c \sum_{j=k+1}^{n+2} t_{j}\left\|x_{j}-m\right\|^{2}+c \sum_{i=1}^{k} s_{i}\left\|x_{i}-m\right\|^{2} .
\end{aligned}
$$

Hence

$$
\begin{aligned}
\sum_{i=1}^{k} s_{i}\left(f\left(x_{i}\right)-c\left\|x_{i}-m\right\|^{2}\right) & \leq \sum_{i=1}^{k} s_{i} h\left(x_{i}\right)-c \sum_{i=1}^{k} s_{i}\left\|x_{i}-m\right\|^{2} \\
& =\sum_{j=k+1}^{n+2} t_{j} h\left(x_{j}\right)-c \sum_{j=k+1}^{n+2} t_{j}\left\|x_{j}-m\right\|^{2} \\
& \leq \sum_{j=k+1}^{n+2} t_{j}\left(g\left(x_{j}\right)-c\left\|x_{j}-m\right\|^{2}\right)
\end{aligned}
$$

To prove the "if" part consider the functions $f_{1}, g_{1}: D \rightarrow \mathbb{R}$ defined by

$$
f_{1}(x)=f(x)-c\|x\|^{2}, \quad g_{1}(x)=g(x)-c\|x\|^{2}, \quad x \in D
$$

Using (8) and the fact that

$$
\begin{aligned}
\sum_{i=1}^{k} s_{i}\left\|x_{i}-m\right\|^{2} & =\sum_{i=1}^{k} s_{i}\left\|x_{i}\right\|^{2}-\|m\|^{2} \text { and } \\
\sum_{j=k+1}^{n+2} t_{i}\left\|x_{j}-m\right\|^{2} & =\sum_{j=k+1}^{n+2} t_{j}\left\|x_{j}\right\|^{2}-\|m\|^{2}
\end{aligned}
$$

we obtain

$$
\begin{aligned}
\sum_{i=1}^{k} s_{i} f_{1}\left(x_{i}\right) & =\sum_{i=1}^{k} s_{i} f\left(x_{i}\right)-c \sum_{i=1}^{k} s_{i}\left\|x_{i}\right\|^{2} \\
& =\sum_{i=1}^{k} s_{i} f\left(x_{i}\right)-c\left(\sum_{i=1}^{k} s_{i}\left\|x_{i}-m\right\|^{2}-\|m\|^{2}\right) \\
& \leq \sum_{j=k+1}^{n+2} t_{j} g\left(x_{j}\right)-c\left(\sum_{j=k+1}^{n+2} t_{j}\left\|x_{j}-m\right\|^{2}-\|m\|^{2}\right) \\
& =\sum_{j=k+1}^{n+2} t_{j} g\left(x_{j}\right)-c \sum_{j=k+1}^{n+2} t_{j}\left\|x_{j}\right\|^{2}=\sum_{j=k+1}^{n+2} t_{j} g_{1}\left(x_{j}\right)
\end{aligned}
$$

This implies, on account of the Behrends-Nikodem separation theorem [3], that there exists an affine function $h_{1}: \mathbb{R}^{n} \rightarrow \mathbb{R}$ such that $f_{1} \leq h_{1} \leq g_{1}$ on D. Define $h(x)=h_{1}(x)+c\|x\|^{2}$ for $x \in D$. Then, by Lemma $2, h$ is strongly convex with modulus c and $f \leq h \leq g$ on D.

In the case $n=1$ condition (8) reduces to the system of two inequalities obtained for $k=1$ and $k=2$. Therefore, as a consequence of Theorem 7 we get the following counterpart of the sandwich theorem obtained in [14]. This result follows also from Lemma 2 and the separation theorem proved in [10].

Corollary 8. Let $I \subset \mathbb{R}$ be an interval and $f, g: I \rightarrow \mathbb{R}$. The following conditions are equivalent

1. there exists a c-quadratic-affine function $h: I \rightarrow \mathbb{R}$ such that $f \leq h \leq g$ on I;
2. there exist functions $h_{1}: I \rightarrow \mathbb{R}$ strongly convex with modulus c and h_{2} : $I \rightarrow \mathbb{R}$ approximately concave with modulus c such that $f \leq h_{1} \leq g$ and $f \leq h_{2} \leq g$ on I;
3. $\quad f\left(t x_{1}+(1-t) x_{2}\right) \leq t g\left(x_{1}\right)+(1-t) g\left(x_{2}\right)-c t(1-t)\left(x_{1}-x_{2}\right)^{2}$
$g\left(t x_{1}+(1-t) x_{2}\right) \geq t f\left(x_{1}\right)+(1-t) f\left(x_{2}\right)-c t(1-t)\left(x_{1}-x_{2}\right)^{2}$, for all $x_{1}, x_{2} \in I$ and $t \in[0,1]$.

Proof. The implications $1 \Rightarrow 2$ and $2 \Rightarrow 3$ are obvious, whereas $3 \Rightarrow 1$ follows from Theorem 7.

As another consequence of Theorem 7 we also obtain the following HyersUlam stability result for c-quadratic-affine functions.

Corollary 9. Let $\varepsilon>0$. If $f: D \rightarrow \mathbb{R}$ satisfies the condition

$$
\begin{equation*}
\sum_{i=1}^{k} s_{i}\left(f\left(x_{i}\right)-c\left\|x_{i}-m\right\|^{2}\right) \leq \sum_{j=k+1}^{n+2} t_{j}\left(f\left(x_{j}\right)-c\left\|x_{j}-m\right\|^{2}\right)+\varepsilon \tag{9}
\end{equation*}
$$

for all $x_{1}, \ldots, x_{n+2} \in D, k \in\{1, \ldots, n+1\}, s_{1}, \ldots, s_{k}, t_{k+1}, \ldots, t_{n+2} \geq 0$, such that $s_{1}+\cdots+s_{k}=t_{k+1}+\cdots+t_{n+2}=1$ and $m=s_{1} x_{1}+\cdots+s_{k} x_{k}=t_{k+1} x_{k+1}+$ $\cdots+t_{n+2} x_{n+2}$, then there exists a c-quadratic-affine function $h: D \rightarrow \mathbb{R}$ such that

$$
\begin{equation*}
|f(x)-h(x)| \leq \frac{\varepsilon}{2}, x \in D \tag{10}
\end{equation*}
$$

Proof. Condition (9) implies that f and $g=f+\varepsilon$ satisfy (8). Therefore, by Theorem 7, there exists a c-quadratic-affine function h_{1} such that $f \leq h_{1} \leq$ $f+\varepsilon$. Putting $h=h_{1}-\varepsilon / 2$, we get (10).

Open Access. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

References

[1] Baron, K., Matkowski, J., Nikodem, K.: A sandwich with convexity. Math. Pannonica 5(1), 139-144 (1994)
[2] Beckenbach, E.F.: Generalized convex functions. Bull. Am. Math. Soc. 43, 363371 (1937)
[3] Behrends, E., Nikodem, K.: A selection theorem of Helly type and its applications. Stud. Math. 116, 43-48 (1995)
[4] Bessenyei, M., Szokol, P.: Separation by convex interpolation families. J. Conv. Anal. 20(4), 937-946 (2013)
[5] Förg-Rob, W., Nikodem, K., Páles, Z.: Separation by monotonic functions. Math. Pannonica 7, 191-196 (1996)
[6] Hiriart-Urruty, J.-B., Lemaréchal, C.: Fundamentals of Convex Analysis. SpringerVerlag, Berlin-Heidelberg (2001)
[7] König, H.: On the Abstract Hahn-Banach Theorem due to Rodé. Aequationes Math. 34, 89-95 (1987)
[8] Merentes, N., Nikodem, K.: Remarks on strongly convex functions. Aequationes Math. 80, 193-199 (2010)
[9] Nikodem, K.: Strongly Convex Functions and Related Classes of Functions. In: Rassias, T.M. (eds.) Handbook of Functional Equations. Functional Inequalities, vol. 95, pp. 365-405. Springer Optimizations and Its Applications, New York (2015)
[10] Nikodem, K., Páles, Z.: Generalized convexity and separation theorems. J. Conv. Anal. 14(2), 239-247 (2007)
[11] Nikodem, K., Páles, Z.: Characterizations of inner product spaces by strongly convex functions. Banach J. Math. Anal. 5(1), 83-87 (2011)
[12] Nikodem, K., Páles, Z., Wa̧sowicz, S.: Abstract separation theorems of Rode type and their applications. Ann. Pol. Math. 72, 207-217 (1999)
[13] Nikodem, K., Sadowska, E., Wa̧sowicz, S.: A note on separation by subadditive and sublinear functions. Ann. Math. Silesianae 14, 33-39 (2000)
[14] Nikodem, K., Wa̧sowicz, S.: A sandwich theorem and Hyers-Ulam stability of affine functions. Aequationes Math. 49, 160-164 (1995)
[15] Páles, Z.: Separation by approximately convex functions. Grazer Math. Ber. 344, 43-50 (2001)
[16] Páles, Z., Zeiden, V.: Separation via quadratic functions. Aequationes Math. 51, 209229 (1996)
[17] Polovinkin, E.S.: Strongly convex analysis. Sb. Math. 187(2), 103-130 (1996)
[18] Polyak, B.T.: Existence theorems and convergence of minimizing sequences in extremum problems with restrictions. Soviet Math. Dokl. 7, 72-75 (1966)
[19] Roberts, A.W., Varberg, D.E.: Convex Functions. Academic Press, New YorkLondon (1973)

Nelson Merentes
Escuela de Matemáticas
Universidad Central de Venezuela
Caracas, Venezuela
e-mail: nmerucv@gmail.com
Kazimierz Nikodem
Department of Mathematics
University of Bielsko-Biala
ul. Willowa 2
43-309 Bielsko-Biała, Poland
e-mail: knikodem@ath.bielsko.pl
Received: March 6, 2015
Revised: May 12, 2015

