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1. Introduction

In 1931 a paper [17] extensively focused (even for today’s standards) on geom-
etry was published containing some fragments found among the papers of
an early deceased Canadian mathematician of great promise, Arthur Preston
Mellish (June 10, 1905–February 7, 1930). His ideas influenced many inter-
esting papers (for example, see [1,3,7,26,27]) and are fairly far from being
exhausted. The paper we are speaking about begins with some considerations
about ovals, where the author gives the following fascinating theorem.

Theorem 1.1. ([17]). The statements
(i) a curve is of constant width;
(ii) a curve is of constant diameter;
(iii) all the normals of a curve (an oval) are double;
(iv) the sum of radii of curvature at opposite points of a curve (an oval) is

constant;
are equivalent, in the sense that whenever one of statements (i–iv) holds true,
all other statements also hold.
(v) All curves of the same (constant) width a have the same length L given by

L = πa.

In the third section we will introduce a wide generalization of this the-
orem produced by means of isoptics theory, for which we give a necessary
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Figure 1. A construction of an isoptic

introduction as a fundamental tool in our constructions (see mainly [4,6]).
Moreover, some interesting facts about isoptics are contained in [8–12,16,18,
21,22,25].

Definition 1.1. In the plane a simple, closed, positively oriented C2-curve C of
positive curvature is called an oval.

We take a coordinate system with origin O in the interior of C. Let p(t),
t ∈ [0, 2π], be the distance from O to the tangent line of C perpendicular to
the vector eit = cos t+i sin t. It is well-known ([5,23]) that the parametrization
of C in terms of p(t) is given by the formula

z(t) = p(t)eit + p′(t)ieit. (1.1)

Note that the support function p can be extended to a smooth periodic function
on R with the period 2π.

Definition 1.2. An α-isoptic Cα of C consists of points from where tangents
to the oval meet at angle π − α, where α ∈ (0, π).

In other words, an α-isoptic Cα of C is a set of points from which the curve
is seen under the fixed angle π − α (Fig. 1).

Following the considerations and results from [6] it is convenient to param-
etrize the α-isoptic Cα by the same angle t so that the equation of Cα has the
form

zα(t) = p(t)eit +
(

−p(t) cot α +
1

sin α
p(t + α)

)
ieit. (1.2)
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Note that

zα(t) = z(t) + λ(t, α)ieit = z(t + α) + μ(t, α)iei(t+α) (1.3)

z′
α(t) = −λ(t, α)eit + �(t, α)ieit (1.4)

for suitable functions λ, μ and �. Since zα(t) = z(t+α)+μ(t, α)iei(t+α), μ(t, α)
is negative for all values t and α. Moreover, we have

λ(t, α) =
p(t + α) − p′(t) sin α − p(t) cos α

sinα
, (1.5)

�(t, α) =
p(t) sin α + p′(t + α) − p′(t) cos α

sinα
, (1.6)

μ(t, α) = λ(t, α) cos α − �(t, α) sin α. (1.7)

If we introduce the following notation

q(t, α) = z(t) − z(t + α) (1.8)

then the curvature of the α-isoptic is given by ([6])

kα(t) =
sinα

|q(t, α)|3 (2|q(t, α)|2 − [q(t, α), q′(t, α)]) (1.9)

where [ , ] denotes the determinant of the arguments.
In the third section we will need the sine theorem proved in [6].

Theorem 1.2. Under the notations in Fig. 2 the following identities hold
|q|

sinα
=

λ

sin α1
=

−μ

sin α2
. (1.10)

2. Generalized constant width

As we have seen in the preceding section, an isoptic is formed as the locus of
vertices of a fixed angle π − α, formed by two tangents to the oval C. On the
other hand, one knows that a constant width oval of width a can be freely
rotated in a strip of width a. This means that parallel tangents to such an oval
intersect “at infinity” giving the “π-isoptic”. In the present paper we would
like to bring together the concept of constant width and the concept of isoptics
in the framework of plane Euclidean geometry, while avoiding the projective
geometry concepts. Thus the isoptic “at infinity” giving the “π-isoptic” seen
as the line at infinity is not applicable here, and in the further part of the
paper we want to define and examine such isoptics. One of the possible ways
to see this curve is given by the following definition.

Definition 2.1. For any oval C and any of its α-isoptic Cα, 0 < α < π, the
function

κα(t) =
2|q(t)|2 − [q(t), q′(t)]

|q(t)|3 (2.1)
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Figure 2. The sine theorem

is said to be a sine-curvature of Cα.

We could consider an isoptic of the oval C at infinity as a curve which is
given by its curvature κπ, but neither the π-isoptic nor its equation is known
yet. Moreover, computer simulations show that such curves can be fairly com-
plicated and possibly constructed in a non-geometric way.

For us the following definition will be useful.

Definition 2.2. An oval with κα ≡ const will be called the oval of constant
α-width.

Note, that this notion makes sense for α = π. Then, we can say that the
oval is a curve of constant width at infinity.

Theorem 2.1. An oval C is a curve of constant width at infinity iff it is an
oval of constant width.

Proof. If we take α = π then we get

q(t, π) = q(t) = z(t)−z(t+π) = (p(t)+p(t+π))eit+(p′(t)+p′(t+π))ieit. (2.2)
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And further if we put
a(t) = p(t) + p(t + π) (2.3)

then
q(t) = a(t)eit + a′(t)ieit (2.4)

and omitting the argument t we get

κπ =
a2 + 2(a′)2 − aa′′

√
a2 + (a′)2

3 . (2.5)

If the oval C is of constant (classical) width then a = p(t)+p(t+π) ≡ const > 0.
Hence

κπ =
1
a

≡ const. (2.6)

Thus we have proved that any oval of constant width is the one of constant
width at infinity and its π-isoptic is a circle of radius a (for some analogy with
this result see [20]).

Conversely, assume that

a2 + 2(a′)2 − aa′′
√

a2 + (a′)2
3 ≡ const = c. (2.7)

The expression (2.7) is in fact a curvature of a curve (a(t), t) given in polar
coordinates. From elementary differential geometry we know that the only
possibilities are that the curve is a part of the straight line or a circle. Hence
we have two cases:
Case c = 0. Then we get the differential equation

a2 + 2(a′)2 − aa′′ = 0 (2.8)

and the solution is
a(t) =

c1
cos(t − c2)

(2.9)

which has to be rejected since the function a(t) = p(t) + p(t + π) should be
bounded as a continuous periodic function defined on the whole real line R.
Case c �= 0. The only possibility is when the curve (a(t), t) is a part of a circle.
Since in the polar coordinates (a, t) the general equation of a circle with center
at a point (a0, t0) and radius A is

a2 − 2aa0 cos(t0 − t) + a2
0 = A2 (2.10)

then its solutions

a(t) = a0 cos(t0 − t) ±
√

−a2
0 + A2 + a2

0 cos2(t0 − t) (2.11)

are the only solutions of (2.7). Moreover, since the function a(t) is periodic
with the period of π, then from the formula (2.11) we get

a = ±A ≡ const. (2.12)

Hence p(t) + p(t + π) = const and the starting curve is of constant width. �
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From this theorem we immediately get

Corollary 2.1. For 0 < α ≤ π an oval is of constant α-width iff its α-isoptic
is a circle.

3. Generalized Mellish theorem

At the beginning we need a certain fact about the Steiner centroid of an isoptic.
Recall ([24]) that for a closed simple plane parametric curve z : [0, 2π] → R

2

with the curvature κ(t) its Steiner centroid S is given by

S =

2π∫
0

z(t)k(t)|z′(t)|dt

2π∫
0

k(t)|z′(t)|dt

. (3.1)

Then for an oval C given by (1.1) we have z′(t) = R(t)ieit, where R(t) = 1
k(t)

is the curvature radius of C at t and hence

S =
1
2π

2π∫
0

z(t)dt. (3.2)

For derivation purposes we will assume from now on that S = 0 for the consid-
ered ovals, that is the coordinate origin will be chosen at the Steiner centroid
of C.

Theorem 3.1. Assume that for an oval C its α-isoptic for some α ∈]0, π[ is a
circle. Then its center is a Steiner centroid of C.

Before we proceed to the proof, note that it is an open problem whether
the Steiner centroids of the oval C and any of its isoptics coincide. The above
theorem suggests a hint.
Proof. Let this circle have center at a + ib and curvature k = 1

R . Then all
osculating circles for all points of the isoptic coincide and their center is given
by the formula

a + ib = zα(t) +
1
k

· z′
α(t)

|z′
α(t)| . (3.3)

Hence, integrating both sides we get

2π(a + ib) =

2π∫
0

zα(t)dt + R

2π∫
0

z′
α(t)

|z′
α(t)|dt. (3.4)

But the last integral is equal to zero since for each value of the integrand
its opposite value exists, which means that the areas determined by both
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coordinates above and below x-axes are equal. Finally

a + ib =
1
2π

2π∫
0

zα(t)dt =
1
2π

2π∫
0

z(t)dt = S (3.5)

since
2π∫
0

zα(t)dt =

2π∫
0

p(t)eitdt +

2π∫
0

(
−p(t) cot α +

1
sinα

p(t + α)
)

ieitdt

= 2

2π∫
0

p(t)eitdt (3.6)

and
2π∫
0

z(t)dt =

2π∫
0

p(t)eitdt +

2π∫
0

p′(t)ieitdt = 2

2π∫
0

p(t)eitdt (3.7)

by suitable integration by parts, substitution and properties of periodic func-
tions. �

Before we formulate our main theorem we need two more ingredients—a
generalization to our framework of the notion of width of an oval and a certain
hedgehog associated with C.

In the classical projective definition the diameter is the polar line of the
pole at infinity. Thus the generalization of the notion of width in this frame-
work should rather be the section connecting the two touching points, that
is q(t, α) defined in (1.8). But in the formula (2.2) we see that q(t, α) does
not generalize to the diameter of an oval in the direction eit when α = π.
Moreover, as we already said, we would like to work in the framework of plane
Euclidean geometry, while avoiding the projective geometry concepts. Thus
we introduced an adequate notion as it turns out in the course of the proof of
Theorem 3.2 and which we will call α-spread of C at a point t and which also
has some relevance to the diameter of the oval. For this purpose we introduce
a vector Q(t, α) between the projections of the origin of the coordinate system
onto support lines of C at points z(t) and z(t + α), as it is shown in Fig. 3.

After some calculations one gets

Q(t, α) = (p(t + α) cos α − p(t))eit + p(t + α) sin α ieit. (3.8)

Definition 3.1. A number dα(t) = |Q(t, α)|
=

√
p(t)2 + p2(t + α) − 2p(t)p(t + α) cos α is said to be an α-spread of C at a

point t.

Note that if α = π then dπ(t) = p(t) + p(t + π).
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Figure 3. Construction of vector Q

To define a necessary hedgehog we define a new support function P (t) =
|Q(t,α)|

2 . Thus by definition an α-hedgehog associated to an oval C and the
angle α is a curve Hα(t) = P (t)eit + P ′(t)ieit. Note that the hedgehogs are
intensively investigated, see papers by Martinez-Maure ([15]) and Langevin
([13]) for references.

Theorem 3.2. For fixed α ∈]0, π] the statements
(i) an oval is of constant α-width;
(ii) an oval is of constant α-spread;
(iii) all the vectors q(t, α) are parallel to vectors Q(t, α);
(iv) with the notations from Fig. 2 the expression

1
|q(t, α)|2

(
2|q(t, α)| −

(
sin α1

k(t + α)
+

sin α1

k(t)

))
(3.9)

is constant;
are equivalent, in the sense that whenever one of statements (i–iv) holds true,
all other statements also hold.
(v) For all curves of the same constant α-width a the associated hedgehogs

Hα have the same length L given by

L = πa.

Proof.
(i)⇐⇒(ii) In the case of α = π we get by Theorem 2.1 that dπ = p(t)+p(t+π) ≡
const. The constant α-width for α ∈]0, π[ means that the α-isoptic of the oval
C is a circle and by theorem 3.1 its center coincides with (0, 0) thus we get

|zα(t)|2 = R2 (3.10)
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for some real number R. Thus substituting the Eq. (1.2) into (3.10) we get
dα(t) ≡ R sin α.

Conversely, let

dα(t) = |Q(t, α)| =
√

p(t)2 + p2(t + α) − 2p(t)p(t + α) cos α ≡ const = R.

Then in the case α = π we get

dπ = p(t) + p(t + π) ≡ const (3.11)

and in the remaining cases one has

|zα(t)|2 = p2(t) +
(p(t + α) − p(t) cos α)2

sin2 α
=

R2

sin2 α
, (3.12)

so the α-isoptic of the oval C is a circle, and we are done.
(iii)⇐⇒(ii) After some calculations we get

[Q(t), q(t)] =
1
2
(d 2

α (t))′ (3.13)

whence
[Q(t), q(t)] = 0 ⇐⇒ dα ≡ const, (3.14)

where we omit α for simplicity of formulas. Note that when α = π then Q and
q coincide and become double normals at z(t) and z(t + π), as stands in the
Mellish theorem, and our generalization is well defined.
(iv)⇐⇒(i) First assume (i), that is

κα(t) =
2|q(t)|2 − [q(t), q′(t)]

|q(t)|3 ≡ const = c. (3.15)

Let us perform some manipulations on this formula

κα(t) =
2|q(t)|2 − [q(t), q′(t)]

|q(t)|3 = (3.16)

=
1

|q(t)|3
(
2|q(t)|2 − λ(t, α)R(t + α) sin α + μ(t, α)R(t) sin α

)

=
1

|q(t)|2
(

2|q(t)| −
(

1
k(t + α)

λ(t, α) sin α

|q(t)| +
1

k(t)
−μ(t, α) sin α

|q(t)|
))

=
1

|q(t)|2
(

2|q(t)| −
(

sin α1

k(t + α)
+

sin α2

k(t)

))
,

where the last equality follows form the sine formula (1.10). Thus we have
obtained the claimed equivalence. However, it is worth the effort to see why it
is a generalization of the Mellish formula. Let us substitute α = π and let C
be an oval of constant width d then α1 = α2 = π

2 and |q| = a thus we get

a =
1

k(t)
+

1
k(t + π)

(3.17)
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and conversely. To finish the proof we have to deal with the last property (v).
However, if an oval C is of constant α-width, i.e. dα ≡ const = a then the
length L of the associated hedgehogs Hα is constant and given by the formula

L =

2π∫
0

P (t)dt =

2π∫
0

a

2
dt = πa. (3.18)

In the case of α = π we get a = p(t) + p(t + π) which gives the reason for the
Barbier theorem, and L is the perimeter of C in this case. �

At the end of the paper we mention three still interesting questions:
(1) Is it possible to give a characterization of convex bodies of constant α-

width analogous to that unexpected given by Makai and Martini in [14]?
(2) Is it possible to give a counterpart of a theorem given by Miernowski

([2,19]) showing that for closed, convex curves having circles as π
2 -isoptics,

the maximal perimeter of a parallelogram inscribed in this curve can be
realized by a parallelogram with one vertex at any prescribed point of
the curve?

(3) Is it possible to extend the above results to ovaloids, obtaining a suitable
generalization of the second part of Mellish’ paper [17]?

Open Access. This article is distributed under the terms of the Creative Commons Attribu-
tion License which permits any use, distribution, and reproduction in any medium, provided
the original author(s) and the source are credited.
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Al. I. Cuza Iaşi. Ser. Nouă. Mat. 36(1), 47–54 (1990)

[5] Bonnesen, T., Fenchel, W.: Theory of convex bodies. Translated from the German and
edited by L. Boron, C. Christenson and B. Smith, with the collaboration of W. Fenchel,
vol. IX. BCS Associates, Moscow, Idaho (1987)
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