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Abstract. Using some results on convex and almost convex functions defined on a locally
compact Abelian group, we prove a theorem showing a “measurability implies continuity”

effect for non-negative solutions of the difference equation ϕ(x) =
∑k

i=1 piϕ (x + ai) , where
p1, . . . , pk ∈ (0, ∞) and non-zero elements a1, . . . , ak of the group are given.
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Introduction

Given an Abelian group G, non-zero elements a1, . . . , ak ∈ G and positive
numbers p1, . . . , pk we are interested in non-negative solutions ϕ : G → R of
the difference equation

ϕ(x) =
k∑

i=1

piϕ (x + ai). (E)

In the case when G = R all non-negative Lebesgue measurable solutions of
(E) were determined by Laczkovich [12]. Later, another proof was given by
the present author (see [5, Th. 3.1]), and then by Grinč [2] when G = R

n.
The main step in the reasoning presented there (cf. [5, Prop. 3.3]) is an

improvement of regularity of non-negative solutions of (E) provided the sub-
group generated by a1, . . . , ak is dense in G. Such a “measurability implies
continuity” effect is well-known in the theory of functional equations in sev-
eral variables (cf. for instance, the book [4] by A. Járai; also [1] by J. Aczél
and [11] by M. Kuczma) but for equations in a single variable it is rather
unexpected.

http://crossmark.crossref.org/dialog/?doi=10.1007/s00010-015-0351-5&domain=pdf
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In the present paper we show how to improve regularity of non-negative
solutions of (E) in the case when G is a locally compact Abelian group. Some
arguments presented here take the pattern of those used in [5] in the case
G = R.

In the whole paper measurability of a function defined on G means Mλ-
measurability, where Mλ stands for the completion of the σ-algebra B(G) of
Borel subsets of G with respect to the Haar measure λ. Equivalently this is
measurability in the sense of Carathéodory, i.e.

Mλ =
{
A ⊂ G : λ∗ (Z) ≥ λ∗ (Z ∩ A) + λ∗ (Z \ A) for every Z ⊂ G

}
,

where λ∗ : 2G → [0,∞] is the outer measure generated by λ:

λ∗ (A) = inf
{
λ(B) : A ⊂ B ∈ B(G)

}

for every A ⊂ G. Measurability of a function defined on G2 is meant with
respect to the λ2-completion Mλ2 of the σ-algebra B (

G2
)
, where λ2 is the

product measure built with two copies of λ.
The main result of the paper reads as follows.

Theorem. Let G be an Abelian 2-divisible group, σ-compact and locally com-
pact, with Haar measure λ. Assume that the subgroup generated by a1, . . . , ak

is dense in G.
If ϕ : G → R is a non-negative measurable solution of equation (E), then

either ϕ = 0λ-a.e., or there is a positive continuous geometrically convex
solution ψ : G → R of (E) such that ϕ = ψ λ-a.e.

Geometric convexity of ψ : G → R means here that

ψ (x)2 ≤ ψ (x + h) ψ (x − h)

for all x, h ∈ G.
The proof of the Theorem is split into some lemmas presented in Sect. 2.

Moreover, the following remarks will be recalled in Sect. 1 while proving some
auxiliary facts.

Remark 0.1. It is well-known (cf. [3, (15.8) and (11.34)]) that the Haar measure
on any Abelian locally compact group G is regular, i.e.

λ (B) = inf
{
λ(U) : B ⊂ U ⊂ G and U is open

}

for every B ∈ B(G) and

λ (B) = sup
{
λ(C) : C ⊂ B and C is compact

}

for every set B ⊂ G which is open or of finite measure. Moreover, λ takes
finite values on compacts. So, if K ⊂ G is compact, then for all B ∈ B(K) and
ε ∈ (0,∞) there exist a set U, open in K, and a compact set C such that

C ⊂ B ⊂ U and λ (U \ C) < ε.

The next two remarks concern folk-theorems.
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Remark 0.2. Repeating the proof of [14, Th. 8.2] step by step we come to the
following version of the classical Lusin’s theorem.

Let X and Y be topological spaces, the second one with a countable base,
and let μ be a measure defined on a σ-algebra M of subsets of X containing
all Borel sets. Assume that for all B ∈ M and ε ∈ (0,∞) there exist an open
set U ⊂ X and a closed set F ⊂ X such that

F ⊂ B ⊂ U and μ (U \ F ) < ε.

If f : X → Y is an M-measurable function, then for every ε ∈ (0,∞) there
exists a closed set F ⊂ X such that

μ (X \ F ) < ε and the function f |F is continuous.

Remark 0.3. The standard argument, proving that in a metric setting any
continuous function defined on a compact set is uniformly continuous, allows
to obtain the following group version of this fact.

Any continuous function f , mapping a compact subset C of an Abelian
topological group G into an Abelian topological group H, is uniformly con-
tinuous: for every neighbourhood W ⊂ H of 0 there exists a neighbourhood
V ⊂ G of 0 such that

∧

x1,x2∈C

(
x1 − x2 ∈ V ⇒ f (x1) − f (x2) ∈ W

)
.

1. Auxiliary results

We start with two general facts, not immediately connected with the prob-
lem of solutions of equation (E). The first one is a simple purely topological
observation.

Lemma 1.1. Let G be an Abelian σ-compact and locally compact group. Then
there exists a sequence (Kn)n∈N

of compacts and a neighbourhood U of 0 such
that clU is compact,

Kn + U ⊂ Kn+1, n ∈ N, (1.1)

and

G =
∞⋃

n=1

Kn. (1.2)

Proof. The group G, being σ-compact, is the union of a sequence (Cn)n∈N of
compacts. Take any neighbourhood U of 0 such that clU is compact. For every
n ∈ N put

Kn =
n⋃

i=1

Ci + [n]clU,
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where [n]A stands for the sum A + · · · + A of n copies of A. Clearly the sets
Kn, n ∈ N, are compact. Moreover, for every n ∈ N we have

Cn ⊂ Kn ⊂ Kn + U =
n⋃

i=1

Ci + [n]clU + U ⊂ Kn+1

and the desired properties (1.1) and (1.2) follow. �

The next result is an extension of [12, Lemma 2] to a group setting (see
also [4, Theorems 19.3 and 19.5]).

Lemma 1.2. Let G be an Abelian σ-compact and locally compact group with
Haar measure λ and let ϕ : G → R be a measurable function. Then, for every
y0 ∈ G and for every sequence (yn)n∈N

of elements of G converging to y0, there
exists a strictly increasing sequence (mn)n∈N of positive integers such that

lim
n→∞ ϕ (x + ymn

) = ϕ (x + y0) for λ−a.a. x ∈ G.

Proof. Since λ is translation invariant, we may additionally assume that
y0 = 0. Define functions ϕn : G → R, n ∈ N, by

ϕn (x) = ϕ (x + yn) .

By virtue of Lemma 1.1 we find a sequence (Ki)i∈N
of compacts in G and a

neighbourhood U ⊂ G of 0 satisfying (1.1) and (1.2). We prove that for every
i ∈ N the sequence (ϕn|Ki

)n∈N
converges in measure to the function ϕ|Ki

.
Fix any i ∈ N and a positive number ε. Following Remarks 0.1 and 0.2 we

find a closed subset F of Ki+1 such that

λ (Ki+1 \ F ) <
ε

2
and the function ϕ|F is continuous.

Since the set F is compact, ϕ|F is actually uniformly continuous
(cf. Remark 0.3). Thus we can find a neighbourhood V ⊂ U of 0 such that
|ϕ (x1) − ϕ (x2)| < ε for all x1, x2 ∈ F satisfying x1 − x2 ∈ V .

Define a sequence (An)n∈N
of subsets of G by

An =
{
x ∈ Ki : |ϕn (x) − ϕ (x)| ≥ ε

}
.

Since (yn)n∈N
converges to 0, there exists a positive integer n0 such that yn ∈ V

for every n ≥ n0. Take any integer n ≥ n0 and point x ∈ An. Suppose that
x ∈ F ∩ (F − yn). Then x, x + yn ∈ F and (x + yn) − x = yn ∈ V, and thus

|ϕn (x) − ϕ (x)| = |ϕ (x + yn) − ϕ(x)| < ε,

which is impossible. This shows that

An ⊂ (Ki \ F ) ∪ [
((Ki + V ) \ F ) − yn

] ⊂ (Ki \ F ) ∪ [
(Ki+1 \ F ) − yn

]
.

Consequently, we have

λ (An) ≤ λ (Ki \ F ) + λ ((Ki+1 \ F ) − yn)
= λ (Ki \ F ) + λ (Ki+1 \ F ) ≤ 2λ (Ki+1 \ F ) < ε.
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This proves that the sequence (ϕn|Ki
)n∈N

converges in measure to ϕ|Ki
.

Consequently, every subsequence of (ϕn|Ki
)n∈N

has a subsequence converg-
ing to ϕ|Ki

. Using induction and a standard diagonal method we complete the
proof. �

Now we remark that the group addition and substraction are transforma-
tions preserving measurability.

Lemma 1.3. Let G be an Abelian locally compact group with Haar measure λ.
Then

φ−1
+ (A) ∈ Mλ2 and φ−1

− (A) ∈ Mλ2 , A ∈ Mλ,

where φ+ : G2 → G and φ− : G2 → G are given by φ+(x, y) = x + y and
φ−(x, y) = x − y, respectively.

Proof. Take any A ∈ Mλ. Then A = B ∪ M , where B ∈ B(G) and M ⊂ N ∈
B(G) with λ(N) = 0. Clearly,

φ−1
+ (A) = φ−1

+ (B ∪ M) = φ−1
+ (B) ∪ φ−1

+ (M)

and φ−1
+ (M) ⊂ φ−1

+ (N). Since φ+ is continuous, we have φ−1
+ (B), φ−1

+ (N) ∈
B (

G2
)
. Moreover, for any x ∈ G the x-section

(
φ−1
+ (N)

)
x

of φ−1
+ (N) is

(
φ−1
+ (N)

)
x

=
{
y ∈ G : φ+(x, y) ∈ N

}
= {y ∈ G : x + y ∈ N} = N − x,

and thus, by Fubini’s Theorem,

λ2

(
φ−1
+ (N)

)
=

∫

G

λ
( (

φ−1
+ (N)

)
x

)
dλ(x)

=
∫

G

λ (N − x) dλ(x) =
∫

G

λ (N) dλ(x) = 0.

Consequently, φ−1
+ (A) ∈ Mλ2 . Similarly one can prove that φ−1

− (A) ∈ Mλ2 .
�

2. Proof of the Theorem

The first of the lemmas, dealing with solutions of (E), is purely algebraic: no
topology in the group G is assumed. However, the non-negativity of a solution
turns out to be crucial for the assertion.

Lemma 2.1. Let G be an Abelian group. If ϕ : G → R is a non-negative solution
of equation (E), then

ϕ(x)2 ≤ ϕ (x + h) ϕ (x − h) (2.1)

for every x ∈ G and all h’s running through the subgroup of G generated by
a1, . . . , ak.
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Proof. Take any x ∈ G and define c : Zk → R by

c(n) = ϕ (x + n1a1 + · · · + nkak)

[here n = (n1, . . . , nk)]. One can check that, by (E), c is a non-negative solution
of the recurrent equation

c(n) =
k∑

i=1

pic (n + ei) ,

where (e1, . . . , ek) stands for the canonical zero-one basis of the space R
k. It

follows from [5, Th. 1.1] that c is geometrically convex, that is

c(m)2 ≤ c (m + n) c (m − n) , m, n ∈ Z
k.

Putting here m = (0, . . . , 0) we see that

ϕ(x)2 ≤ ϕ (x + n1a1 + · · · + nkak) ϕ (x − n1a1 − · · · − nkak) , n ∈ Z
k,

which was to be proved. �

The next result shows that, under suitable assumptions on the group G
and the function ϕ, if inequality (2.1) holds on a set which is large in a certain
topological sense, then it is satisfied on a set of full measure.

Lemma 2.2. Let G be an Abelian σ-compact and locally compact group with
Haar measure λ. Let ϕ : G → R be a measurable function. If inequality (2.1)
holds for every x ∈ G and h’s running through a dense subset of G, then (2.1)
is satisfied for all λ2-a.a. (x, h) ∈ G2.

Proof. According to Lemma 1.3 the set

T =
{
(x, h) ∈ G2 : ϕ(x)2 > ϕ(x + h)ϕ(x − h)

}
(2.2)

is measurable. Fix an h ∈ G and a sequence (hn)n∈N
of elements of G converg-

ing to h and satisfying the condition

ϕ(x)2 ≤ ϕ (x + hn) ϕ (x − hn) , x ∈ G,n ∈ N. (2.3)

On account of Lemma 1.2 there exists a strictly increasing sequence (mn)n∈N

of positive integers such that

lim
n→∞ ϕ (x + hmn

) = ϕ(x + h), x ∈ G \ E(h),

and

lim
n→∞ ϕ (x − hmn

) = ϕ(x − h), x ∈ G \ E(h).

Thus, by (2.3), we have

ϕ(x)2 ≤ ϕ(x + h)ϕ(x − h), x ∈ G \ E(h).

This means that
{
x ∈ G : ϕ(x)2 > ϕ(x + h)ϕ(x − h)

} ⊂ E(h), h ∈ R,
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and, consequently, all h-sections of the set T are null sets. By Fubini’s Theorem
we infer that also T is a null set. �

The final lemma below completes the proof of the Theorem.

Lemma 2.3. Let G be an Abelian 2-divisible group, locally compact, with Haar
measure λ. Let ϕ : G → R be a non-negative measurable function satisfying
inequality (2.1) for λ2-a.a. (x, h) ∈ G2. Then either ϕ = 0λ-a.e., or there
is a positive continuous geometrically convex function ψ : G → R such that
ϕ = ψ λ-a.e.

Proof. The set Z =
{
x ∈ G : ϕ(x) = 0

}
is measurable. If λ (G \ Z) = 0, then

ϕ(x) = 0 for λ-a.a. x ∈ G. Now assume that λ (G \ Z) > 0. Since the set T
defined by (2.2) is of measure λ2 zero, Fubini’s Theorem allows to find a null
set N ⊂ G such that

λ
( {h ∈ G : (x, h) ∈ T} )

= 0, x ∈ G \ N.

As λ
(
G \ (Z ∪ N)

)
> 0 we can take an x0 ∈ G \ (Z ∪ N). Then ϕ (x0) > 0

and λ
( {

h ∈ G :
(
x0, h

) ∈ T
})

= 0 which means that

0 < ϕ (x0)
2 ≤ ϕ (x0 + h) ϕ (x0 − h) for λ−a.a. h ∈ G.

Thus ϕ (x0 + h) > 0 for λ−a.a. h ∈ G, whence ϕ is positive a.e., that is Z is
a null set.

Define the function f : G → R by

f(x) =
{

log ϕ(x), if x ∈ G \ Z,
0, if x ∈ Z.

Since λ2(T ) = 0, where T0 = T ∪ (Z × G), we have

0 < ϕ (x)2 ≤ ϕ (x + h) ϕ (x − h) , (x, h) ∈ G2 \ T0,

whence

2f (x) ≤ f (x + h) + f (x − h) for λ2−a.a. (x, h) ∈ G2.

In other words, the function f is almost convex, and thus, by [9, Th. 1] (see
also [7]), there exists a convex function g : G → R:

2g (x) ≤ g (x + h) + g (x − h) , (x, h) ∈ G2,

such that g = fλ-a.e. In particular, g is measurable. Making use of the
extended version of the Blumberg–Sierpiński theorem [8, Th. 4.1] we infer
that g is continuous. Now it is enough to observe that the function ψ = exp ◦g
is positive, continuous, geometrically convex, and ψ = ϕ λ-a.e. �
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3. Concluding remarks and an open problem

The main tools used here have topological counterparts. The topological ver-
sion of Lusin’s Theorem can be easily proved in topological spaces (cf. [14,
Th. 8.1]). An analog of Lemma 1.2 for Baire measurable functions defined on
an arbitrary linear topological space was given by M. Grinč (see [2, Lemma
2]); however, the argument used by him works for topological groups, too.
Theorem 1 from [9], stating that every almost convex function is λ-a.e. equal
to a convex function and used in the proof of Lemma 2.3, is a generalization
of the Kuczma theorem [11, Th. 17.8.2] (cf. also [10]). Its topological version
for functions defined on groups was proved in [6] (see also [7]). Finally, also
the Blumberg–Sierpiński theorem has a topological version in a group setting
which can be found in [8] (see also [7]). Making use of these results one can
obtain a suitable counterpart of the Theorem where solutions of Eq. (E) are
assumed to be Baire measurable. In the case G = R

n such a result was proved
by Grinč in [2].

Using some versions of the Kuczma theorem one can prove also results
improving the regularity of non-negative solutions of the following extension
of Eq. (E), called the integrated Cauchy functional equation:

ϕ(x) =
∫

G

ϕ(x + y)dμ(y); (I)

here μ is a regular Borel measure on the group G. Its locally λ-integrable
solutions were determined in [13] by Ka-Sing Lau and Wei-Bin Zeng.

Improvement of regularity of non-negative solutions of (E) is a crucial step
in determining them in the cases G = R (see [5, Prop. 3.3]) and G = R

n

(see [2, Theorem]). It seems that the Theorem could play an analogous role
while looking for the form of solutions defined on groups. Also determining all
non-negative measurable solutions of (I) might run in a similar way.

Open problem. The assumption of 2-divisibility of the group G in the Theorem
is caused by the same condition imposed on G in [9, Th.1]. The authors of [9]
still do not know if this assumption is essential there. However, the following
question is natural: is the 2-divisibility of G essential for the validity of the
Theorem?
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Uniwersytetu Śląskiego w Katowicach, vol. 1206. Uniwersytet Śląski, Katowice (1991)
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