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Conditionally δ-midconvex functions
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Abstract. Let X be a real linear space, V be a nonempty subset of X and δ be a nonneg-
ative real number. A function f : V → R is said to be conditionally δ-midconvex provided

f(x+y
2

) ≤ f(x)+f(y)
2

+ δ for every x, y ∈ V such that x+y
2

∈ V . We show that if V satisfies
some reasonable assumptions, then for every bounded from above conditionally δ-midconvex
function f : V → R the following estimation holds: sup f(V ) ≤ sup f(ext V ) + k(V )δ, where
ext V denotes the set of all extremal points of V and k(V ) is a respective constant depending
on V .
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1. Introduction

The notion of convexity has been generalized in various directions. Some of
them are motivated by the problems stemming from economics, optimization
and mathematical programming. The main streams of generalizations con-
sist in relaxing the inequality defining the convexity and in modifying the
assumption concerning the domain of the function. In particular, the notion
of δ-convexity and conditional convexity play a significant role in the appli-
cations. Approximately convex functions were studied for the first time by
Hyers and Ulam [1]. Given a nonnegative real number δ, a function f de-
fined on a convex subset V of a real linear space X is said to be δ-convex
provided

f(tx + (1 − t)y) ≤ tf(x) + (1 − t)f(y) + δ for x, y ∈ V, t ∈ [0, 1].

If the above inequality is assumed only for t = 1
2 , that is if

f

(
x + y

2

)
≤ f(x) + f(y)

2
+ δ for x, y ∈ V,

then f is said to be δ-midconvex. The relations between local boundedness,
δ-midconvexity and δ-convexity were studied by Ng and Nikodem [3].

http://crossmark.crossref.org/dialog/?doi=10.1007/s00010-014-0304-4&domain=pdf
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Another generalization of convexity, motivated by some applications in utility
theory, has been considered by Peters and Wakker [5]. They studied convex
functions on nonconvex sets. Inspired by these two approaches to generalized
convexity, in [2] a notion of a conditionally δ-midconvex function has been
introduced. A function f : V → R is called conditionally δ-midconvex provided,
for every x, y ∈ V such that x+y

2 ∈ V , we have

f

(
x + y

2

)
≤ f(x) + f(y)

2
+ δ.

In this paper we study properties of such functions defined on an arbitrary
nonempty subset of Rn. It is known (cf. [6]) that every bounded above convex
function defined on a convex compact domain in R

n achieve its supremum on
the set of extremal points of the domain. We are going to prove the analogue
of this fact for conditionally δ-midconvex functions. In particular, we show
that if V ⊂ R

n is convex and compact, then for every bounded from above
conditionally δ-midconvex function f : V → R the following estimation holds:

sup f(V ) ≤ sup f(ext V ) + k(V )δ,

where ext V denotes the set of all extremal points of V and k(V ) is a respective
constant depending on V .

2. Jensen index

By Z and N we denote the sets of all integers and positive integers, respectively.
In the whole paper we assume that X is a real linear space, V is a nonempty
subset of X, W is a nonempty subset of V and δ is a given nonnegative real
number.

Definition 2.1. A sequence x = (x0, . . . , xn) of elements of V is said to be a
Jensen chain (or shortly, J-chain) of length n in V if either n = 0; or n ≥ 1
and

2xk+1 − xk ∈ V for k ∈ {0, . . . , n − 1}.

Note that, for every k ∈ {0, . . . , n − 1}, the point 2xk+1 − xk is symmetric
to xk with respect to xk+1. So the condition in Definition 2.1 means that

xk+1 ∈ V + xk

2
for k ∈ {0, . . . , n − 1},

that is xk+1 is the midpoint of xk and a certain point from V .

Remark 2.1. If (x0, . . . , xn) is a J-chain in V then, for every m ∈ N, a sequence
(x0, . . . , xn, xn+1, . . . , xn+m), where xn+j = xn for j ∈ {1, . . . , m}, is also a
J-chain in V .
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Definition 2.2. Given v ∈ V , by iW (V ; v) we denote the length of the shortest
J-chain x = (x0, . . . , xN ) in V such that x0 ∈ W and xN = v. If there is no
such a J-chain, then we put iW (V ; v) = ∞. Furthermore, we set iW (V ) :=
supv∈V iW (V ; v). We call iW (V ) the Jensen index of V with respect to W .

Directly from Definitions 2.1 and 2.2, we obtain the following statements.

Remark 2.2. (i) iW (V ; v) = 0 if and only if v ∈ W ,
(ii) iW (V ) = 0 if and only if W = V ,
(iii) iW (X) ≤ 1.

We illustrate the above defined notions by some simple examples.

Example 2.1. Let X = R, V = [0, 1] and W = {0, 1}. For every x ∈ [0, 1], we
put

x̄ =
{
0 whenever x ∈ [0, 1

2 ]
1 otherwise.

Then x̄ ∈ W and 2x − x̄ ∈ [0, 1] for x ∈ [0, 1]. Hence, for every x ∈ [0, 1],
(x̄, x) is a J-chain in V. It proves that iW (V ) ≤ 1. Moreover it is obvious that
iW (V ) > 0. Hence iW (V ) = 1.

Example 2.2. Let X = R
2, V = {(−2,−1), (−1,−1), (−1, 0), (−1, 1), (−1, 2),

(0,−1), (0, 0), (0, 1), (1,−2), (1,−1), (1, 0), (1, 1), (2, 1)} and W = {(−2,−1),
(−1, 2), (1,−2), (2, 1)}.

(−2,−1) � •

• • •

• • • � (2, 1)

(−1, 2) �

• •

� (1,−2)

Then one can easily notice that iW (V ) = 2.

The next result explains in a way the above introduced notions.

Proposition 2.1. If ext V \ W 	= ∅ then iW (V ) = ∞.

Proof. Assume that ext V \ W 	= ∅ and fix v0 ∈ ext V \ W . Suppose that
there exists a w0 ∈ W and a J-chain (w0, v1, . . . , vn) in V such that vn = v0.
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Then v0 = vn = vn−1+v
2 for some v ∈ V . Since v0 ∈ ext V this implies that

v0 = vn = vn−1. Repeating this procedure finally we get that w0 = v0, which
gives a contradiction. �

Example 2.3. Let X = R, V = [0, 1) and W = {0}. According to Re-
mark 2.2(i), iW (V ; 0) = 0. Furthermore, for every v ∈ (0, 1

2 ), a sequence
(0, v) is a J-chain in V . So, taking Remark 2.2(i) into account, we obtain that
iW (V ; v) = 1 for v ∈ (

0, 1
2

)
. Moreover, a standard calculation shows that, for

every k ∈ N and v ∈ [
∑k

i=1
1
2i ,

∑k+1
i=1

1
2i ), a sequence (0, x1, . . . , xk, v), where

xr := v −
k+1∑

i=r+1

1
2i

for r ∈ {1, . . . , k},

is a J-chain in V . Therefore, we get

iW (V ; v) ≤ k + 1 for v ∈
[

k∑
i=1

1
2i

,

k+1∑
i=1

1
2i

)
. (1)

Next, we show that if (0, x1, . . . , xN ), where N ∈ N, is a J-chain in V , then

xN <

N∑
i=1

1
2i

. (2)

We proceed by induction. If (0, x1) is a J-chain in V , then 2x1 ∈ V , that is
x1 < 1

2 . Assume that (0, x1, . . . , xN , xN+1) is a J-chain in V for some N ∈ N.
Then (0, x1, . . . , xN ) is also a J-chain in V , so by the inductive argument, we
get (2). Moreover, we have 2xN+1 − xN ∈ V , that is 2xN+1 − xN < 1. Thus

xN+1 <
1
2
+

1
2
xN <

1
2
+

1
2

N∑
i=1

1
2i

=
N+1∑
i=1

1
2i

,

which completes the inductive proof of (2). Now, taking (1) into account, we
conclude that

iW (V ; v) = k + 1 for v ∈
[

k∑
i=1

1
2i

,
k+1∑
i=1

1
2i

)
.

Hence iW (V ; v) is finite for every v ∈ V , but iW (V ) = ∞.

Theorem 2.1. For every n ∈ N the following conditions are equivalent

(i) iW (V ) ≤ n ,
(ii) V ⊂ V

2 + V
4 + · · · + V

2n + W
2n .

Proof. Let n ∈ N. Assume that (i) holds and fix a v ∈ V . Then there exists a
J-chain (v0, v1, . . . , vñ) in V such that ñ ≤ n, v0 ∈ W and vñ = v. Then,
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according to Remark 2.1, the sequence (v0, v1, . . . , vn), where vi = vñ for
i ∈ {ñ, . . . , n} is a J-chain in V . Thus, we get

v1 ∈ V + v0
2

⊂ V

2
+

W

2
,

v2 ∈ V + v1
2

⊂ V

2
+

V

4
+

W

4
,

. . .

v = vn ∈ V + vn−1

2
⊂ V + V

2 + V
4 + · · · + V

2n−1 + W
2n−1

2

=
V

2
+

V

4
+ · · · + V

2n
+

W

2n
.

So, (ii) is valid.
Now, assume that (ii) holds and fix a v ∈ V . Then there exist z0 ∈ W and

zi ∈ V for i ∈ {1, 2, . . . , n} such that

v =
z0
2n

+
z1
2n

+ · · · + zn
2

.

Let

v0 := z0,

v1 :=
v0 + z1

2
,

v2 :=
v1 + z2

2
=

z0
4

+
z1
4

+
z2
2

,

...

vn :=
vn−1 + zn

2
=

z0
2n

+
z1
2n

+ · · · + zn
2

= v.

Then clearly (v0, v1, . . . , vn) is a J-chain in V , v0 ∈ W and vn = v, which
proves (i). �

In the case where V is convex, from Theorem 2.1 we derive the following
result.

Corollary 2.1. If V is convex then for every n ∈ N the following conditions are
equivalent

(i) iW (V ) ≤ n ,
(ii) V ⊂ (

1 − 1
2n

)
V + 1

2n W .

Corollary 2.2. Assume that X is a normed space, V is a closed unit ball in X
and W is a unit sphere in X. Then iW (V ) = 1.

Proof. First we prove that

V ⊂ 1
2
W +

1
2
V. (3)
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Fix an x ∈ V . If x = 0 then taking an arbitrary v ∈ W , we have

0 =
1
2
v − 1

2
v ∈ 1

2
W +

1
2
V.

If x 	= 0 then

x =
1

2‖x‖x +
(
1 − 1

2‖x‖
)

x.

Obviously 1
2‖x‖x ∈ 1

2W . Moreover∥∥∥∥
(
1 − 1

2‖x‖
)

x

∥∥∥∥ =
∣∣∣∣1 − 1

2‖x‖
∣∣∣∣ ‖x‖ =

∣∣∣∣‖x‖ − 1
2

∣∣∣∣ ≤ 1
2
,

which means that
(
1 − 1

2‖x‖
)

x ∈ 1
2V . So, (3) is proved. Now, applying Theo-

rem 2.1, we obtain that iW (V ) ≤ 1. Thus, taking Remark 2.2(ii) into account,
we get the assertion. �

Now, we are going to prove a result concerning the index of the Cartesian
product of a finite family of sets.

Theorem 2.2. Assume that X1,X2, . . . , Xk (k ≥ 2) are real vector spaces and
∅ 	= Wj ⊂ Vj ⊂ Xj for j ∈ {1, . . . , k}. Then

iW1×···×Wk
(V1 × · · · × Vk) = max{iWj

(Vj) : j ∈ {1, . . . , k}}.

Proof. First we prove that

iW1×···×Wk
(V1 × · · · × Vk) ≤ max{iWj

(Vj) : j ∈ {1, . . . , k}}. (4)

If max{iWj
(Vj) : j ∈ {1, . . . , k}} = ∞ then (4) trivially holds. So assume that

iWj
(Vj) =: nj < ∞ for j ∈ {1, . . . , k}. Let n0 := max{nj : j ∈ {1, . . . , k}}. Fix

(w1, . . . , wk) ∈ W1 × · · ·×Wk and (v1, . . . , vk) ∈ V1 × · · ·×Vk. Then, for every
j ∈ {1, . . . , k}, there exists a J-chain (wj , v

1
j , . . . , v

nj

j ) in Vj such that v
nj

j = vj .
Furthermore, according to Remark 2.1, for every j ∈ {1, . . . , k}, a sequence
(wj , v

1
j , . . . , v

nj

j , v
nj+1
j , . . . , vn0

j ), where vl
j = v

nj

j for l ∈ {nj +1, . . . , n0} is also
a J-chain in Vj . Therefore the sequence(

(w1, . . . , wk), (v1
1 , . . . , v

1
k), . . . , (v

n0
1 , . . . , vn0

k )
)

is a J-chain in V1 × · · · × Vk and so (4) holds.
Now, we show that

iW1×···×Wk
(V1 × · · · × Vk) ≥ max{iWj

(Vj) : j ∈ {1, . . . , k}}. (5)

If iW1×···×Wk
(V1 × · · · × Vk) = ∞ then the above estimation is obvious. So,

assume that iW1×···×Wk
(V1 × · · · × Vk) =: n < ∞. Let (w1, . . . , wk) ∈ W1 ×

· · · × Wk and (v1, . . . , vk) ∈ V1 × · · · × Vk. Then there exists a J-chain(
(w1, . . . , wk), (v1

1 , . . . , v
1
k), . . . , (v

n
1 , . . . , vn

k )
)
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in V1 × · · · × Vk such that vn
j = vj for j ∈ {1, . . . , k}. Hence, for every

j ∈ {1, . . . , k}, (wj , v
1
j , . . . , v

n
j ) is a J-chain in Vj with vn

j = vj ∈ Vj , which
means that iWj

(Vj) ≤ n. This proves (5).
Finally, (4) and (5) imply the assertion. �

Corollary 2.3. Let X = R
n, V = [0, 1]n and W = {0, 1}n. Then iW (V ) = 1.

Proof. In Example 2.1 we have proved that i{0,1}([0, 1]) = 1. Therefore, ap-
plying Theorem 2.2, we get the assertion. �

In what follows i(V ) stands for iextV (V ). The next result provides an upper
bound for i(V ) in the case where V is a nonempty compact convex subset of
R

N (N ∈ N). We adopt the notation �x := min{k ∈ Z|k ≥ x} for x ∈ R.

Theorem 2.3. Assume that V is a nonempty compact convex subset of R
N .

Then
i(V ) ≤ �log2(N + 1). (6)

Proof. Let W := ext V and m := �log2(N +1). Fix a v ∈ V . According to the
Caratheodory Theorem there exist w0, w1, . . . , wN ∈ W and α0, . . . , αN ∈ [0, 1]
such that

∑N
i=0 αi = 1 and v =

∑N
i=0 αiwi. Without loss of generality we may

assume that α0 ≥ 1
N+1 . Note that 1

2m ≤ 1
N+1 , so α0 − 1

2m ≥ 0. Furthermore

v =
N∑
i=0

αiwi =
1
2m

w0 +
(

α0 − 1
2m

)
w0 +

N∑
i=1

αiwi

=
1
2m

w0 +
(
1 − 1

2m

)(
α0 − 1

2m

1 − 1
2m

w0 +
N∑
i=1

αi

1 − 1
2m

wi

)
.

Therefore, as V is convex, we have

α0 − 1
2m

1 − 1
2m

w0 +
N∑
i=1

αi

1 − 1
2m

wi ∈ V

and so

v ∈ 1
2m

W +
(
1 − 1

2m

)
V.

In this way we have proved that

V ⊂
(
1 − 1

2m

)
V +

1
2m

W.

Hence, applying Corollary 2.1, we obtain that iW (V ) ≤ m. �

Remark 2.3. Example 2.3 shows that the compactness of V is an essential
assumption in Theorem 2.3.
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It happens that in the case where V is a simplex, inequality (6) can be
replaced by equality.

Theorem 2.4. Assume that V ⊂ X is a simplex with vertices w0, . . . , wN . Then

i(V ) = �log2(N + 1). (7)

Proof. Let W := {w0, . . . , wN} and v := 1
N+1

∑N
i=0 wi. Assume that

(v0, . . . , vK) is a J-chain in V such that v0 ∈ W and vK = v. We are go-
ing to find the lower estimate for K. We may assume that v0 = w0. Clearly,
for every x ∈ V there exist uniquely determined nonnegative real numbers
α0(x), . . . , αN (x) such that

∑N
i=0 αi(x) = 1 and x =

∑N
i=0 αi(x)wi. It is ob-

vious that α0(v0) = α0(w0) = 1. Next, as (v0, . . . , vK) is a J-chain in V , we
have 2vk+1 − vk ∈ V for k ∈ {0, . . . , K − 1}. Since

2vk+1 − vk =
N∑
i=0

(2αi(vk+1) − αi(vk))wi for k ∈ {0, . . . , K − 1},

this means, in particular, that 2α0(vk+1)− α0(vk) ≥ 0 for k ∈ {0, . . . , K − 1}.
Hence

α0(vK) ≥ 1
2
α0(vK−1) ≥ 1

4
α0(vK−2) ≥ . . . ≥ 1

2K
α0(v0) =

1
2K

.

On the other hand, we have α0(vK) = α0(v) = 1
N+1 . Thus

1
N+1 ≥ 1

2K
and so

K ≥ �log2(N + 1). In this way we have proved that iW (V ) ≥ �log2(N + 1).
So, taking Theorem 2.3 into account, we get (7). �

Remark 2.4. Theorem 2.4 proves that, in general, the estimation given in
Theorem 2.3 is the best possible.

3. Bounded above conditionally δ-midconvex functions

In this section we study properties of bounded above conditionally δ-midconvex
functions.

Proposition 3.1. Assume that f : V → R is a conditionally δ-midconvex func-
tion bounded from above conditionally by a constant M . Then, for every J-
chain (x0, . . . , xN ) in V , we have

f(xN ) ≤ 1
2N

f(x0) +
(
1 − 1

2N

)
(M + 2δ).

Proof. The proof goes by induction over N . If N = 0, then the assertion is
trivial. Suppose that the assertion holds for a given N . Let (x0, . . . , xN+1) be
a J-chain in V . Then
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f(xN+1) ≤ f(xN ) + f(2xN+1 − xN )
2

+ δ

≤
1
2N

f(x0) + (1 − 1
2N

)(M + 2δ) + M

2
+ δ

=
1

2N+1
f(x0) +

(
1 − 1

2N+1

)
(M + 2δ).

�

Corollary 3.1. Every bounded above midconvex function f : X → R is constant.

Proof. Let f : X → R be a midconvex function bounded above. Put M :=
sup{f(x)|x ∈ X}. Furthermore, let x ∈ X be arbitrarily fixed. Then, for every
y ∈ X, (x, y) is a J-chain in X. So, applying Proposition 3.1 with V = X and
δ = 0, we get

f(y) ≤ 1
2
f(x) +

1
2
M for y ∈ X.

Hence

M = sup{f(y)|y ∈ X} ≤ 1
2
f(x) +

1
2
M ≤ M,

which yields that f(x) = M . Thus, as x ∈ X was arbitrary, we conclude that
f is constant. �

Theorem 3.1. Assume that f : V → R is a bounded from above conditionally
δ-midconvex function and iW (V ) < ∞. Then

sup f(V ) ≤ sup f(W ) + 2(2iW (V ) − 1)δ. (8)

Proof. Fix an arbitrary ε > 0. Let M := sup f(V ). Then f(v) > M − ε
for some v ∈ V . Furthermore, by the assumptions, there exists a J-chain
(x0, . . . , xN ) in V such that x0 ∈ W , xN = v and N ≤ iW (V ). Therefore,
applying Proposition 3.1, we obtain

M − ε < f(v) = f(xN ) ≤ 1
2N

f(x0) +
(
1 − 1

2N

)
(M + 2δ).

Hence
1
2N

M ≤ 1
2N

f(x0) + ε + 2
(
1 − 1

2N

)
δ

and so

M ≤ f(x0) + 2Nε + 2(2N − 1)δ ≤ f(x0) + 2iW (V )ε + 2(2iW (V ) − 1)δ.

Since ε > 0 was chosen arbitrarily and x0 ∈ W , this implies (8). �

From Theorems 2.3 and 3.1 we obtain the following result.
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Corollary 3.2. If V is a nonempty compact convex subset of RN and f : V → R

is a bounded from above δ-midconvex function, then

sup f(V ) ≤ sup f(extV ) + 2
(
2�log2(N+1)� − 1

)
δ. (9)

Remark 3.1. Since �log2(N + 1) ≤ log2(N + 1) + 1 for N ∈ N, (9) implies a
weaker, but simpler estimation, which is sometimes more useful in applications

sup f(V ) ≤ sup f(extV ) + (4N + 2)δ.

Corollary 3.3. If V is a nonempty compact convex subset of RN and f : V → R

is a bounded from above midconvex function, then sup f(V ) = sup f(extV ).

Open Access. This article is distributed under the terms of the Creative Commons Attribu-
tion License which permits any use, distribution, and reproduction in any medium, provided
the original author(s) and the source are credited.
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